//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of the target // instruction set for the code generator. // //===----------------------------------------------------------------------===// #include "InstrInfoEmitter.h" #include "CodeGenTarget.h" #include "Record.h" #include #include using namespace llvm; static void PrintDefList(const std::vector &Uses, unsigned Num, std::ostream &OS) { OS << "static const unsigned ImplicitList" << Num << "[] = { "; for (unsigned i = 0, e = Uses.size(); i != e; ++i) OS << getQualifiedName(Uses[i]) << ", "; OS << "0 };\n"; } //===----------------------------------------------------------------------===// // Instruction Itinerary Information. //===----------------------------------------------------------------------===// struct RecordNameComparator { bool operator()(const Record *Rec1, const Record *Rec2) const { return Rec1->getName() < Rec2->getName(); } }; void InstrInfoEmitter::GatherItinClasses() { std::vector DefList = Records.getAllDerivedDefinitions("InstrItinClass"); std::sort(DefList.begin(), DefList.end(), RecordNameComparator()); for (unsigned i = 0, N = DefList.size(); i < N; i++) ItinClassMap[DefList[i]->getName()] = i; } unsigned InstrInfoEmitter::getItinClassNumber(const Record *InstRec) { return ItinClassMap[InstRec->getValueAsDef("Itinerary")->getName()]; } //===----------------------------------------------------------------------===// // Operand Info Emission. //===----------------------------------------------------------------------===// std::vector InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) { std::vector Result; for (unsigned i = 0, e = Inst.OperandList.size(); i != e; ++i) { // Handle aggregate operands and normal operands the same way by expanding // either case into a list of operands for this op. std::vector OperandList; // This might be a multiple operand thing. Targets like X86 have // registers in their multi-operand operands. It may also be an anonymous // operand, which has a single operand, but no declared class for the // operand. DagInit *MIOI = Inst.OperandList[i].MIOperandInfo; if (!MIOI || MIOI->getNumArgs() == 0) { // Single, anonymous, operand. OperandList.push_back(Inst.OperandList[i]); } else { for (unsigned j = 0, e = Inst.OperandList[i].MINumOperands; j != e; ++j) { OperandList.push_back(Inst.OperandList[i]); Record *OpR = dynamic_cast(MIOI->getArg(j))->getDef(); OperandList.back().Rec = OpR; } } for (unsigned j = 0, e = OperandList.size(); j != e; ++j) { Record *OpR = OperandList[j].Rec; std::string Res; if (OpR->isSubClassOf("RegisterClass")) Res += getQualifiedName(OpR) + "RegClassID, "; else Res += "0, "; // Fill in applicable flags. Res += "0"; // Ptr value whose register class is resolved via callback. if (OpR->getName() == "ptr_rc") Res += "|TOI::LookupPtrRegClass"; // Predicate operands. Check to see if the original unexpanded operand // was of type PredicateOperand. if (Inst.OperandList[i].Rec->isSubClassOf("PredicateOperand")) Res += "|TOI::Predicate"; // Optional def operands. Check to see if the original unexpanded operand // was of type OptionalDefOperand. if (Inst.OperandList[i].Rec->isSubClassOf("OptionalDefOperand")) Res += "|TOI::OptionalDef"; // Fill in constraint info. Res += ", " + Inst.OperandList[i].Constraints[j]; Result.push_back(Res); } } return Result; } void InstrInfoEmitter::EmitOperandInfo(std::ostream &OS, OperandInfoMapTy &OperandInfoIDs) { // ID #0 is for no operand info. unsigned OperandListNum = 0; OperandInfoIDs[std::vector()] = ++OperandListNum; OS << "\n"; const CodeGenTarget &Target = CDP.getTargetInfo(); for (CodeGenTarget::inst_iterator II = Target.inst_begin(), E = Target.inst_end(); II != E; ++II) { std::vector OperandInfo = GetOperandInfo(II->second); unsigned &N = OperandInfoIDs[OperandInfo]; if (N != 0) continue; N = ++OperandListNum; OS << "static const TargetOperandInfo OperandInfo" << N << "[] = { "; for (unsigned i = 0, e = OperandInfo.size(); i != e; ++i) OS << "{ " << OperandInfo[i] << " }, "; OS << "};\n"; } } //===----------------------------------------------------------------------===// // Instruction Analysis //===----------------------------------------------------------------------===// class InstAnalyzer { const CodeGenDAGPatterns &CDP; bool &mayStore; bool &isLoad; bool &NeverHasSideEffects; public: InstAnalyzer(const CodeGenDAGPatterns &cdp, bool &maystore, bool &isload, bool &nhse) : CDP(cdp), mayStore(maystore), isLoad(isload), NeverHasSideEffects(nhse) { } void Analyze(Record *InstRecord) { const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); if (Pattern == 0) return; // No pattern. // Assume there is no side-effect unless we see one. NeverHasSideEffects = true; // FIXME: Assume only the first tree is the pattern. The others are clobber // nodes. AnalyzeNode(Pattern->getTree(0)); } private: void AnalyzeNode(const TreePatternNode *N) { if (N->isLeaf()) { return; } if (N->getOperator()->getName() != "set") { // Get information about the SDNode for the operator. const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); // If node writes to memory, it obviously stores to memory. if (OpInfo.hasProperty(SDNPMayStore)) { mayStore = true; } else if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { // If this is an intrinsic, analyze it. if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem) mayStore = true;// Intrinsics that can write to memory are 'mayStore'. } } for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) AnalyzeNode(N->getChild(i)); } }; void InstrInfoEmitter::InferFromPattern(const CodeGenInstruction &Inst, bool &mayStore, bool &isLoad, bool &NeverHasSideEffects) { mayStore = isLoad = NeverHasSideEffects = false; InstAnalyzer(CDP, mayStore, isLoad, NeverHasSideEffects).Analyze(Inst.TheDef); // InstAnalyzer only correctly analyzes mayStore so far. if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. // If we decided that this is a store from the pattern, then the .td file // entry is redundant. if (mayStore) fprintf(stderr, "Warning: mayStore flag explicitly set on instruction '%s'" " but flag already inferred from pattern.\n", Inst.getName().c_str()); mayStore = true; } // These two override everything. isLoad = Inst.isSimpleLoad; NeverHasSideEffects = Inst.neverHasSideEffects; #if 0 // If the .td file explicitly says there is no side effect, believe it. if (Inst.neverHasSideEffects) NeverHasSideEffects = true; #endif } //===----------------------------------------------------------------------===// // Main Output. //===----------------------------------------------------------------------===// // run - Emit the main instruction description records for the target... void InstrInfoEmitter::run(std::ostream &OS) { GatherItinClasses(); EmitSourceFileHeader("Target Instruction Descriptors", OS); OS << "namespace llvm {\n\n"; CodeGenTarget Target; const std::string &TargetName = Target.getName(); Record *InstrInfo = Target.getInstructionSet(); // Keep track of all of the def lists we have emitted already. std::map, unsigned> EmittedLists; unsigned ListNumber = 0; // Emit all of the instruction's implicit uses and defs. for (CodeGenTarget::inst_iterator II = Target.inst_begin(), E = Target.inst_end(); II != E; ++II) { Record *Inst = II->second.TheDef; std::vector Uses = Inst->getValueAsListOfDefs("Uses"); if (!Uses.empty()) { unsigned &IL = EmittedLists[Uses]; if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS); } std::vector Defs = Inst->getValueAsListOfDefs("Defs"); if (!Defs.empty()) { unsigned &IL = EmittedLists[Defs]; if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS); } } OperandInfoMapTy OperandInfoIDs; // Emit all of the operand info records. EmitOperandInfo(OS, OperandInfoIDs); // Emit all of the TargetInstrDescriptor records in their ENUM ordering. // OS << "\nstatic const TargetInstrDescriptor " << TargetName << "Insts[] = {\n"; std::vector NumberedInstructions; Target.getInstructionsByEnumValue(NumberedInstructions); for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) emitRecord(*NumberedInstructions[i], i, InstrInfo, EmittedLists, OperandInfoIDs, OS); OS << "};\n"; OS << "} // End llvm namespace \n"; } void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num, Record *InstrInfo, std::map, unsigned> &EmittedLists, const OperandInfoMapTy &OpInfo, std::ostream &OS) { // Determine properties of the instruction from its pattern. bool mayStore, isLoad, NeverHasSideEffects; InferFromPattern(Inst, mayStore, isLoad, NeverHasSideEffects); if (NeverHasSideEffects && Inst.mayHaveSideEffects) { std::cerr << "error: Instruction '" << Inst.getName() << "' is marked with 'mayHaveSideEffects', but it can never have them!\n"; exit(1); } int MinOperands = 0; if (!Inst.OperandList.empty()) // Each logical operand can be multiple MI operands. MinOperands = Inst.OperandList.back().MIOperandNo + Inst.OperandList.back().MINumOperands; OS << " { "; OS << Num << ",\t" << MinOperands << ",\t" << Inst.NumDefs << ",\t\"" << Inst.getName(); OS << "\",\t" << getItinClassNumber(Inst.TheDef) << ", 0"; // Emit all of the target indepedent flags... if (Inst.isReturn) OS << "|M_RET_FLAG"; if (Inst.isBranch) OS << "|M_BRANCH_FLAG"; if (Inst.isIndirectBranch) OS << "|M_INDIRECT_FLAG"; if (Inst.isBarrier) OS << "|M_BARRIER_FLAG"; if (Inst.hasDelaySlot) OS << "|M_DELAY_SLOT_FLAG"; if (Inst.isCall) OS << "|M_CALL_FLAG"; if (isLoad) OS << "|M_SIMPLE_LOAD_FLAG"; if (mayStore) OS << "|M_MAY_STORE_FLAG"; if (Inst.isImplicitDef)OS << "|M_IMPLICIT_DEF_FLAG"; if (Inst.isPredicable) OS << "|M_PREDICABLE"; if (Inst.isConvertibleToThreeAddress) OS << "|M_CONVERTIBLE_TO_3_ADDR"; if (Inst.isCommutable) OS << "|M_COMMUTABLE"; if (Inst.isTerminator) OS << "|M_TERMINATOR_FLAG"; if (Inst.isReMaterializable) OS << "|M_REMATERIALIZIBLE"; if (Inst.isNotDuplicable) OS << "|M_NOT_DUPLICABLE"; if (Inst.hasOptionalDef) OS << "|M_HAS_OPTIONAL_DEF"; if (Inst.usesCustomDAGSchedInserter) OS << "|M_USES_CUSTOM_DAG_SCHED_INSERTION"; if (Inst.hasVariableNumberOfOperands) OS << "|M_VARIABLE_OPS"; if (Inst.mayHaveSideEffects) OS << "|M_MAY_HAVE_SIDE_EFFECTS"; if (NeverHasSideEffects) OS << "|M_NEVER_HAS_SIDE_EFFECTS"; OS << ", 0"; // Emit all of the target-specific flags... ListInit *LI = InstrInfo->getValueAsListInit("TSFlagsFields"); ListInit *Shift = InstrInfo->getValueAsListInit("TSFlagsShifts"); if (LI->getSize() != Shift->getSize()) throw "Lengths of " + InstrInfo->getName() + ":(TargetInfoFields, TargetInfoPositions) must be equal!"; for (unsigned i = 0, e = LI->getSize(); i != e; ++i) emitShiftedValue(Inst.TheDef, dynamic_cast(LI->getElement(i)), dynamic_cast(Shift->getElement(i)), OS); OS << ", "; // Emit the implicit uses and defs lists... std::vector UseList = Inst.TheDef->getValueAsListOfDefs("Uses"); if (UseList.empty()) OS << "NULL, "; else OS << "ImplicitList" << EmittedLists[UseList] << ", "; std::vector DefList = Inst.TheDef->getValueAsListOfDefs("Defs"); if (DefList.empty()) OS << "NULL, "; else OS << "ImplicitList" << EmittedLists[DefList] << ", "; // Emit the operand info. std::vector OperandInfo = GetOperandInfo(Inst); if (OperandInfo.empty()) OS << "0"; else OS << "OperandInfo" << OpInfo.find(OperandInfo)->second; OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n"; } void InstrInfoEmitter::emitShiftedValue(Record *R, StringInit *Val, IntInit *ShiftInt, std::ostream &OS) { if (Val == 0 || ShiftInt == 0) throw std::string("Illegal value or shift amount in TargetInfo*!"); RecordVal *RV = R->getValue(Val->getValue()); int Shift = ShiftInt->getValue(); if (RV == 0 || RV->getValue() == 0) { // This isn't an error if this is a builtin instruction. if (R->getName() != "PHI" && R->getName() != "INLINEASM" && R->getName() != "LABEL" && R->getName() != "EXTRACT_SUBREG" && R->getName() != "INSERT_SUBREG") throw R->getName() + " doesn't have a field named '" + Val->getValue() + "'!"; return; } Init *Value = RV->getValue(); if (BitInit *BI = dynamic_cast(Value)) { if (BI->getValue()) OS << "|(1<<" << Shift << ")"; return; } else if (BitsInit *BI = dynamic_cast(Value)) { // Convert the Bits to an integer to print... Init *I = BI->convertInitializerTo(new IntRecTy()); if (I) if (IntInit *II = dynamic_cast(I)) { if (II->getValue()) { if (Shift) OS << "|(" << II->getValue() << "<<" << Shift << ")"; else OS << "|" << II->getValue(); } return; } } else if (IntInit *II = dynamic_cast(Value)) { if (II->getValue()) { if (Shift) OS << "|(" << II->getValue() << "<<" << Shift << ")"; else OS << II->getValue(); } return; } std::cerr << "Unhandled initializer: " << *Val << "\n"; throw "In record '" + R->getName() + "' for TSFlag emission."; }