//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Begeman and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run // both before and after the DAG is legalized. // // FIXME: Missing folds // sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into // a sequence of multiplies, shifts, and adds. This should be controlled by // some kind of hint from the target that int div is expensive. // various folds of mulh[s,u] by constants such as -1, powers of 2, etc. // // FIXME: select C, pow2, pow2 -> something smart // FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z) // FIXME: Dead stores -> nuke // FIXME: shr X, (and Y,31) -> shr X, Y (TRICKY!) // FIXME: mul (x, const) -> shifts + adds // FIXME: undef values // FIXME: make truncate see through SIGN_EXTEND and AND // FIXME: divide by zero is currently left unfolded. do we want to turn this // into an undef? // FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dagcombine" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetLowering.h" #include #include #include using namespace llvm; namespace { Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined"); class DAGCombiner { SelectionDAG &DAG; TargetLowering &TLI; bool AfterLegalize; // Worklist of all of the nodes that need to be simplified. std::vector WorkList; /// AddUsersToWorkList - When an instruction is simplified, add all users of /// the instruction to the work lists because they might get more simplified /// now. /// void AddUsersToWorkList(SDNode *N) { for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) WorkList.push_back(*UI); } /// removeFromWorkList - remove all instances of N from the worklist. /// void removeFromWorkList(SDNode *N) { WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), WorkList.end()); } public: void AddToWorkList(SDNode *N) { WorkList.push_back(N); } SDOperand CombineTo(SDNode *N, const std::vector &To) { ++NodesCombined; DEBUG(std::cerr << "\nReplacing "; N->dump(); std::cerr << "\nWith: "; To[0].Val->dump(); std::cerr << " and " << To.size()-1 << " other values\n"); std::vector NowDead; DAG.ReplaceAllUsesWith(N, To, &NowDead); // Push the new nodes and any users onto the worklist for (unsigned i = 0, e = To.size(); i != e; ++i) { WorkList.push_back(To[i].Val); AddUsersToWorkList(To[i].Val); } // Nodes can end up on the worklist more than once. Make sure we do // not process a node that has been replaced. removeFromWorkList(N); for (unsigned i = 0, e = NowDead.size(); i != e; ++i) removeFromWorkList(NowDead[i]); // Finally, since the node is now dead, remove it from the graph. DAG.DeleteNode(N); return SDOperand(N, 0); } SDOperand CombineTo(SDNode *N, SDOperand Res) { std::vector To; To.push_back(Res); return CombineTo(N, To); } SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) { std::vector To; To.push_back(Res0); To.push_back(Res1); return CombineTo(N, To); } private: /// SimplifyDemandedBits - Check the specified integer node value to see if /// it can be simplified or if things it uses can be simplified by bit /// propagation. If so, return true. bool SimplifyDemandedBits(SDOperand Op) { TargetLowering::TargetLoweringOpt TLO(DAG); uint64_t KnownZero, KnownOne; uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType()); if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) return false; // Revisit the node. WorkList.push_back(Op.Val); // Replace the old value with the new one. ++NodesCombined; DEBUG(std::cerr << "\nReplacing "; TLO.Old.Val->dump(); std::cerr << "\nWith: "; TLO.New.Val->dump()); std::vector NowDead; DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead); // Push the new node and any (possibly new) users onto the worklist. WorkList.push_back(TLO.New.Val); AddUsersToWorkList(TLO.New.Val); // Nodes can end up on the worklist more than once. Make sure we do // not process a node that has been replaced. for (unsigned i = 0, e = NowDead.size(); i != e; ++i) removeFromWorkList(NowDead[i]); // Finally, if the node is now dead, remove it from the graph. The node // may not be dead if the replacement process recursively simplified to // something else needing this node. if (TLO.Old.Val->use_empty()) { removeFromWorkList(TLO.Old.Val); DAG.DeleteNode(TLO.Old.Val); } return true; } /// visit - call the node-specific routine that knows how to fold each /// particular type of node. SDOperand visit(SDNode *N); // Visitation implementation - Implement dag node combining for different // node types. The semantics are as follows: // Return Value: // SDOperand.Val == 0 - No change was made // SDOperand.Val == N - N was replaced, is dead, and is already handled. // otherwise - N should be replaced by the returned Operand. // SDOperand visitTokenFactor(SDNode *N); SDOperand visitADD(SDNode *N); SDOperand visitSUB(SDNode *N); SDOperand visitMUL(SDNode *N); SDOperand visitSDIV(SDNode *N); SDOperand visitUDIV(SDNode *N); SDOperand visitSREM(SDNode *N); SDOperand visitUREM(SDNode *N); SDOperand visitMULHU(SDNode *N); SDOperand visitMULHS(SDNode *N); SDOperand visitAND(SDNode *N); SDOperand visitOR(SDNode *N); SDOperand visitXOR(SDNode *N); SDOperand visitSHL(SDNode *N); SDOperand visitSRA(SDNode *N); SDOperand visitSRL(SDNode *N); SDOperand visitCTLZ(SDNode *N); SDOperand visitCTTZ(SDNode *N); SDOperand visitCTPOP(SDNode *N); SDOperand visitSELECT(SDNode *N); SDOperand visitSELECT_CC(SDNode *N); SDOperand visitSETCC(SDNode *N); SDOperand visitSIGN_EXTEND(SDNode *N); SDOperand visitZERO_EXTEND(SDNode *N); SDOperand visitSIGN_EXTEND_INREG(SDNode *N); SDOperand visitTRUNCATE(SDNode *N); SDOperand visitBIT_CONVERT(SDNode *N); SDOperand visitFADD(SDNode *N); SDOperand visitFSUB(SDNode *N); SDOperand visitFMUL(SDNode *N); SDOperand visitFDIV(SDNode *N); SDOperand visitFREM(SDNode *N); SDOperand visitFCOPYSIGN(SDNode *N); SDOperand visitSINT_TO_FP(SDNode *N); SDOperand visitUINT_TO_FP(SDNode *N); SDOperand visitFP_TO_SINT(SDNode *N); SDOperand visitFP_TO_UINT(SDNode *N); SDOperand visitFP_ROUND(SDNode *N); SDOperand visitFP_ROUND_INREG(SDNode *N); SDOperand visitFP_EXTEND(SDNode *N); SDOperand visitFNEG(SDNode *N); SDOperand visitFABS(SDNode *N); SDOperand visitBRCOND(SDNode *N); SDOperand visitBR_CC(SDNode *N); SDOperand visitLOAD(SDNode *N); SDOperand visitSTORE(SDNode *N); SDOperand visitINSERT_VECTOR_ELT(SDNode *N); SDOperand visitVINSERT_VECTOR_ELT(SDNode *N); SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS); bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS); SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2); SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, SDOperand N3, ISD::CondCode CC); SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, ISD::CondCode Cond, bool foldBooleans = true); SDOperand BuildSDIV(SDNode *N); SDOperand BuildUDIV(SDNode *N); public: DAGCombiner(SelectionDAG &D) : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {} /// Run - runs the dag combiner on all nodes in the work list void Run(bool RunningAfterLegalize); }; } //===----------------------------------------------------------------------===// // TargetLowering::DAGCombinerInfo implementation //===----------------------------------------------------------------------===// void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { ((DAGCombiner*)DC)->AddToWorkList(N); } SDOperand TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, const std::vector &To) { return ((DAGCombiner*)DC)->CombineTo(N, To); } SDOperand TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, SDOperand Res) { return ((DAGCombiner*)DC)->CombineTo(N, Res); } SDOperand TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) { return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1); } //===----------------------------------------------------------------------===// struct ms { int64_t m; // magic number int64_t s; // shift amount }; struct mu { uint64_t m; // magic number int64_t a; // add indicator int64_t s; // shift amount }; /// magic - calculate the magic numbers required to codegen an integer sdiv as /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, /// or -1. static ms magic32(int32_t d) { int32_t p; uint32_t ad, anc, delta, q1, r1, q2, r2, t; const uint32_t two31 = 0x80000000U; struct ms mag; ad = abs(d); t = two31 + ((uint32_t)d >> 31); anc = t - 1 - t%ad; // absolute value of nc p = 31; // initialize p q1 = two31/anc; // initialize q1 = 2p/abs(nc) r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) q2 = two31/ad; // initialize q2 = 2p/abs(d) r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) do { p = p + 1; q1 = 2*q1; // update q1 = 2p/abs(nc) r1 = 2*r1; // update r1 = rem(2p/abs(nc)) if (r1 >= anc) { // must be unsigned comparison q1 = q1 + 1; r1 = r1 - anc; } q2 = 2*q2; // update q2 = 2p/abs(d) r2 = 2*r2; // update r2 = rem(2p/abs(d)) if (r2 >= ad) { // must be unsigned comparison q2 = q2 + 1; r2 = r2 - ad; } delta = ad - r2; } while (q1 < delta || (q1 == delta && r1 == 0)); mag.m = (int32_t)(q2 + 1); // make sure to sign extend if (d < 0) mag.m = -mag.m; // resulting magic number mag.s = p - 32; // resulting shift return mag; } /// magicu - calculate the magic numbers required to codegen an integer udiv as /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. static mu magicu32(uint32_t d) { int32_t p; uint32_t nc, delta, q1, r1, q2, r2; struct mu magu; magu.a = 0; // initialize "add" indicator nc = - 1 - (-d)%d; p = 31; // initialize p q1 = 0x80000000/nc; // initialize q1 = 2p/nc r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) do { p = p + 1; if (r1 >= nc - r1 ) { q1 = 2*q1 + 1; // update q1 r1 = 2*r1 - nc; // update r1 } else { q1 = 2*q1; // update q1 r1 = 2*r1; // update r1 } if (r2 + 1 >= d - r2) { if (q2 >= 0x7FFFFFFF) magu.a = 1; q2 = 2*q2 + 1; // update q2 r2 = 2*r2 + 1 - d; // update r2 } else { if (q2 >= 0x80000000) magu.a = 1; q2 = 2*q2; // update q2 r2 = 2*r2 + 1; // update r2 } delta = d - 1 - r2; } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); magu.m = q2 + 1; // resulting magic number magu.s = p - 32; // resulting shift return magu; } /// magic - calculate the magic numbers required to codegen an integer sdiv as /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, /// or -1. static ms magic64(int64_t d) { int64_t p; uint64_t ad, anc, delta, q1, r1, q2, r2, t; const uint64_t two63 = 9223372036854775808ULL; // 2^63 struct ms mag; ad = d >= 0 ? d : -d; t = two63 + ((uint64_t)d >> 63); anc = t - 1 - t%ad; // absolute value of nc p = 63; // initialize p q1 = two63/anc; // initialize q1 = 2p/abs(nc) r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc)) q2 = two63/ad; // initialize q2 = 2p/abs(d) r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d)) do { p = p + 1; q1 = 2*q1; // update q1 = 2p/abs(nc) r1 = 2*r1; // update r1 = rem(2p/abs(nc)) if (r1 >= anc) { // must be unsigned comparison q1 = q1 + 1; r1 = r1 - anc; } q2 = 2*q2; // update q2 = 2p/abs(d) r2 = 2*r2; // update r2 = rem(2p/abs(d)) if (r2 >= ad) { // must be unsigned comparison q2 = q2 + 1; r2 = r2 - ad; } delta = ad - r2; } while (q1 < delta || (q1 == delta && r1 == 0)); mag.m = q2 + 1; if (d < 0) mag.m = -mag.m; // resulting magic number mag.s = p - 64; // resulting shift return mag; } /// magicu - calculate the magic numbers required to codegen an integer udiv as /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. static mu magicu64(uint64_t d) { int64_t p; uint64_t nc, delta, q1, r1, q2, r2; struct mu magu; magu.a = 0; // initialize "add" indicator nc = - 1 - (-d)%d; p = 63; // initialize p q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc) q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d) do { p = p + 1; if (r1 >= nc - r1 ) { q1 = 2*q1 + 1; // update q1 r1 = 2*r1 - nc; // update r1 } else { q1 = 2*q1; // update q1 r1 = 2*r1; // update r1 } if (r2 + 1 >= d - r2) { if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1; q2 = 2*q2 + 1; // update q2 r2 = 2*r2 + 1 - d; // update r2 } else { if (q2 >= 0x8000000000000000ull) magu.a = 1; q2 = 2*q2; // update q2 r2 = 2*r2 + 1; // update r2 } delta = d - 1 - r2; } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); magu.m = q2 + 1; // resulting magic number magu.s = p - 64; // resulting shift return magu; } // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc // that selects between the values 1 and 0, making it equivalent to a setcc. // Also, set the incoming LHS, RHS, and CC references to the appropriate // nodes based on the type of node we are checking. This simplifies life a // bit for the callers. static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS, SDOperand &CC) { if (N.getOpcode() == ISD::SETCC) { LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(2); return true; } if (N.getOpcode() == ISD::SELECT_CC && N.getOperand(2).getOpcode() == ISD::Constant && N.getOperand(3).getOpcode() == ISD::Constant && cast(N.getOperand(2))->getValue() == 1 && cast(N.getOperand(3))->isNullValue()) { LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(4); return true; } return false; } // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only // one use. If this is true, it allows the users to invert the operation for // free when it is profitable to do so. static bool isOneUseSetCC(SDOperand N) { SDOperand N0, N1, N2; if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse()) return true; return false; } // FIXME: This should probably go in the ISD class rather than being duplicated // in several files. static bool isCommutativeBinOp(unsigned Opcode) { switch (Opcode) { case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: return true; default: return false; // FIXME: Need commutative info for user ops! } } SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){ MVT::ValueType VT = N0.getValueType(); // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) if (N0.getOpcode() == Opc && isa(N0.getOperand(1))) { if (isa(N1)) { SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1); AddToWorkList(OpNode.Val); return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0)); } else if (N0.hasOneUse()) { SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1); AddToWorkList(OpNode.Val); return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1)); } } // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) if (N1.getOpcode() == Opc && isa(N1.getOperand(1))) { if (isa(N0)) { SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0); AddToWorkList(OpNode.Val); return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0)); } else if (N1.hasOneUse()) { SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0); AddToWorkList(OpNode.Val); return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1)); } } return SDOperand(); } void DAGCombiner::Run(bool RunningAfterLegalize) { // set the instance variable, so that the various visit routines may use it. AfterLegalize = RunningAfterLegalize; // Add all the dag nodes to the worklist. for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I) WorkList.push_back(I); // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted, and tracking any // changes of the root. HandleSDNode Dummy(DAG.getRoot()); /// DagCombineInfo - Expose the DAG combiner to the target combiner impls. TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, !RunningAfterLegalize, this); // while the worklist isn't empty, inspect the node on the end of it and // try and combine it. while (!WorkList.empty()) { SDNode *N = WorkList.back(); WorkList.pop_back(); // If N has no uses, it is dead. Make sure to revisit all N's operands once // N is deleted from the DAG, since they too may now be dead or may have a // reduced number of uses, allowing other xforms. if (N->use_empty() && N != &Dummy) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) WorkList.push_back(N->getOperand(i).Val); removeFromWorkList(N); DAG.DeleteNode(N); continue; } SDOperand RV = visit(N); // If nothing happened, try a target-specific DAG combine. if (RV.Val == 0) { if (N->getOpcode() >= ISD::BUILTIN_OP_END || TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) RV = TLI.PerformDAGCombine(N, DagCombineInfo); } if (RV.Val) { ++NodesCombined; // If we get back the same node we passed in, rather than a new node or // zero, we know that the node must have defined multiple values and // CombineTo was used. Since CombineTo takes care of the worklist // mechanics for us, we have no work to do in this case. if (RV.Val != N) { DEBUG(std::cerr << "\nReplacing "; N->dump(); std::cerr << "\nWith: "; RV.Val->dump(); std::cerr << '\n'); std::vector NowDead; DAG.ReplaceAllUsesWith(N, std::vector(1, RV), &NowDead); // Push the new node and any users onto the worklist WorkList.push_back(RV.Val); AddUsersToWorkList(RV.Val); // Nodes can end up on the worklist more than once. Make sure we do // not process a node that has been replaced. removeFromWorkList(N); for (unsigned i = 0, e = NowDead.size(); i != e; ++i) removeFromWorkList(NowDead[i]); // Finally, since the node is now dead, remove it from the graph. DAG.DeleteNode(N); } } } // If the root changed (e.g. it was a dead load, update the root). DAG.setRoot(Dummy.getValue()); } SDOperand DAGCombiner::visit(SDNode *N) { switch(N->getOpcode()) { default: break; case ISD::TokenFactor: return visitTokenFactor(N); case ISD::ADD: return visitADD(N); case ISD::SUB: return visitSUB(N); case ISD::MUL: return visitMUL(N); case ISD::SDIV: return visitSDIV(N); case ISD::UDIV: return visitUDIV(N); case ISD::SREM: return visitSREM(N); case ISD::UREM: return visitUREM(N); case ISD::MULHU: return visitMULHU(N); case ISD::MULHS: return visitMULHS(N); case ISD::AND: return visitAND(N); case ISD::OR: return visitOR(N); case ISD::XOR: return visitXOR(N); case ISD::SHL: return visitSHL(N); case ISD::SRA: return visitSRA(N); case ISD::SRL: return visitSRL(N); case ISD::CTLZ: return visitCTLZ(N); case ISD::CTTZ: return visitCTTZ(N); case ISD::CTPOP: return visitCTPOP(N); case ISD::SELECT: return visitSELECT(N); case ISD::SELECT_CC: return visitSELECT_CC(N); case ISD::SETCC: return visitSETCC(N); case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); case ISD::TRUNCATE: return visitTRUNCATE(N); case ISD::BIT_CONVERT: return visitBIT_CONVERT(N); case ISD::FADD: return visitFADD(N); case ISD::FSUB: return visitFSUB(N); case ISD::FMUL: return visitFMUL(N); case ISD::FDIV: return visitFDIV(N); case ISD::FREM: return visitFREM(N); case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); case ISD::FP_ROUND: return visitFP_ROUND(N); case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); case ISD::FP_EXTEND: return visitFP_EXTEND(N); case ISD::FNEG: return visitFNEG(N); case ISD::FABS: return visitFABS(N); case ISD::BRCOND: return visitBRCOND(N); case ISD::BR_CC: return visitBR_CC(N); case ISD::LOAD: return visitLOAD(N); case ISD::STORE: return visitSTORE(N); case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N); } return SDOperand(); } SDOperand DAGCombiner::visitTokenFactor(SDNode *N) { std::vector Ops; bool Changed = false; // If the token factor has two operands and one is the entry token, replace // the token factor with the other operand. if (N->getNumOperands() == 2) { if (N->getOperand(0).getOpcode() == ISD::EntryToken) return N->getOperand(1); if (N->getOperand(1).getOpcode() == ISD::EntryToken) return N->getOperand(0); } // fold (tokenfactor (tokenfactor)) -> tokenfactor for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDOperand Op = N->getOperand(i); if (Op.getOpcode() == ISD::TokenFactor && Op.hasOneUse()) { AddToWorkList(Op.Val); // Remove dead node. Changed = true; for (unsigned j = 0, e = Op.getNumOperands(); j != e; ++j) Ops.push_back(Op.getOperand(j)); } else { Ops.push_back(Op); } } if (Changed) return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops); return SDOperand(); } SDOperand DAGCombiner::visitADD(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); // fold (add c1, c2) -> c1+c2 if (N0C && N1C) return DAG.getNode(ISD::ADD, VT, N0, N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::ADD, VT, N1, N0); // fold (add x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold ((c1-A)+c2) -> (c1+c2)-A if (N1C && N0.getOpcode() == ISD::SUB) if (ConstantSDNode *N0C = dyn_cast(N0.getOperand(0))) return DAG.getNode(ISD::SUB, VT, DAG.getConstant(N1C->getValue()+N0C->getValue(), VT), N0.getOperand(1)); // reassociate add SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1); if (RADD.Val != 0) return RADD; // fold ((0-A) + B) -> B-A if (N0.getOpcode() == ISD::SUB && isa(N0.getOperand(0)) && cast(N0.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1)); // fold (A + (0-B)) -> A-B if (N1.getOpcode() == ISD::SUB && isa(N1.getOperand(0)) && cast(N1.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1)); // fold (A+(B-A)) -> B if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) return N1.getOperand(0); if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(); // fold (a+b) -> (a|b) iff a and b share no bits. if (MVT::isInteger(VT) && !MVT::isVector(VT)) { uint64_t LHSZero, LHSOne; uint64_t RHSZero, RHSOne; uint64_t Mask = MVT::getIntVTBitMask(VT); TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); if (LHSZero) { TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); // If all possibly-set bits on the LHS are clear on the RHS, return an OR. // If all possibly-set bits on the RHS are clear on the LHS, return an OR. if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) return DAG.getNode(ISD::OR, VT, N0, N1); } } return SDOperand(); } SDOperand DAGCombiner::visitSUB(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); MVT::ValueType VT = N0.getValueType(); // fold (sub x, x) -> 0 if (N0 == N1) return DAG.getConstant(0, N->getValueType(0)); // fold (sub c1, c2) -> c1-c2 if (N0C && N1C) return DAG.getNode(ISD::SUB, VT, N0, N1); // fold (sub x, c) -> (add x, -c) if (N1C) return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT)); // fold (A+B)-A -> B if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) return N0.getOperand(1); // fold (A+B)-B -> A if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) return N0.getOperand(0); return SDOperand(); } SDOperand DAGCombiner::visitMUL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); // fold (mul c1, c2) -> c1*c2 if (N0C && N1C) return DAG.getNode(ISD::MUL, VT, N0, N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::MUL, VT, N1, N0); // fold (mul x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mul x, -1) -> 0-x if (N1C && N1C->isAllOnesValue()) return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); // fold (mul x, (1 << c)) -> x << c if (N1C && isPowerOf2_64(N1C->getValue())) return DAG.getNode(ISD::SHL, VT, N0, DAG.getConstant(Log2_64(N1C->getValue()), TLI.getShiftAmountTy())); // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c if (N1C && isPowerOf2_64(-N1C->getSignExtended())) { // FIXME: If the input is something that is easily negated (e.g. a // single-use add), we should put the negate there. return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), DAG.getNode(ISD::SHL, VT, N0, DAG.getConstant(Log2_64(-N1C->getSignExtended()), TLI.getShiftAmountTy()))); } // (mul (shl X, c1), c2) -> (mul X, c2 << c1) if (N1C && N0.getOpcode() == ISD::SHL && isa(N0.getOperand(1))) { SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1)); AddToWorkList(C3.Val); return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3); } // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one // use. { SDOperand Sh(0,0), Y(0,0); // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). if (N0.getOpcode() == ISD::SHL && isa(N0.getOperand(1)) && N0.Val->hasOneUse()) { Sh = N0; Y = N1; } else if (N1.getOpcode() == ISD::SHL && isa(N1.getOperand(1)) && N1.Val->hasOneUse()) { Sh = N1; Y = N0; } if (Sh.Val) { SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y); return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1)); } } // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() && isa(N0.getOperand(1))) { return DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1), DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1)); } // reassociate mul SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1); if (RMUL.Val != 0) return RMUL; return SDOperand(); } SDOperand DAGCombiner::visitSDIV(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); MVT::ValueType VT = N->getValueType(0); // fold (sdiv c1, c2) -> c1/c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getNode(ISD::SDIV, VT, N0, N1); // fold (sdiv X, 1) -> X if (N1C && N1C->getSignExtended() == 1LL) return N0; // fold (sdiv X, -1) -> 0-X if (N1C && N1C->isAllOnesValue()) return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); // If we know the sign bits of both operands are zero, strength reduce to a // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1); if (TLI.MaskedValueIsZero(N1, SignBit) && TLI.MaskedValueIsZero(N0, SignBit)) return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1); // fold (sdiv X, pow2) -> simple ops after legalize if (N1C && N1C->getValue() && !TLI.isIntDivCheap() && (isPowerOf2_64(N1C->getSignExtended()) || isPowerOf2_64(-N1C->getSignExtended()))) { // If dividing by powers of two is cheap, then don't perform the following // fold. if (TLI.isPow2DivCheap()) return SDOperand(); int64_t pow2 = N1C->getSignExtended(); int64_t abs2 = pow2 > 0 ? pow2 : -pow2; unsigned lg2 = Log2_64(abs2); // Splat the sign bit into the register SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0, DAG.getConstant(MVT::getSizeInBits(VT)-1, TLI.getShiftAmountTy())); AddToWorkList(SGN.Val); // Add (N0 < 0) ? abs2 - 1 : 0; SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN, DAG.getConstant(MVT::getSizeInBits(VT)-lg2, TLI.getShiftAmountTy())); SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL); AddToWorkList(SRL.Val); AddToWorkList(ADD.Val); // Divide by pow2 SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD, DAG.getConstant(lg2, TLI.getShiftAmountTy())); // If we're dividing by a positive value, we're done. Otherwise, we must // negate the result. if (pow2 > 0) return SRA; AddToWorkList(SRA.Val); return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA); } // if integer divide is expensive and we satisfy the requirements, emit an // alternate sequence. if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) && !TLI.isIntDivCheap()) { SDOperand Op = BuildSDIV(N); if (Op.Val) return Op; } return SDOperand(); } SDOperand DAGCombiner::visitUDIV(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); MVT::ValueType VT = N->getValueType(0); // fold (udiv c1, c2) -> c1/c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getNode(ISD::UDIV, VT, N0, N1); // fold (udiv x, (1 << c)) -> x >>u c if (N1C && isPowerOf2_64(N1C->getValue())) return DAG.getNode(ISD::SRL, VT, N0, DAG.getConstant(Log2_64(N1C->getValue()), TLI.getShiftAmountTy())); // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 if (N1.getOpcode() == ISD::SHL) { if (ConstantSDNode *SHC = dyn_cast(N1.getOperand(0))) { if (isPowerOf2_64(SHC->getValue())) { MVT::ValueType ADDVT = N1.getOperand(1).getValueType(); SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1), DAG.getConstant(Log2_64(SHC->getValue()), ADDVT)); AddToWorkList(Add.Val); return DAG.getNode(ISD::SRL, VT, N0, Add); } } } // fold (udiv x, c) -> alternate if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) { SDOperand Op = BuildUDIV(N); if (Op.Val) return Op; } return SDOperand(); } SDOperand DAGCombiner::visitSREM(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N->getValueType(0); // fold (srem c1, c2) -> c1%c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getNode(ISD::SREM, VT, N0, N1); // If we know the sign bits of both operands are zero, strength reduce to a // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1); if (TLI.MaskedValueIsZero(N1, SignBit) && TLI.MaskedValueIsZero(N0, SignBit)) return DAG.getNode(ISD::UREM, VT, N0, N1); return SDOperand(); } SDOperand DAGCombiner::visitUREM(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N->getValueType(0); // fold (urem c1, c2) -> c1%c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getNode(ISD::UREM, VT, N0, N1); // fold (urem x, pow2) -> (and x, pow2-1) if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue())) return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT)); // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) if (N1.getOpcode() == ISD::SHL) { if (ConstantSDNode *SHC = dyn_cast(N1.getOperand(0))) { if (isPowerOf2_64(SHC->getValue())) { SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT)); AddToWorkList(Add.Val); return DAG.getNode(ISD::AND, VT, N0, Add); } } } return SDOperand(); } SDOperand DAGCombiner::visitMULHS(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); // fold (mulhs x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mulhs x, 1) -> (sra x, size(x)-1) if (N1C && N1C->getValue() == 1) return DAG.getNode(ISD::SRA, N0.getValueType(), N0, DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1, TLI.getShiftAmountTy())); return SDOperand(); } SDOperand DAGCombiner::visitMULHU(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); // fold (mulhu x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mulhu x, 1) -> 0 if (N1C && N1C->getValue() == 1) return DAG.getConstant(0, N0.getValueType()); return SDOperand(); } SDOperand DAGCombiner::visitAND(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand LL, LR, RL, RR, CC0, CC1; ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N1.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (and c1, c2) -> c1&c2 if (N0C && N1C) return DAG.getNode(ISD::AND, VT, N0, N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::AND, VT, N1, N0); // fold (and x, -1) -> x if (N1C && N1C->isAllOnesValue()) return N0; // if (and x, c) is known to be zero, return 0 if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) return DAG.getConstant(0, VT); // reassociate and SDOperand RAND = ReassociateOps(ISD::AND, N0, N1); if (RAND.Val != 0) return RAND; // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF if (N1C && N0.getOpcode() == ISD::OR) if (ConstantSDNode *ORI = dyn_cast(N0.getOperand(1))) if ((ORI->getValue() & N1C->getValue()) == N1C->getValue()) return N1; // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType()); if (TLI.MaskedValueIsZero(N0.getOperand(0), ~N1C->getValue() & InMask)) { SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(), N0.getOperand(0)); // Replace uses of the AND with uses of the Zero extend node. CombineTo(N, Zext); // We actually want to replace all uses of the any_extend with the // zero_extend, to avoid duplicating things. This will later cause this // AND to be folded. CombineTo(N0.Val, Zext); return SDOperand(); } } // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ ISD::CondCode Op0 = cast(CC0)->get(); ISD::CondCode Op1 = cast(CC1)->get(); if (LR == RR && isa(LR) && Op0 == Op1 && MVT::isInteger(LL.getValueType())) { // fold (X == 0) & (Y == 0) -> (X|Y == 0) if (cast(LR)->getValue() == 0 && Op1 == ISD::SETEQ) { SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); AddToWorkList(ORNode.Val); return DAG.getSetCC(VT, ORNode, LR, Op1); } // fold (X == -1) & (Y == -1) -> (X&Y == -1) if (cast(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); AddToWorkList(ANDNode.Val); return DAG.getSetCC(VT, ANDNode, LR, Op1); } // fold (X > -1) & (Y > -1) -> (X|Y > -1) if (cast(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); AddToWorkList(ORNode.Val); return DAG.getSetCC(VT, ORNode, LR, Op1); } } // canonicalize equivalent to ll == rl if (LL == RR && LR == RL) { Op1 = ISD::getSetCCSwappedOperands(Op1); std::swap(RL, RR); } if (LL == RL && LR == RR) { bool isInteger = MVT::isInteger(LL.getValueType()); ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); if (Result != ISD::SETCC_INVALID) return DAG.getSetCC(N0.getValueType(), LL, LR, Result); } } // fold (and (zext x), (zext y)) -> (zext (and x, y)) if (N0.getOpcode() == ISD::ZERO_EXTEND && N1.getOpcode() == ISD::ZERO_EXTEND && N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(ANDNode.Val); return DAG.getNode(ISD::ZERO_EXTEND, VT, ANDNode); } // fold (and (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (and x, y)) if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) || (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) || (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) && N0.getOperand(1) == N1.getOperand(1)) { SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(ANDNode.Val); return DAG.getNode(N0.getOpcode(), VT, ANDNode, N0.getOperand(1)); } // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) // fold (and (sra)) -> (and (srl)) when possible. if (SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(); // fold (zext_inreg (extload x)) -> (zextload x) if (N0.getOpcode() == ISD::EXTLOAD) { MVT::ValueType EVT = cast(N0.getOperand(3))->getVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) { SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), N0.getOperand(1), N0.getOperand(2), EVT); AddToWorkList(N); CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); return SDOperand(); } } // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use if (N0.getOpcode() == ISD::SEXTLOAD && N0.hasOneUse()) { MVT::ValueType EVT = cast(N0.getOperand(3))->getVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) { SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), N0.getOperand(1), N0.getOperand(2), EVT); AddToWorkList(N); CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); return SDOperand(); } } // fold (and (load x), 255) -> (zextload x, i8) // fold (and (extload x, i16), 255) -> (zextload x, i8) if (N1C && (N0.getOpcode() == ISD::LOAD || N0.getOpcode() == ISD::EXTLOAD || N0.getOpcode() == ISD::ZEXTLOAD) && N0.hasOneUse()) { MVT::ValueType EVT, LoadedVT; if (N1C->getValue() == 255) EVT = MVT::i8; else if (N1C->getValue() == 65535) EVT = MVT::i16; else if (N1C->getValue() == ~0U) EVT = MVT::i32; else EVT = MVT::Other; LoadedVT = N0.getOpcode() == ISD::LOAD ? VT : cast(N0.getOperand(3))->getVT(); if (EVT != MVT::Other && LoadedVT > EVT) { MVT::ValueType PtrType = N0.getOperand(1).getValueType(); // For big endian targets, we need to add an offset to the pointer to load // the correct bytes. For little endian systems, we merely need to read // fewer bytes from the same pointer. unsigned PtrOff = (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8; SDOperand NewPtr = N0.getOperand(1); if (!TLI.isLittleEndian()) NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr, DAG.getConstant(PtrOff, PtrType)); AddToWorkList(NewPtr.Val); SDOperand Load = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), NewPtr, N0.getOperand(2), EVT); AddToWorkList(N); CombineTo(N0.Val, Load, Load.getValue(1)); return SDOperand(); } } return SDOperand(); } SDOperand DAGCombiner::visitOR(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand LL, LR, RL, RR, CC0, CC1; ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N1.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (or c1, c2) -> c1|c2 if (N0C && N1C) return DAG.getNode(ISD::OR, VT, N0, N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::OR, VT, N1, N0); // fold (or x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (or x, -1) -> -1 if (N1C && N1C->isAllOnesValue()) return N1; // fold (or x, c) -> c iff (x & ~c) == 0 if (N1C && TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits)))) return N1; // reassociate or SDOperand ROR = ReassociateOps(ISD::OR, N0, N1); if (ROR.Val != 0) return ROR; // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() && isa(N0.getOperand(1))) { ConstantSDNode *C1 = cast(N0.getOperand(1)); return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1), DAG.getConstant(N1C->getValue() | C1->getValue(), VT)); } // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ ISD::CondCode Op0 = cast(CC0)->get(); ISD::CondCode Op1 = cast(CC1)->get(); if (LR == RR && isa(LR) && Op0 == Op1 && MVT::isInteger(LL.getValueType())) { // fold (X != 0) | (Y != 0) -> (X|Y != 0) // fold (X < 0) | (Y < 0) -> (X|Y < 0) if (cast(LR)->getValue() == 0 && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); AddToWorkList(ORNode.Val); return DAG.getSetCC(VT, ORNode, LR, Op1); } // fold (X != -1) | (Y != -1) -> (X&Y != -1) // fold (X > -1) | (Y > -1) -> (X&Y > -1) if (cast(LR)->isAllOnesValue() && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); AddToWorkList(ANDNode.Val); return DAG.getSetCC(VT, ANDNode, LR, Op1); } } // canonicalize equivalent to ll == rl if (LL == RR && LR == RL) { Op1 = ISD::getSetCCSwappedOperands(Op1); std::swap(RL, RR); } if (LL == RL && LR == RR) { bool isInteger = MVT::isInteger(LL.getValueType()); ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); if (Result != ISD::SETCC_INVALID) return DAG.getSetCC(N0.getValueType(), LL, LR, Result); } } // fold (or (zext x), (zext y)) -> (zext (or x, y)) if (N0.getOpcode() == ISD::ZERO_EXTEND && N1.getOpcode() == ISD::ZERO_EXTEND && N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { SDOperand ORNode = DAG.getNode(ISD::OR, N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(ORNode.Val); return DAG.getNode(ISD::ZERO_EXTEND, VT, ORNode); } // fold (or (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (or x, y)) if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) || (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) || (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) && N0.getOperand(1) == N1.getOperand(1)) { SDOperand ORNode = DAG.getNode(ISD::OR, N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(ORNode.Val); return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1)); } // canonicalize shl to left side in a shl/srl pair, to match rotate if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) std::swap(N0, N1); // check for rotl, rotr if (N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SRL && N0.getOperand(0) == N1.getOperand(0) && TLI.isOperationLegal(ISD::ROTL, VT) && TLI.isTypeLegal(VT)) { // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) if (N0.getOperand(1).getOpcode() == ISD::Constant && N1.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1val = cast(N0.getOperand(1))->getValue(); uint64_t c2val = cast(N1.getOperand(1))->getValue(); if ((c1val + c2val) == OpSizeInBits) return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1)); } // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y) if (N1.getOperand(1).getOpcode() == ISD::SUB && N0.getOperand(1) == N1.getOperand(1).getOperand(1)) if (ConstantSDNode *SUBC = dyn_cast(N1.getOperand(1).getOperand(0))) if (SUBC->getValue() == OpSizeInBits) return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1)); // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y) if (N0.getOperand(1).getOpcode() == ISD::SUB && N1.getOperand(1) == N0.getOperand(1).getOperand(1)) if (ConstantSDNode *SUBC = dyn_cast(N0.getOperand(1).getOperand(0))) if (SUBC->getValue() == OpSizeInBits) { if (TLI.isOperationLegal(ISD::ROTR, VT) && TLI.isTypeLegal(VT)) return DAG.getNode(ISD::ROTR, VT, N0.getOperand(0), N1.getOperand(1)); else return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1)); } } return SDOperand(); } SDOperand DAGCombiner::visitXOR(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand LHS, RHS, CC; ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); // fold (xor c1, c2) -> c1^c2 if (N0C && N1C) return DAG.getNode(ISD::XOR, VT, N0, N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::XOR, VT, N1, N0); // fold (xor x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // reassociate xor SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1); if (RXOR.Val != 0) return RXOR; // fold !(x cc y) -> (x !cc y) if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { bool isInt = MVT::isInteger(LHS.getValueType()); ISD::CondCode NotCC = ISD::getSetCCInverse(cast(CC)->get(), isInt); if (N0.getOpcode() == ISD::SETCC) return DAG.getSetCC(VT, LHS, RHS, NotCC); if (N0.getOpcode() == ISD::SELECT_CC) return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC); assert(0 && "Unhandled SetCC Equivalent!"); abort(); } // fold !(x or y) -> (!x and !y) iff x or y are setcc if (N1C && N1C->getValue() == 1 && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS AddToWorkList(LHS.Val); AddToWorkList(RHS.Val); return DAG.getNode(NewOpcode, VT, LHS, RHS); } } // fold !(x or y) -> (!x and !y) iff x or y are constants if (N1C && N1C->isAllOnesValue() && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isa(RHS) || isa(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS AddToWorkList(LHS.Val); AddToWorkList(RHS.Val); return DAG.getNode(NewOpcode, VT, LHS, RHS); } } // fold (xor (xor x, c1), c2) -> (xor x, c1^c2) if (N1C && N0.getOpcode() == ISD::XOR) { ConstantSDNode *N00C = dyn_cast(N0.getOperand(0)); ConstantSDNode *N01C = dyn_cast(N0.getOperand(1)); if (N00C) return DAG.getNode(ISD::XOR, VT, N0.getOperand(1), DAG.getConstant(N1C->getValue()^N00C->getValue(), VT)); if (N01C) return DAG.getNode(ISD::XOR, VT, N0.getOperand(0), DAG.getConstant(N1C->getValue()^N01C->getValue(), VT)); } // fold (xor x, x) -> 0 if (N0 == N1) return DAG.getConstant(0, VT); // fold (xor (zext x), (zext y)) -> (zext (xor x, y)) if (N0.getOpcode() == ISD::ZERO_EXTEND && N1.getOpcode() == ISD::ZERO_EXTEND && N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { SDOperand XORNode = DAG.getNode(ISD::XOR, N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(XORNode.Val); return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode); } // fold (xor (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (xor x, y)) if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) || (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) || (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) && N0.getOperand(1) == N1.getOperand(1)) { SDOperand XORNode = DAG.getNode(ISD::XOR, N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(XORNode.Val); return DAG.getNode(N0.getOpcode(), VT, XORNode, N0.getOperand(1)); } return SDOperand(); } SDOperand DAGCombiner::visitSHL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (shl c1, c2) -> c1< 0 if (N0C && N0C->isNullValue()) return N0; // fold (shl x, c >= size(x)) -> undef if (N1C && N1C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT); // fold (shl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // if (shl x, c) is known to be zero, return 0 if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) return DAG.getConstant(0, VT); if (SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(); // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2) if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N1C->getValue(); if (c1 + c2 > OpSizeInBits) return DAG.getConstant(0, VT); return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())); } // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or // (srl (and x, -1 << c1), c1-c2) if (N1C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N1C->getValue(); SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0), DAG.getConstant(~0ULL << c1, VT)); if (c2 > c1) return DAG.getNode(ISD::SHL, VT, Mask, DAG.getConstant(c2-c1, N1.getValueType())); else return DAG.getNode(ISD::SRL, VT, Mask, DAG.getConstant(c1-c2, N1.getValueType())); } // fold (shl (sra x, c1), c1) -> (and x, -1 << c1) if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) return DAG.getNode(ISD::AND, VT, N0.getOperand(0), DAG.getConstant(~0ULL << N1C->getValue(), VT)); // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1<hasOneUse() && isa(N0.getOperand(1))) { return DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::SHL, VT, N0.getOperand(0), N1), DAG.getNode(ISD::SHL, VT, N0.getOperand(1), N1)); } return SDOperand(); } SDOperand DAGCombiner::visitSRA(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); // fold (sra c1, c2) -> c1>>c2 if (N0C && N1C) return DAG.getNode(ISD::SRA, VT, N0, N1); // fold (sra 0, x) -> 0 if (N0C && N0C->isNullValue()) return N0; // fold (sra -1, x) -> -1 if (N0C && N0C->isAllOnesValue()) return N0; // fold (sra x, c >= size(x)) -> undef if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT)) return DAG.getNode(ISD::UNDEF, VT); // fold (sra x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports // sext_inreg. if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue(); MVT::ValueType EVT; switch (LowBits) { default: EVT = MVT::Other; break; case 1: EVT = MVT::i1; break; case 8: EVT = MVT::i8; break; case 16: EVT = MVT::i16; break; case 32: EVT = MVT::i32; break; } if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)) return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), DAG.getValueType(EVT)); } // fold (sra (sra x, c1), c2) -> (sra x, c1+c2) if (N1C && N0.getOpcode() == ISD::SRA) { if (ConstantSDNode *C1 = dyn_cast(N0.getOperand(1))) { unsigned Sum = N1C->getValue() + C1->getValue(); if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1; return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), DAG.getConstant(Sum, N1C->getValueType(0))); } } // If the sign bit is known to be zero, switch this to a SRL. if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT))) return DAG.getNode(ISD::SRL, VT, N0, N1); return SDOperand(); } SDOperand DAGCombiner::visitSRL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT::ValueType VT = N0.getValueType(); unsigned OpSizeInBits = MVT::getSizeInBits(VT); // fold (srl c1, c2) -> c1 >>u c2 if (N0C && N1C) return DAG.getNode(ISD::SRL, VT, N0, N1); // fold (srl 0, x) -> 0 if (N0C && N0C->isNullValue()) return N0; // fold (srl x, c >= size(x)) -> undef if (N1C && N1C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT); // fold (srl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // if (srl x, c) is known to be zero, return 0 if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits))) return DAG.getConstant(0, VT); // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2) if (N1C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N1C->getValue(); if (c1 + c2 > OpSizeInBits) return DAG.getConstant(0, VT); return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())); } return SDOperand(); } SDOperand DAGCombiner::visitCTLZ(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (ctlz c1) -> c2 if (N0C) return DAG.getNode(ISD::CTLZ, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitCTTZ(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (cttz c1) -> c2 if (N0C) return DAG.getNode(ISD::CTTZ, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitCTPOP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (ctpop c1) -> c2 if (N0C) return DAG.getNode(ISD::CTPOP, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitSELECT(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand N2 = N->getOperand(2); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); ConstantSDNode *N2C = dyn_cast(N2); MVT::ValueType VT = N->getValueType(0); // fold select C, X, X -> X if (N1 == N2) return N1; // fold select true, X, Y -> X if (N0C && !N0C->isNullValue()) return N1; // fold select false, X, Y -> Y if (N0C && N0C->isNullValue()) return N2; // fold select C, 1, X -> C | X if (MVT::i1 == VT && N1C && N1C->getValue() == 1) return DAG.getNode(ISD::OR, VT, N0, N2); // fold select C, 0, X -> ~C & X // FIXME: this should check for C type == X type, not i1? if (MVT::i1 == VT && N1C && N1C->isNullValue()) { SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); AddToWorkList(XORNode.Val); return DAG.getNode(ISD::AND, VT, XORNode, N2); } // fold select C, X, 1 -> ~C | X if (MVT::i1 == VT && N2C && N2C->getValue() == 1) { SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); AddToWorkList(XORNode.Val); return DAG.getNode(ISD::OR, VT, XORNode, N1); } // fold select C, X, 0 -> C & X // FIXME: this should check for C type == X type, not i1? if (MVT::i1 == VT && N2C && N2C->isNullValue()) return DAG.getNode(ISD::AND, VT, N0, N1); // fold X ? X : Y --> X ? 1 : Y --> X | Y if (MVT::i1 == VT && N0 == N1) return DAG.getNode(ISD::OR, VT, N0, N2); // fold X ? Y : X --> X ? Y : 0 --> X & Y if (MVT::i1 == VT && N0 == N2) return DAG.getNode(ISD::AND, VT, N0, N1); // If we can fold this based on the true/false value, do so. if (SimplifySelectOps(N, N1, N2)) return SDOperand(); // fold selects based on a setcc into other things, such as min/max/abs if (N0.getOpcode() == ISD::SETCC) // FIXME: // Check against MVT::Other for SELECT_CC, which is a workaround for targets // having to say they don't support SELECT_CC on every type the DAG knows // about, since there is no way to mark an opcode illegal at all value types if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other)) return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, N0.getOperand(2)); else return SimplifySelect(N0, N1, N2); return SDOperand(); } SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand N2 = N->getOperand(2); SDOperand N3 = N->getOperand(3); SDOperand N4 = N->getOperand(4); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); ConstantSDNode *N2C = dyn_cast(N2); ISD::CondCode CC = cast(N4)->get(); // Determine if the condition we're dealing with is constant SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false); ConstantSDNode *SCCC = dyn_cast_or_null(SCC.Val); // fold select_cc lhs, rhs, x, x, cc -> x if (N2 == N3) return N2; // If we can fold this based on the true/false value, do so. if (SimplifySelectOps(N, N2, N3)) return SDOperand(); // fold select_cc into other things, such as min/max/abs return SimplifySelectCC(N0, N1, N2, N3, CC); } SDOperand DAGCombiner::visitSETCC(SDNode *N) { return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), cast(N->getOperand(2))->get()); } SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (sext c1) -> c1 if (N0C) return DAG.getNode(ISD::SIGN_EXTEND, VT, N0); // fold (sext (sext x)) -> (sext x) if (N0.getOpcode() == ISD::SIGN_EXTEND) return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0)); // fold (sext (truncate x)) -> (sextinreg x) iff x size == sext size. if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&& (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType()))) return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), DAG.getValueType(N0.getValueType())); // fold (sext (load x)) -> (sext (truncate (sextload x))) if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() && (!AfterLegalize||TLI.isOperationLegal(ISD::SEXTLOAD, N0.getValueType()))){ SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0), N0.getOperand(1), N0.getOperand(2), N0.getValueType()); CombineTo(N, ExtLoad); CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDOperand(); } // fold (sext (sextload x)) -> (sext (truncate (sextload x))) // fold (sext ( extload x)) -> (sext (truncate (sextload x))) if ((N0.getOpcode() == ISD::SEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) && N0.hasOneUse()) { SDOperand ExtLoad = DAG.getNode(ISD::SEXTLOAD, VT, N0.getOperand(0), N0.getOperand(1), N0.getOperand(2), N0.getOperand(3)); CombineTo(N, ExtLoad); CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDOperand(); } return SDOperand(); } SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (zext c1) -> c1 if (N0C) return DAG.getNode(ISD::ZERO_EXTEND, VT, N0); // fold (zext (zext x)) -> (zext x) if (N0.getOpcode() == ISD::ZERO_EXTEND) return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0)); // fold (zext (truncate x)) -> (zextinreg x) iff x size == zext size. if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&& (!AfterLegalize || TLI.isOperationLegal(ISD::AND, N0.getValueType()))) return DAG.getZeroExtendInReg(N0.getOperand(0), N0.getValueType()); // fold (zext (load x)) -> (zext (truncate (zextload x))) if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() && (!AfterLegalize||TLI.isOperationLegal(ISD::ZEXTLOAD, N0.getValueType()))){ SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), N0.getOperand(1), N0.getOperand(2), N0.getValueType()); CombineTo(N, ExtLoad); CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDOperand(); } // fold (zext (zextload x)) -> (zext (truncate (zextload x))) // fold (zext ( extload x)) -> (zext (truncate (zextload x))) if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) && N0.hasOneUse()) { SDOperand ExtLoad = DAG.getNode(ISD::ZEXTLOAD, VT, N0.getOperand(0), N0.getOperand(1), N0.getOperand(2), N0.getOperand(3)); CombineTo(N, ExtLoad); CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDOperand(); } return SDOperand(); } SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); MVT::ValueType EVT = cast(N1)->getVT(); unsigned EVTBits = MVT::getSizeInBits(EVT); // fold (sext_in_reg c1) -> c1 if (N0C) { SDOperand Truncate = DAG.getConstant(N0C->getValue(), EVT); return DAG.getNode(ISD::SIGN_EXTEND, VT, Truncate); } // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt1 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N0.getOperand(1))->getVT() <= EVT) { return N0; } // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && EVT < cast(N0.getOperand(1))->getVT()) { return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1); } // fold (sext_in_reg (assert_sext x)) -> (assert_sext x) if (N0.getOpcode() == ISD::AssertSext && cast(N0.getOperand(1))->getVT() <= EVT) { return N0; } // fold (sext_in_reg (sextload x)) -> (sextload x) if (N0.getOpcode() == ISD::SEXTLOAD && cast(N0.getOperand(3))->getVT() <= EVT) { return N0; } // fold (sext_in_reg (setcc x)) -> setcc x iff (setcc x) == 0 or -1 if (N0.getOpcode() == ISD::SETCC && TLI.getSetCCResultContents() == TargetLowering::ZeroOrNegativeOneSetCCResult) return N0; // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is zero if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1))) return DAG.getZeroExtendInReg(N0, EVT); // fold (sext_in_reg (srl x)) -> sra x if (N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant && cast(N0.getOperand(1))->getValue() == EVTBits) { return DAG.getNode(ISD::SRA, N0.getValueType(), N0.getOperand(0), N0.getOperand(1)); } // fold (sext_inreg (extload x)) -> (sextload x) if (N0.getOpcode() == ISD::EXTLOAD && EVT == cast(N0.getOperand(3))->getVT() && (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) { SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0), N0.getOperand(1), N0.getOperand(2), EVT); CombineTo(N, ExtLoad); CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); return SDOperand(); } // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use if (N0.getOpcode() == ISD::ZEXTLOAD && N0.hasOneUse() && EVT == cast(N0.getOperand(3))->getVT() && (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) { SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0), N0.getOperand(1), N0.getOperand(2), EVT); CombineTo(N, ExtLoad); CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); return SDOperand(); } return SDOperand(); } SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // noop truncate if (N0.getValueType() == N->getValueType(0)) return N0; // fold (truncate c1) -> c1 if (N0C) return DAG.getNode(ISD::TRUNCATE, VT, N0); // fold (truncate (truncate x)) -> (truncate x) if (N0.getOpcode() == ISD::TRUNCATE) return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); // fold (truncate (ext x)) -> (ext x) or (truncate x) or x if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND){ if (N0.getValueType() < VT) // if the source is smaller than the dest, we still need an extend return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); else if (N0.getValueType() > VT) // if the source is larger than the dest, than we just need the truncate return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); else // if the source and dest are the same type, we can drop both the extend // and the truncate return N0.getOperand(0); } // fold (truncate (load x)) -> (smaller load x) if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) { assert(MVT::getSizeInBits(N0.getValueType()) > MVT::getSizeInBits(VT) && "Cannot truncate to larger type!"); MVT::ValueType PtrType = N0.getOperand(1).getValueType(); // For big endian targets, we need to add an offset to the pointer to load // the correct bytes. For little endian systems, we merely need to read // fewer bytes from the same pointer. uint64_t PtrOff = (MVT::getSizeInBits(N0.getValueType()) - MVT::getSizeInBits(VT)) / 8; SDOperand NewPtr = TLI.isLittleEndian() ? N0.getOperand(1) : DAG.getNode(ISD::ADD, PtrType, N0.getOperand(1), DAG.getConstant(PtrOff, PtrType)); AddToWorkList(NewPtr.Val); SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), NewPtr,N0.getOperand(2)); AddToWorkList(N); CombineTo(N0.Val, Load, Load.getValue(1)); return SDOperand(); } return SDOperand(); } SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT::ValueType VT = N->getValueType(0); // If the input is a constant, let getNode() fold it. if (isa(N0) || isa(N0)) { SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0); if (Res.Val != N) return Res; } if (N0.getOpcode() == ISD::BIT_CONVERT) // conv(conv(x,t1),t2) -> conv(x,t2) return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); // fold (conv (load x)) -> (load (conv*)x) // FIXME: These xforms need to know that the resultant load doesn't need a // higher alignment than the original! if (0 && N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) { SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), N0.getOperand(1), N0.getOperand(2)); AddToWorkList(N); CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load), Load.getValue(1)); return Load; } return SDOperand(); } SDOperand DAGCombiner::visitFADD(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT::ValueType VT = N->getValueType(0); // fold (fadd c1, c2) -> c1+c2 if (N0CFP && N1CFP) return DAG.getNode(ISD::FADD, VT, N0, N1); // canonicalize constant to RHS if (N0CFP && !N1CFP) return DAG.getNode(ISD::FADD, VT, N1, N0); // fold (A + (-B)) -> A-B if (N1.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0)); // fold ((-A) + B) -> B-A if (N0.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0)); return SDOperand(); } SDOperand DAGCombiner::visitFSUB(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT::ValueType VT = N->getValueType(0); // fold (fsub c1, c2) -> c1-c2 if (N0CFP && N1CFP) return DAG.getNode(ISD::FSUB, VT, N0, N1); // fold (A-(-B)) -> A+B if (N1.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0)); return SDOperand(); } SDOperand DAGCombiner::visitFMUL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT::ValueType VT = N->getValueType(0); // fold (fmul c1, c2) -> c1*c2 if (N0CFP && N1CFP) return DAG.getNode(ISD::FMUL, VT, N0, N1); // canonicalize constant to RHS if (N0CFP && !N1CFP) return DAG.getNode(ISD::FMUL, VT, N1, N0); // fold (fmul X, 2.0) -> (fadd X, X) if (N1CFP && N1CFP->isExactlyValue(+2.0)) return DAG.getNode(ISD::FADD, VT, N0, N0); return SDOperand(); } SDOperand DAGCombiner::visitFDIV(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT::ValueType VT = N->getValueType(0); // fold (fdiv c1, c2) -> c1/c2 if (N0CFP && N1CFP) return DAG.getNode(ISD::FDIV, VT, N0, N1); return SDOperand(); } SDOperand DAGCombiner::visitFREM(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT::ValueType VT = N->getValueType(0); // fold (frem c1, c2) -> fmod(c1,c2) if (N0CFP && N1CFP) return DAG.getNode(ISD::FREM, VT, N0, N1); return SDOperand(); } SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT::ValueType VT = N->getValueType(0); if (N0CFP && N1CFP) // Constant fold return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1); if (N1CFP) { // copysign(x, c1) -> fabs(x) iff ispos(c1) // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) union { double d; int64_t i; } u; u.d = N1CFP->getValue(); if (u.i >= 0) return DAG.getNode(ISD::FABS, VT, N0); else return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0)); } // copysign(fabs(x), y) -> copysign(x, y) // copysign(fneg(x), y) -> copysign(x, y) // copysign(copysign(x,z), y) -> copysign(x, y) if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1); // copysign(x, abs(y)) -> abs(x) if (N1.getOpcode() == ISD::FABS) return DAG.getNode(ISD::FABS, VT, N0); // copysign(x, copysign(y,z)) -> copysign(x, z) if (N1.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1)); // copysign(x, fp_extend(y)) -> copysign(x, y) // copysign(x, fp_round(y)) -> copysign(x, y) if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0)); return SDOperand(); } SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (sint_to_fp c1) -> c1fp if (N0C) return DAG.getNode(ISD::SINT_TO_FP, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (uint_to_fp c1) -> c1fp if (N0C) return DAG.getNode(ISD::UINT_TO_FP, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (fp_to_sint c1fp) -> c1 if (N0CFP) return DAG.getNode(ISD::FP_TO_SINT, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (fp_to_uint c1fp) -> c1 if (N0CFP) return DAG.getNode(ISD::FP_TO_UINT, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (fp_round c1fp) -> c1fp if (N0CFP) return DAG.getNode(ISD::FP_ROUND, VT, N0); // fold (fp_round (fp_extend x)) -> x if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) return N0.getOperand(0); // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) { SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0)); AddToWorkList(Tmp.Val); return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1)); } return SDOperand(); } SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT::ValueType VT = N->getValueType(0); MVT::ValueType EVT = cast(N->getOperand(1))->getVT(); ConstantFPSDNode *N0CFP = dyn_cast(N0); // fold (fp_round_inreg c1fp) -> c1fp if (N0CFP) { SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT); return DAG.getNode(ISD::FP_EXTEND, VT, Round); } return SDOperand(); } SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (fp_extend c1fp) -> c1fp if (N0CFP) return DAG.getNode(ISD::FP_EXTEND, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitFNEG(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (fneg c1) -> -c1 if (N0CFP) return DAG.getNode(ISD::FNEG, VT, N0); // fold (fneg (sub x, y)) -> (sub y, x) if (N0.getOpcode() == ISD::SUB) return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0)); // fold (fneg (fneg x)) -> x if (N0.getOpcode() == ISD::FNEG) return N0.getOperand(0); return SDOperand(); } SDOperand DAGCombiner::visitFABS(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT::ValueType VT = N->getValueType(0); // fold (fabs c1) -> fabs(c1) if (N0CFP) return DAG.getNode(ISD::FABS, VT, N0); // fold (fabs (fabs x)) -> (fabs x) if (N0.getOpcode() == ISD::FABS) return N->getOperand(0); // fold (fabs (fneg x)) -> (fabs x) // fold (fabs (fcopysign x, y)) -> (fabs x) if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FABS, VT, N0.getOperand(0)); return SDOperand(); } SDOperand DAGCombiner::visitBRCOND(SDNode *N) { SDOperand Chain = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand N2 = N->getOperand(2); ConstantSDNode *N1C = dyn_cast(N1); // never taken branch, fold to chain if (N1C && N1C->isNullValue()) return Chain; // unconditional branch if (N1C && N1C->getValue() == 1) return DAG.getNode(ISD::BR, MVT::Other, Chain, N2); // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal // on the target. if (N1.getOpcode() == ISD::SETCC && TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) { return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2), N1.getOperand(0), N1.getOperand(1), N2); } return SDOperand(); } // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. // SDOperand DAGCombiner::visitBR_CC(SDNode *N) { CondCodeSDNode *CC = cast(N->getOperand(1)); SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); // Use SimplifySetCC to simplify SETCC's. SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false); ConstantSDNode *SCCC = dyn_cast_or_null(Simp.Val); // fold br_cc true, dest -> br dest (unconditional branch) if (SCCC && SCCC->getValue()) return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0), N->getOperand(4)); // fold br_cc false, dest -> unconditional fall through if (SCCC && SCCC->isNullValue()) return N->getOperand(0); // fold to a simpler setcc if (Simp.Val && Simp.getOpcode() == ISD::SETCC) return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0), Simp.getOperand(2), Simp.getOperand(0), Simp.getOperand(1), N->getOperand(4)); return SDOperand(); } SDOperand DAGCombiner::visitLOAD(SDNode *N) { SDOperand Chain = N->getOperand(0); SDOperand Ptr = N->getOperand(1); SDOperand SrcValue = N->getOperand(2); // If this load is directly stored, replace the load value with the stored // value. // TODO: Handle store large -> read small portion. // TODO: Handle TRUNCSTORE/EXTLOAD if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr && Chain.getOperand(1).getValueType() == N->getValueType(0)) return CombineTo(N, Chain.getOperand(1), Chain); return SDOperand(); } SDOperand DAGCombiner::visitSTORE(SDNode *N) { SDOperand Chain = N->getOperand(0); SDOperand Value = N->getOperand(1); SDOperand Ptr = N->getOperand(2); SDOperand SrcValue = N->getOperand(3); // If this is a store that kills a previous store, remove the previous store. if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr && Chain.Val->hasOneUse() /* Avoid introducing DAG cycles */ && // Make sure that these stores are the same value type: // FIXME: we really care that the second store is >= size of the first. Value.getValueType() == Chain.getOperand(1).getValueType()) { // Create a new store of Value that replaces both stores. SDNode *PrevStore = Chain.Val; if (PrevStore->getOperand(1) == Value) // Same value multiply stored. return Chain; SDOperand NewStore = DAG.getNode(ISD::STORE, MVT::Other, PrevStore->getOperand(0), Value, Ptr, SrcValue); CombineTo(N, NewStore); // Nuke this store. CombineTo(PrevStore, NewStore); // Nuke the previous store. return SDOperand(N, 0); } // If this is a store of a bit convert, store the input value. // FIXME: This needs to know that the resultant store does not need a // higher alignment than the original. if (0 && Value.getOpcode() == ISD::BIT_CONVERT) return DAG.getNode(ISD::STORE, MVT::Other, Chain, Value.getOperand(0), Ptr, SrcValue); return SDOperand(); } SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { SDOperand InVec = N->getOperand(0); SDOperand InVal = N->getOperand(1); SDOperand EltNo = N->getOperand(2); // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new // vector with the inserted element. if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa(EltNo)) { unsigned Elt = cast(EltNo)->getValue(); std::vector Ops(InVec.Val->op_begin(), InVec.Val->op_end()); if (Elt < Ops.size()) Ops[Elt] = InVal; return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(), Ops); } return SDOperand(); } SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) { SDOperand InVec = N->getOperand(0); SDOperand InVal = N->getOperand(1); SDOperand EltNo = N->getOperand(2); SDOperand NumElts = N->getOperand(3); SDOperand EltType = N->getOperand(4); // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new // vector with the inserted element. if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa(EltNo)) { unsigned Elt = cast(EltNo)->getValue(); std::vector Ops(InVec.Val->op_begin(), InVec.Val->op_end()); if (Elt < Ops.size()-2) Ops[Elt] = InVal; return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(), Ops); } return SDOperand(); } SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){ assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2, cast(N0.getOperand(2))->get()); // If we got a simplified select_cc node back from SimplifySelectCC, then // break it down into a new SETCC node, and a new SELECT node, and then return // the SELECT node, since we were called with a SELECT node. if (SCC.Val) { // Check to see if we got a select_cc back (to turn into setcc/select). // Otherwise, just return whatever node we got back, like fabs. if (SCC.getOpcode() == ISD::SELECT_CC) { SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(), SCC.getOperand(0), SCC.getOperand(1), SCC.getOperand(4)); AddToWorkList(SETCC.Val); return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2), SCC.getOperand(3), SETCC); } return SCC; } return SDOperand(); } /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS /// are the two values being selected between, see if we can simplify the /// select. /// bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS, SDOperand RHS) { // If this is a select from two identical things, try to pull the operation // through the select. if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){ #if 0 std::cerr << "SELECT: ["; LHS.Val->dump(); std::cerr << "] ["; RHS.Val->dump(); std::cerr << "]\n"; #endif // If this is a load and the token chain is identical, replace the select // of two loads with a load through a select of the address to load from. // This triggers in things like "select bool X, 10.0, 123.0" after the FP // constants have been dropped into the constant pool. if ((LHS.getOpcode() == ISD::LOAD || LHS.getOpcode() == ISD::EXTLOAD || LHS.getOpcode() == ISD::ZEXTLOAD || LHS.getOpcode() == ISD::SEXTLOAD) && // Token chains must be identical. LHS.getOperand(0) == RHS.getOperand(0) && // If this is an EXTLOAD, the VT's must match. (LHS.getOpcode() == ISD::LOAD || LHS.getOperand(3) == RHS.getOperand(3))) { // FIXME: this conflates two src values, discarding one. This is not // the right thing to do, but nothing uses srcvalues now. When they do, // turn SrcValue into a list of locations. SDOperand Addr; if (TheSelect->getOpcode() == ISD::SELECT) Addr = DAG.getNode(ISD::SELECT, LHS.getOperand(1).getValueType(), TheSelect->getOperand(0), LHS.getOperand(1), RHS.getOperand(1)); else Addr = DAG.getNode(ISD::SELECT_CC, LHS.getOperand(1).getValueType(), TheSelect->getOperand(0), TheSelect->getOperand(1), LHS.getOperand(1), RHS.getOperand(1), TheSelect->getOperand(4)); SDOperand Load; if (LHS.getOpcode() == ISD::LOAD) Load = DAG.getLoad(TheSelect->getValueType(0), LHS.getOperand(0), Addr, LHS.getOperand(2)); else Load = DAG.getExtLoad(LHS.getOpcode(), TheSelect->getValueType(0), LHS.getOperand(0), Addr, LHS.getOperand(2), cast(LHS.getOperand(3))->getVT()); // Users of the select now use the result of the load. CombineTo(TheSelect, Load); // Users of the old loads now use the new load's chain. We know the // old-load value is dead now. CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1)); CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1)); return true; } } return false; } SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, SDOperand N3, ISD::CondCode CC) { MVT::ValueType VT = N2.getValueType(); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantSDNode *N2C = dyn_cast(N2.Val); ConstantSDNode *N3C = dyn_cast(N3.Val); // Determine if the condition we're dealing with is constant SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false); ConstantSDNode *SCCC = dyn_cast_or_null(SCC.Val); // fold select_cc true, x, y -> x if (SCCC && SCCC->getValue()) return N2; // fold select_cc false, x, y -> y if (SCCC && SCCC->getValue() == 0) return N3; // Check to see if we can simplify the select into an fabs node if (ConstantFPSDNode *CFP = dyn_cast(N1)) { // Allow either -0.0 or 0.0 if (CFP->getValue() == 0.0) { // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs if ((CC == ISD::SETGE || CC == ISD::SETGT) && N0 == N2 && N3.getOpcode() == ISD::FNEG && N2 == N3.getOperand(0)) return DAG.getNode(ISD::FABS, VT, N0); // select (setl[te] X, +/-0.0), fneg(X), X -> fabs if ((CC == ISD::SETLT || CC == ISD::SETLE) && N0 == N3 && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N3) return DAG.getNode(ISD::FABS, VT, N3); } } // Check to see if we can perform the "gzip trick", transforming // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A if (N1C && N1C->isNullValue() && N3C && N3C->isNullValue() && MVT::isInteger(N0.getValueType()) && MVT::isInteger(N2.getValueType()) && CC == ISD::SETLT) { MVT::ValueType XType = N0.getValueType(); MVT::ValueType AType = N2.getValueType(); if (XType >= AType) { // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a // single-bit constant. if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) { unsigned ShCtV = Log2_64(N2C->getValue()); ShCtV = MVT::getSizeInBits(XType)-ShCtV-1; SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy()); SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt); AddToWorkList(Shift.Val); if (XType > AType) { Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); AddToWorkList(Shift.Val); } return DAG.getNode(ISD::AND, AType, Shift, N2); } SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, DAG.getConstant(MVT::getSizeInBits(XType)-1, TLI.getShiftAmountTy())); AddToWorkList(Shift.Val); if (XType > AType) { Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); AddToWorkList(Shift.Val); } return DAG.getNode(ISD::AND, AType, Shift, N2); } } // fold select C, 16, 0 -> shl C, 4 if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) && TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) { // Get a SetCC of the condition // FIXME: Should probably make sure that setcc is legal if we ever have a // target where it isn't. SDOperand Temp, SCC; // cast from setcc result type to select result type if (AfterLegalize) { SCC = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC); Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType()); } else { SCC = DAG.getSetCC(MVT::i1, N0, N1, CC); Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC); } AddToWorkList(SCC.Val); AddToWorkList(Temp.Val); // shl setcc result by log2 n2c return DAG.getNode(ISD::SHL, N2.getValueType(), Temp, DAG.getConstant(Log2_64(N2C->getValue()), TLI.getShiftAmountTy())); } // Check to see if this is the equivalent of setcc // FIXME: Turn all of these into setcc if setcc if setcc is legal // otherwise, go ahead with the folds. if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) { MVT::ValueType XType = N0.getValueType(); if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) { SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC); if (Res.getValueType() != VT) Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res); return Res; } // seteq X, 0 -> srl (ctlz X, log2(size(X))) if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && TLI.isOperationLegal(ISD::CTLZ, XType)) { SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0); return DAG.getNode(ISD::SRL, XType, Ctlz, DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)), TLI.getShiftAmountTy())); } // setgt X, 0 -> srl (and (-X, ~X), size(X)-1) if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType), N0); SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0, DAG.getConstant(~0ULL, XType)); return DAG.getNode(ISD::SRL, XType, DAG.getNode(ISD::AND, XType, NegN0, NotN0), DAG.getConstant(MVT::getSizeInBits(XType)-1, TLI.getShiftAmountTy())); } // setgt X, -1 -> xor (srl (X, size(X)-1), 1) if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) { SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0, DAG.getConstant(MVT::getSizeInBits(XType)-1, TLI.getShiftAmountTy())); return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType)); } } // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X -> // Y = sra (X, size(X)-1); xor (add (X, Y), Y) if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) && N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) { if (ConstantSDNode *SubC = dyn_cast(N2.getOperand(0))) { MVT::ValueType XType = N0.getValueType(); if (SubC->isNullValue() && MVT::isInteger(XType)) { SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, DAG.getConstant(MVT::getSizeInBits(XType)-1, TLI.getShiftAmountTy())); SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift); AddToWorkList(Shift.Val); AddToWorkList(Add.Val); return DAG.getNode(ISD::XOR, XType, Add, Shift); } } } return SDOperand(); } SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, ISD::CondCode Cond, bool foldBooleans) { // These setcc operations always fold. switch (Cond) { default: break; case ISD::SETFALSE: case ISD::SETFALSE2: return DAG.getConstant(0, VT); case ISD::SETTRUE: case ISD::SETTRUE2: return DAG.getConstant(1, VT); } if (ConstantSDNode *N1C = dyn_cast(N1.Val)) { uint64_t C1 = N1C->getValue(); if (ConstantSDNode *N0C = dyn_cast(N0.Val)) { uint64_t C0 = N0C->getValue(); // Sign extend the operands if required if (ISD::isSignedIntSetCC(Cond)) { C0 = N0C->getSignExtended(); C1 = N1C->getSignExtended(); } switch (Cond) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETEQ: return DAG.getConstant(C0 == C1, VT); case ISD::SETNE: return DAG.getConstant(C0 != C1, VT); case ISD::SETULT: return DAG.getConstant(C0 < C1, VT); case ISD::SETUGT: return DAG.getConstant(C0 > C1, VT); case ISD::SETULE: return DAG.getConstant(C0 <= C1, VT); case ISD::SETUGE: return DAG.getConstant(C0 >= C1, VT); case ISD::SETLT: return DAG.getConstant((int64_t)C0 < (int64_t)C1, VT); case ISD::SETGT: return DAG.getConstant((int64_t)C0 > (int64_t)C1, VT); case ISD::SETLE: return DAG.getConstant((int64_t)C0 <= (int64_t)C1, VT); case ISD::SETGE: return DAG.getConstant((int64_t)C0 >= (int64_t)C1, VT); } } else { // If the LHS is a ZERO_EXTEND, perform the comparison on the input. if (N0.getOpcode() == ISD::ZERO_EXTEND) { unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType()); // If the comparison constant has bits in the upper part, the // zero-extended value could never match. if (C1 & (~0ULL << InSize)) { unsigned VSize = MVT::getSizeInBits(N0.getValueType()); switch (Cond) { case ISD::SETUGT: case ISD::SETUGE: case ISD::SETEQ: return DAG.getConstant(0, VT); case ISD::SETULT: case ISD::SETULE: case ISD::SETNE: return DAG.getConstant(1, VT); case ISD::SETGT: case ISD::SETGE: // True if the sign bit of C1 is set. return DAG.getConstant((C1 & (1ULL << VSize)) != 0, VT); case ISD::SETLT: case ISD::SETLE: // True if the sign bit of C1 isn't set. return DAG.getConstant((C1 & (1ULL << VSize)) == 0, VT); default: break; } } // Otherwise, we can perform the comparison with the low bits. switch (Cond) { case ISD::SETEQ: case ISD::SETNE: case ISD::SETUGT: case ISD::SETUGE: case ISD::SETULT: case ISD::SETULE: return DAG.getSetCC(VT, N0.getOperand(0), DAG.getConstant(C1, N0.getOperand(0).getValueType()), Cond); default: break; // todo, be more careful with signed comparisons } } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { MVT::ValueType ExtSrcTy = cast(N0.getOperand(1))->getVT(); unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy); MVT::ValueType ExtDstTy = N0.getValueType(); unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy); // If the extended part has any inconsistent bits, it cannot ever // compare equal. In other words, they have to be all ones or all // zeros. uint64_t ExtBits = (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1)); if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits) return DAG.getConstant(Cond == ISD::SETNE, VT); SDOperand ZextOp; MVT::ValueType Op0Ty = N0.getOperand(0).getValueType(); if (Op0Ty == ExtSrcTy) { ZextOp = N0.getOperand(0); } else { int64_t Imm = ~0ULL >> (64-ExtSrcTyBits); ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0), DAG.getConstant(Imm, Op0Ty)); } AddToWorkList(ZextOp.Val); // Otherwise, make this a use of a zext. return DAG.getSetCC(VT, ZextOp, DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy), Cond); } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && (N0.getOpcode() == ISD::XOR || (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR && N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && isa(N0.getOperand(1)) && cast(N0.getOperand(1))->getValue() == 1) { // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We can // only do this if the top bits are known zero. if (TLI.MaskedValueIsZero(N1, MVT::getIntVTBitMask(N0.getValueType())-1)) { // Okay, get the un-inverted input value. SDOperand Val; if (N0.getOpcode() == ISD::XOR) Val = N0.getOperand(0); else { assert(N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR); // ((X^1)&1)^1 -> X & 1 Val = DAG.getNode(ISD::AND, N0.getValueType(), N0.getOperand(0).getOperand(0), N0.getOperand(1)); } return DAG.getSetCC(VT, Val, N1, Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); } } uint64_t MinVal, MaxVal; unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0)); if (ISD::isSignedIntSetCC(Cond)) { MinVal = 1ULL << (OperandBitSize-1); if (OperandBitSize != 1) // Avoid X >> 64, which is undefined. MaxVal = ~0ULL >> (65-OperandBitSize); else MaxVal = 0; } else { MinVal = 0; MaxVal = ~0ULL >> (64-OperandBitSize); } // Canonicalize GE/LE comparisons to use GT/LT comparisons. if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true --C1; // X >= C0 --> X > (C0-1) return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); } if (Cond == ISD::SETLE || Cond == ISD::SETULE) { if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true ++C1; // X <= C0 --> X < (C0+1) return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); } if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) return DAG.getConstant(0, VT); // X < MIN --> false // Canonicalize setgt X, Min --> setne X, Min if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) return DAG.getSetCC(VT, N0, N1, ISD::SETNE); // Canonicalize setlt X, Max --> setne X, Max if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) return DAG.getSetCC(VT, N0, N1, ISD::SETNE); // If we have setult X, 1, turn it into seteq X, 0 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()), ISD::SETEQ); // If we have setugt X, Max-1, turn it into seteq X, Max else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()), ISD::SETEQ); // If we have "setcc X, C0", check to see if we can shrink the immediate // by changing cc. // SETUGT X, SINTMAX -> SETLT X, 0 if (Cond == ISD::SETUGT && OperandBitSize != 1 && C1 == (~0ULL >> (65-OperandBitSize))) return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()), ISD::SETLT); // FIXME: Implement the rest of these. // Fold bit comparisons when we can. if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && VT == N0.getValueType() && N0.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N0.getOperand(1))) { if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 // Perform the xform if the AND RHS is a single bit. if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) { return DAG.getNode(ISD::SRL, VT, N0, DAG.getConstant(Log2_64(AndRHS->getValue()), TLI.getShiftAmountTy())); } } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) { // (X & 8) == 8 --> (X & 8) >> 3 // Perform the xform if C1 is a single bit. if ((C1 & (C1-1)) == 0) { return DAG.getNode(ISD::SRL, VT, N0, DAG.getConstant(Log2_64(C1),TLI.getShiftAmountTy())); } } } } } else if (isa(N0.Val)) { // Ensure that the constant occurs on the RHS. return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); } if (ConstantFPSDNode *N0C = dyn_cast(N0.Val)) if (ConstantFPSDNode *N1C = dyn_cast(N1.Val)) { double C0 = N0C->getValue(), C1 = N1C->getValue(); switch (Cond) { default: break; // FIXME: Implement the rest of these! case ISD::SETEQ: return DAG.getConstant(C0 == C1, VT); case ISD::SETNE: return DAG.getConstant(C0 != C1, VT); case ISD::SETLT: return DAG.getConstant(C0 < C1, VT); case ISD::SETGT: return DAG.getConstant(C0 > C1, VT); case ISD::SETLE: return DAG.getConstant(C0 <= C1, VT); case ISD::SETGE: return DAG.getConstant(C0 >= C1, VT); } } else { // Ensure that the constant occurs on the RHS. return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); } if (N0 == N1) { // We can always fold X == Y for integer setcc's. if (MVT::isInteger(N0.getValueType())) return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); unsigned UOF = ISD::getUnorderedFlavor(Cond); if (UOF == 2) // FP operators that are undefined on NaNs. return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) return DAG.getConstant(UOF, VT); // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO // if it is not already. ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; if (NewCond != Cond) return DAG.getSetCC(VT, N0, N1, NewCond); } if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && MVT::isInteger(N0.getValueType())) { if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || N0.getOpcode() == ISD::XOR) { // Simplify (X+Y) == (X+Z) --> Y == Z if (N0.getOpcode() == N1.getOpcode()) { if (N0.getOperand(0) == N1.getOperand(0)) return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond); if (N0.getOperand(1) == N1.getOperand(1)) return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond); if (isCommutativeBinOp(N0.getOpcode())) { // If X op Y == Y op X, try other combinations. if (N0.getOperand(0) == N1.getOperand(1)) return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond); if (N0.getOperand(1) == N1.getOperand(0)) return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond); } } if (ConstantSDNode *RHSC = dyn_cast(N1)) { if (ConstantSDNode *LHSR = dyn_cast(N0.getOperand(1))) { // Turn (X+C1) == C2 --> X == C2-C1 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) { return DAG.getSetCC(VT, N0.getOperand(0), DAG.getConstant(RHSC->getValue()-LHSR->getValue(), N0.getValueType()), Cond); } // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. if (N0.getOpcode() == ISD::XOR) // If we know that all of the inverted bits are zero, don't bother // performing the inversion. if (TLI.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue())) return DAG.getSetCC(VT, N0.getOperand(0), DAG.getConstant(LHSR->getValue()^RHSC->getValue(), N0.getValueType()), Cond); } // Turn (C1-X) == C2 --> X == C1-C2 if (ConstantSDNode *SUBC = dyn_cast(N0.getOperand(0))) { if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) { return DAG.getSetCC(VT, N0.getOperand(1), DAG.getConstant(SUBC->getValue()-RHSC->getValue(), N0.getValueType()), Cond); } } } // Simplify (X+Z) == X --> Z == 0 if (N0.getOperand(0) == N1) return DAG.getSetCC(VT, N0.getOperand(1), DAG.getConstant(0, N0.getValueType()), Cond); if (N0.getOperand(1) == N1) { if (isCommutativeBinOp(N0.getOpcode())) return DAG.getSetCC(VT, N0.getOperand(0), DAG.getConstant(0, N0.getValueType()), Cond); else { assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); // (Z-X) == X --> Z == X<<1 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N1, DAG.getConstant(1,TLI.getShiftAmountTy())); AddToWorkList(SH.Val); return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond); } } } if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::XOR) { // Simplify X == (X+Z) --> Z == 0 if (N1.getOperand(0) == N0) { return DAG.getSetCC(VT, N1.getOperand(1), DAG.getConstant(0, N1.getValueType()), Cond); } else if (N1.getOperand(1) == N0) { if (isCommutativeBinOp(N1.getOpcode())) { return DAG.getSetCC(VT, N1.getOperand(0), DAG.getConstant(0, N1.getValueType()), Cond); } else { assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); // X == (Z-X) --> X<<1 == Z SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0, DAG.getConstant(1,TLI.getShiftAmountTy())); AddToWorkList(SH.Val); return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond); } } } } // Fold away ALL boolean setcc's. SDOperand Temp; if (N0.getValueType() == MVT::i1 && foldBooleans) { switch (Cond) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETEQ: // X == Y -> (X^Y)^1 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1)); AddToWorkList(Temp.Val); break; case ISD::SETNE: // X != Y --> (X^Y) N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); break; case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y case ISD::SETULT: // X X == 0 & Y == 1 --> X^1 & Y Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp); AddToWorkList(Temp.Val); break; case ISD::SETLT: // X X == 1 & Y == 0 --> Y^1 & X case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp); AddToWorkList(Temp.Val); break; case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp); AddToWorkList(Temp.Val); break; case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp); break; } if (VT != MVT::i1) { AddToWorkList(N0.Val); // FIXME: If running after legalize, we probably can't do this. N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0); } return N0; } // Could not fold it. return SDOperand(); } /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand DAGCombiner::BuildSDIV(SDNode *N) { MVT::ValueType VT = N->getValueType(0); // Check to see if we can do this. if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) return SDOperand(); // BuildSDIV only operates on i32 or i64 if (!TLI.isOperationLegal(ISD::MULHS, VT)) return SDOperand(); // Make sure the target supports MULHS. int64_t d = cast(N->getOperand(1))->getSignExtended(); ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d); // Multiply the numerator (operand 0) by the magic value SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0), DAG.getConstant(magics.m, VT)); // If d > 0 and m < 0, add the numerator if (d > 0 && magics.m < 0) { Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0)); AddToWorkList(Q.Val); } // If d < 0 and m > 0, subtract the numerator. if (d < 0 && magics.m > 0) { Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0)); AddToWorkList(Q.Val); } // Shift right algebraic if shift value is nonzero if (magics.s > 0) { Q = DAG.getNode(ISD::SRA, VT, Q, DAG.getConstant(magics.s, TLI.getShiftAmountTy())); AddToWorkList(Q.Val); } // Extract the sign bit and add it to the quotient SDOperand T = DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1, TLI.getShiftAmountTy())); AddToWorkList(T.Val); return DAG.getNode(ISD::ADD, VT, Q, T); } /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand DAGCombiner::BuildUDIV(SDNode *N) { MVT::ValueType VT = N->getValueType(0); // Check to see if we can do this. if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) return SDOperand(); // BuildUDIV only operates on i32 or i64 if (!TLI.isOperationLegal(ISD::MULHU, VT)) return SDOperand(); // Make sure the target supports MULHU. uint64_t d = cast(N->getOperand(1))->getValue(); mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d); // Multiply the numerator (operand 0) by the magic value SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0), DAG.getConstant(magics.m, VT)); AddToWorkList(Q.Val); if (magics.a == 0) { return DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(magics.s, TLI.getShiftAmountTy())); } else { SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); AddToWorkList(NPQ.Val); NPQ = DAG.getNode(ISD::SRL, VT, NPQ, DAG.getConstant(1, TLI.getShiftAmountTy())); AddToWorkList(NPQ.Val); NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q); AddToWorkList(NPQ.Val); return DAG.getNode(ISD::SRL, VT, NPQ, DAG.getConstant(magics.s-1, TLI.getShiftAmountTy())); } } // SelectionDAG::Combine - This is the entry point for the file. // void SelectionDAG::Combine(bool RunningAfterLegalize) { /// run - This is the main entry point to this class. /// DAGCombiner(*this).Run(RunningAfterLegalize); }