//===-- llvm/CFG.h - CFG definitions and useful classes ----------*- C++ -*--=// // // This file contains the class definitions useful for operating on the control // flow graph. // // Currently it contains functionality for these three applications: // // 1. Iterate over the predecessors of a basic block: // pred_iterator, pred_const_iterator, pred_begin, pred_end // 2. Iterate over the successors of a basic block: // succ_iterator, succ_const_iterator, succ_begin, succ_end // 3. Iterate over the basic blocks of a method in depth first ordering or // reverse depth first order. df_iterator, df_const_iterator, // df_begin, df_end. df_begin takes an arg to specify reverse or not. // 4. Iterator over the basic blocks of a method in post order. // 5. Iterator over a method in reverse post order. // //===----------------------------------------------------------------------===// #ifndef LLVM_CFG_H #define LLVM_CFG_H #include "llvm/CFGdecls.h" // See this file for concise interface info #include "llvm/Method.h" #include "llvm/BasicBlock.h" #include "llvm/InstrTypes.h" #include "llvm/Type.h" #include #include #include namespace cfg { //===----------------------------------------------------------------------===// // Implementation //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Basic Block Predecessor Iterator // template // Predecessor Iterator class PredIterator : public std::bidirectional_iterator<_Ptr, ptrdiff_t> { _Ptr *BB; _USE_iterator It; public: typedef PredIterator<_Ptr,_USE_iterator> _Self; inline void advancePastConstPool() { // TODO: This is bad // Loop to ignore constant pool references while (It != BB->use_end() && ((!(*It)->isInstruction()) || !(((Instruction*)(*It))->isTerminator()))) ++It; } inline PredIterator(_Ptr *bb) : BB(bb), It(bb->use_begin()) { advancePastConstPool(); } inline PredIterator(_Ptr *bb, bool) : BB(bb), It(bb->use_end()) {} inline bool operator==(const _Self& x) const { return It == x.It; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return (*It)->castInstructionAsserting()->getParent(); } inline pointer *operator->() const { return &(operator*()); } inline _Self& operator++() { // Preincrement ++It; advancePastConstPool(); return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --It; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; inline pred_iterator pred_begin( BasicBlock *BB) { return pred_iterator(BB); } inline pred_const_iterator pred_begin(const BasicBlock *BB) { return pred_const_iterator(BB); } inline pred_iterator pred_end( BasicBlock *BB) { return pred_iterator(BB,true); } inline pred_const_iterator pred_end(const BasicBlock *BB) { return pred_const_iterator(BB,true); } //===----------------------------------------------------------------------===// // Basic Block Successor Iterator // template // Successor Iterator class SuccIterator : public std::bidirectional_iterator<_BB, ptrdiff_t> { const _Term Term; unsigned idx; public: typedef SuccIterator<_Term, _BB> _Self; // TODO: This can be random access iterator, need operator+ and stuff tho inline SuccIterator(_Term T) : Term(T), idx(0) { // begin iterator assert(T && "getTerminator returned null!"); } inline SuccIterator(_Term T, bool) // end iterator : Term(T), idx(Term->getNumSuccessors()) { assert(T && "getTerminator returned null!"); } inline bool operator==(const _Self& x) const { return idx == x.idx; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return Term->getSuccessor(idx); } inline pointer operator->() const { return operator*(); } inline _Self& operator++() { ++idx; return *this; } // Preincrement inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --idx; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; inline succ_iterator succ_begin( BasicBlock *BB) { return succ_iterator(BB->getTerminator()); } inline succ_const_iterator succ_begin(const BasicBlock *BB) { return succ_const_iterator(BB->getTerminator()); } inline succ_iterator succ_end( BasicBlock *BB) { return succ_iterator(BB->getTerminator(),true); } inline succ_const_iterator succ_end(const BasicBlock *BB) { return succ_const_iterator(BB->getTerminator(),true); } //===----------------------------------------------------------------------===// // Graph Type Declarations // // BasicBlockGraph - Represent a standard traversal of a CFG // ConstBasicBlockGraph - Represent a standard traversal of a const CFG // InverseBasicBlockGraph - Represent a inverse traversal of a CFG // ConstInverseBasicBlockGraph - Represent a inverse traversal of a const CFG // // An Inverse traversal of a graph is where we chase predecessors, instead of // successors. // struct BasicBlockGraph { typedef BasicBlock NodeType; typedef succ_iterator ChildIteratorType; static inline ChildIteratorType child_begin(NodeType *N) { return succ_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return succ_end(N); } }; struct ConstBasicBlockGraph { typedef const BasicBlock NodeType; typedef succ_const_iterator ChildIteratorType; static inline ChildIteratorType child_begin(NodeType *N) { return succ_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return succ_end(N); } }; struct InverseBasicBlockGraph { typedef BasicBlock NodeType; typedef pred_iterator ChildIteratorType; static inline ChildIteratorType child_begin(NodeType *N) { return pred_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return pred_end(N); } }; struct ConstInverseBasicBlockGraph { typedef const BasicBlock NodeType; typedef pred_const_iterator ChildIteratorType; static inline ChildIteratorType child_begin(NodeType *N) { return pred_begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return pred_end(N); } }; struct TypeGraph { typedef const ::Type NodeType; typedef ::Type::subtype_iterator ChildIteratorType; static inline ChildIteratorType child_begin(NodeType *N) { return N->subtype_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; //===----------------------------------------------------------------------===// // Depth First Iterator // // Generic Depth First Iterator template class DFIterator : public std::forward_iterator { typedef typename GI::NodeType NodeType; typedef typename GI::ChildIteratorType ChildItTy; set Visited; // All of the blocks visited so far... // VisitStack - Used to maintain the ordering. Top = current block // First element is node pointer, second is the 'next child' to visit stack > VisitStack; const bool Reverse; // Iterate over children before self? private: void reverseEnterNode() { pair &Top = VisitStack.top(); NodeType *Node = Top.first; ChildItTy &It = Top.second; for (; It != GI::child_end(Node); ++It) { NodeType *Child = *It; if (!Visited.count(Child)) { Visited.insert(Child); VisitStack.push(make_pair(Child, GI::child_begin(Child))); reverseEnterNode(); return; } } } public: typedef DFIterator _Self; inline DFIterator(NodeType *Node, bool reverse) : Reverse(reverse) { Visited.insert(Node); VisitStack.push(make_pair(Node, GI::child_begin(Node))); if (Reverse) reverseEnterNode(); } inline DFIterator() { /* End is when stack is empty */ } inline bool operator==(const _Self& x) const { return VisitStack == x.VisitStack; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return VisitStack.top().first; } // This is a nonstandard operator-> that dereferences the pointer an extra // time... so that you can actually call methods ON the Node, because // the contained type is a pointer. This allows BBIt->getTerminator() f.e. // inline NodeType *operator->() const { return operator*(); } inline _Self& operator++() { // Preincrement if (Reverse) { // Reverse Depth First Iterator if (VisitStack.top().second == GI::child_end(VisitStack.top().first)) VisitStack.pop(); if (!VisitStack.empty()) reverseEnterNode(); } else { // Normal Depth First Iterator do { pair &Top = VisitStack.top(); NodeType *Node = Top.first; ChildItTy &It = Top.second; while (It != GI::child_end(Node)) { NodeType *Next = *It++; if (!Visited.count(Next)) { // Has our next sibling been visited? // No, do it now. Visited.insert(Next); VisitStack.push(make_pair(Next, GI::child_begin(Next))); return *this; } } // Oops, ran out of successors... go up a level on the stack. VisitStack.pop(); } while (!VisitStack.empty()); } return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } // nodeVisited - return true if this iterator has already visited the // specified node. This is public, and will probably be used to iterate over // nodes that a depth first iteration did not find: ie unreachable nodes. // inline bool nodeVisited(NodeType *Node) const { return Visited.count(Node) != 0; } }; inline df_iterator df_begin(Method *M, bool Reverse = false) { return df_iterator(M->front(), Reverse); } inline df_const_iterator df_begin(const Method *M, bool Reverse = false) { return df_const_iterator(M->front(), Reverse); } inline df_iterator df_end(Method*) { return df_iterator(); } inline df_const_iterator df_end(const Method*) { return df_const_iterator(); } inline df_iterator df_begin(BasicBlock *BB, bool Reverse = false) { return df_iterator(BB, Reverse); } inline df_const_iterator df_begin(const BasicBlock *BB, bool Reverse = false) { return df_const_iterator(BB, Reverse); } inline df_iterator df_end(BasicBlock*) { return df_iterator(); } inline df_const_iterator df_end(const BasicBlock*) { return df_const_iterator(); } inline idf_iterator idf_begin(BasicBlock *BB, bool Reverse = false) { return idf_iterator(BB, Reverse); } inline idf_const_iterator idf_begin(const BasicBlock *BB, bool Reverse = false) { return idf_const_iterator(BB, Reverse); } inline idf_iterator idf_end(BasicBlock*) { return idf_iterator(); } inline idf_const_iterator idf_end(const BasicBlock*) { return idf_const_iterator(); } inline tdf_iterator tdf_begin(const Type *T, bool Reverse = false) { return tdf_iterator(T, Reverse); } inline tdf_iterator tdf_end (const Type *T) { return tdf_iterator(); } //===----------------------------------------------------------------------===// // Post Order CFG iterator code // template class POIterator : public std::forward_iterator { set Visited; // All of the blocks visited so far... // VisitStack - Used to maintain the ordering. Top = current block // First element is basic block pointer, second is the 'next child' to visit stack > VisitStack; void traverseChild() { while (VisitStack.top().second != succ_end(VisitStack.top().first)) { BBType *BB = *VisitStack.top().second++; if (!Visited.count(BB)) { // If the block is not visited... Visited.insert(BB); VisitStack.push(make_pair(BB, succ_begin(BB))); } } } public: typedef POIterator _Self; inline POIterator(BBType *BB) { Visited.insert(BB); VisitStack.push(make_pair(BB, succ_begin(BB))); traverseChild(); } inline POIterator() { /* End is when stack is empty */ } inline bool operator==(const _Self& x) const { return VisitStack == x.VisitStack; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return VisitStack.top().first; } // This is a nonstandard operator-> that dereferences the pointer an extra // time... so that you can actually call methods ON the BasicBlock, because // the contained type is a pointer. This allows BBIt->getTerminator() f.e. // inline BBType *operator->() const { return operator*(); } inline _Self& operator++() { // Preincrement VisitStack.pop(); if (!VisitStack.empty()) traverseChild(); return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } // Provide default begin and end methods when nothing special is needed. static inline _Self begin (BBType *BB) { return _Self(BB); } static inline _Self end (BBType *BB) { return _Self(); } }; inline po_iterator po_begin( Method *M) { return po_iterator(M->front()); } inline po_const_iterator po_begin(const Method *M) { return po_const_iterator(M->front()); } inline po_iterator po_end ( Method *M) { return po_iterator(); } inline po_const_iterator po_end (const Method *M) { return po_const_iterator(); } inline po_iterator po_begin( BasicBlock *BB) { return po_iterator(BB); } inline po_const_iterator po_begin(const BasicBlock *BB) { return po_const_iterator(BB); } inline po_iterator po_end ( BasicBlock *BB) { return po_iterator(); } inline po_const_iterator po_end (const BasicBlock *BB) { return po_const_iterator(); } //===--------------------------------------------------------------------===// // Reverse Post Order CFG iterator code //===--------------------------------------------------------------------===// // // This is used to visit basic blocks in a method in reverse post order. This // class is awkward to use because I don't know a good incremental algorithm to // computer RPO from a graph. Because of this, the construction of the // ReversePostOrderTraversal object is expensive (it must walk the entire graph // with a postorder iterator to build the data structures). The moral of this // story is: Don't create more ReversePostOrderTraversal classes than neccesary. // // This class should be used like this: // { // cfg::ReversePostOrderTraversal RPOT(MethodPtr); // Expensive to create // for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) { // ... // } // for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) { // ... // } // } // typedef reverse_iterator::iterator> rpo_iterator; class ReversePostOrderTraversal { vector Blocks; // Block list in normal PO order inline void Initialize(BasicBlock *BB) { copy(po_begin(BB), po_end(BB), back_inserter(Blocks)); } public: inline ReversePostOrderTraversal(Method *M) { Initialize(M->front()); } inline ReversePostOrderTraversal(BasicBlock *BB) { Initialize(BB); } // Because we want a reverse post order, use reverse iterators from the vector inline rpo_iterator begin() { return Blocks.rbegin(); } inline rpo_iterator end() { return Blocks.rend(); } }; } // End namespace cfg #endif