//===-- llvm/Type.h - Classes for handling data types ------------*- C++ -*--=// // // This file contains the declaration of the Type class. For more "Type" type // stuff, look in DerivedTypes.h and Opt/ConstantHandling.h // // Note that instances of the Type class are immutable: once they are created, // they are never changed. Also note that only one instance of a particular // type is ever created. Thus seeing if two types are equal is a matter of // doing a trivial pointer comparison. // // Types, once allocated, are never free'd. // // Opaque types are simple derived types with no state. There may be many // different Opaque type objects floating around, but two are only considered // identical if they are pointer equals of each other. This allows us to have // two opaque types that end up resolving to different concrete types later. // // Opaque types are also kinda wierd and scary and different because they have // to keep a list of uses of the type. When, through linking, parsing, or // bytecode reading, they become resolved, they need to find and update all // users of the unknown type, causing them to reference a new, more concrete // type. Opaque types are deleted when their use list dwindles to zero users. // //===----------------------------------------------------------------------===// #ifndef LLVM_TYPE_H #define LLVM_TYPE_H #include "llvm/Value.h" #include "llvm/Support/GraphTraits.h" class DerivedType; class MethodType; class ArrayType; class PointerType; class StructType; class OpaqueType; class Type : public Value { public: //===--------------------------------------------------------------------===// // Definitions of all of the base types for the Type system. Based on this // value, you can cast to a "DerivedType" subclass (see DerivedTypes.h) // Note: If you add an element to this, you need to add an element to the // Type::getPrimitiveType function, or else things will break! // enum PrimitiveID { VoidTyID = 0 , BoolTyID, // 0, 1: Basics... UByteTyID , SByteTyID, // 2, 3: 8 bit types... UShortTyID , ShortTyID, // 4, 5: 16 bit types... UIntTyID , IntTyID, // 6, 7: 32 bit types... ULongTyID , LongTyID, // 8, 9: 64 bit types... FloatTyID , DoubleTyID, // 10,11: Floating point types... TypeTyID, // 12 : Type definitions LabelTyID , // 13 : Labels... // Derived types... see DerivedTypes.h file... // Make sure FirstDerivedTyID stays up to date!!! MethodTyID , StructTyID, // Methods... Structs... ArrayTyID , PointerTyID, // Array... pointer... OpaqueTyID, // Opaque type instances... //PackedTyID , // SIMD 'packed' format... TODO //... NumPrimitiveIDs, // Must remain as last defined ID FirstDerivedTyID = MethodTyID, }; private: PrimitiveID ID; // The current base type of this type... unsigned UID; // The unique ID number for this class string Desc; // The printed name of the string... bool Abstract; // True if type contains an OpaqueType bool Recursive; // True if the type is recursive protected: // ctor is protected, so only subclasses can create Type objects... Type(const string &Name, PrimitiveID id); virtual ~Type() {} // When types are refined, they update their description to be more concrete. // inline void setDescription(const string &D) { Desc = D; } // setName - Associate the name with this type in the symbol table, but don't // set the local name to be equal specified name. // virtual void setName(const string &Name, SymbolTable *ST = 0); // Types can become nonabstract later, if they are refined. // inline void setAbstract(bool Val) { Abstract = Val; } // Types can become recursive later, if they are refined. // inline void setRecursive(bool Val) { Recursive = Val; } public: //===--------------------------------------------------------------------===// // Property accessors for dealing with types... // // getPrimitiveID - Return the base type of the type. This will return one // of the PrimitiveID enum elements defined above. // inline PrimitiveID getPrimitiveID() const { return ID; } // getUniqueID - Returns the UID of the type. This can be thought of as a // small integer version of the pointer to the type class. Two types that are // structurally different have different UIDs. This can be used for indexing // types into an array. // inline unsigned getUniqueID() const { return UID; } // getDescription - Return the string representation of the type... inline const string &getDescription() const { return Desc; } // isSigned - Return whether a numeric type is signed. virtual bool isSigned() const { return 0; } // isUnsigned - Return whether a numeric type is unsigned. This is not // quite the complement of isSigned... nonnumeric types return false as they // do with isSigned. // virtual bool isUnsigned() const { return 0; } // isIntegral - Equilivent to isSigned() || isUnsigned, but with only a single // virtual function invocation. // virtual bool isIntegral() const { return 0; } // isAbstract - True if the type is either an Opaque type, or is a derived // type that includes an opaque type somewhere in it. // inline bool isAbstract() const { return Abstract; } // isRecursive - True if the type graph contains a cycle. // inline bool isRecursive() const { return Recursive; } //===--------------------------------------------------------------------===// // Type Iteration support // class TypeIterator; typedef TypeIterator subtype_iterator; inline subtype_iterator subtype_begin() const; // DEFINED BELOW inline subtype_iterator subtype_end() const; // DEFINED BELOW // getContainedType - This method is used to implement the type iterator // (defined a the end of the file). For derived types, this returns the types // 'contained' in the derived type, returning 0 when 'i' becomes invalid. This // allows the user to iterate over the types in a struct, for example, really // easily. // virtual const Type *getContainedType(unsigned i) const { return 0; } // getNumContainedTypes - Return the number of types in the derived type virtual unsigned getNumContainedTypes() const { return 0; } //===--------------------------------------------------------------------===// // Static members exported by the Type class itself. Useful for getting // instances of Type. // // getPrimitiveType/getUniqueIDType - Return a type based on an identifier. static const Type *getPrimitiveType(PrimitiveID IDNumber); static const Type *getUniqueIDType(unsigned UID); //===--------------------------------------------------------------------===// // These are the builtin types that are always available... // static Type *VoidTy , *BoolTy; static Type *SByteTy, *UByteTy, *ShortTy, *UShortTy, *IntTy , *UIntTy, *LongTy , *ULongTy; static Type *FloatTy, *DoubleTy; static Type *TypeTy , *LabelTy; // Here are some useful little methods to query what type derived types are // Note that all other types can just compare to see if this == Type::xxxTy; // inline bool isPrimitiveType() const { return ID < FirstDerivedTyID; } inline bool isDerivedType() const { return ID >= FirstDerivedTyID; } inline const DerivedType *castDerivedType() const { return isDerivedType() ? (const DerivedType*)this : 0; } inline const DerivedType *castDerivedTypeAsserting() const { assert(isDerivedType()); return (const DerivedType*)this; } // Methods for determining the subtype of this Type. The cast*() methods are // equilivent to using dynamic_cast<>... if the cast is successful, this is // returned, otherwise you get a null pointer, allowing expressions like this: // // if (MethodType *MTy = Ty->dyncastMethodType()) { ... } // // This section also defines a family of isArrayType(), isLabelType(), // etc functions... // // The family of functions Ty->cast() is used in the same way as the // Ty->dyncast() instructions, but they assert the expected type instead // of checking it at runtime. // #define HANDLE_PRIM_TYPE(NAME, SIZE) \ inline bool is##NAME##Type() const { return ID == NAME##TyID; } #define HANDLE_DERV_TYPE(NAME, CLASS) \ inline bool is##NAME##Type() const { return ID == NAME##TyID; } \ inline const CLASS *dyncast##NAME##Type() const { /*const version */ \ return is##NAME##Type() ? (const CLASS*)this : 0; \ } \ inline CLASS *dyncast##NAME##Type() { /* nonconst version */ \ return is##NAME##Type() ? (CLASS*)this : 0; \ } \ inline const CLASS *cast##NAME##Type() const { /*const version */ \ assert(is##NAME##Type() && "Expected TypeTy: " #NAME); \ return (const CLASS*)this; \ } \ inline CLASS *cast##NAME##Type() { /* nonconst version */ \ assert(is##NAME##Type() && "Expected TypeTy: " #NAME); \ return (CLASS*)this; \ } #include "llvm/Type.def" private: class TypeIterator : public std::bidirectional_iterator { const Type * const Ty; unsigned Idx; typedef TypeIterator _Self; public: inline TypeIterator(const Type *ty, unsigned idx) : Ty(ty), Idx(idx) {} inline ~TypeIterator() {} inline bool operator==(const _Self& x) const { return Idx == x.Idx; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return Ty->getContainedType(Idx); } inline pointer operator->() const { return operator*(); } inline _Self& operator++() { ++Idx; return *this; } // Preincrement inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --Idx; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; }; inline Type::TypeIterator Type::subtype_begin() const { return TypeIterator(this, 0); } inline Type::TypeIterator Type::subtype_end() const { return TypeIterator(this, getNumContainedTypes()); } // Provide specializations of GraphTraits to be able to treat a type as a // graph of sub types... template <> struct GraphTraits { typedef Type NodeType; typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(Type *T) { return T; } static inline ChildIteratorType child_begin(NodeType *N) { return N->subtype_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; template <> struct GraphTraits { typedef const Type NodeType; typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(const Type *T) { return T; } static inline ChildIteratorType child_begin(NodeType *N) { return N->subtype_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; #endif