//===- DataStructure.cpp - Implement the core data structure analysis -----===// // // This file implements the core data structure functionality. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "Support/STLExtras.h" #include "Support/StatisticReporter.h" #include "Support/STLExtras.h" #include #include "llvm/Analysis/DataStructure.h" using std::vector; //===----------------------------------------------------------------------===// // DSNode Implementation //===----------------------------------------------------------------------===// DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(T), NodeType(NT) { // If this node has any fields, allocate them now, but leave them null. switch (T->getPrimitiveID()) { case Type::PointerTyID: Links.resize(1); break; case Type::ArrayTyID: Links.resize(1); break; case Type::StructTyID: Links.resize(cast(T)->getNumContainedTypes()); break; default: break; } } // DSNode copy constructor... do not copy over the referrers list! DSNode::DSNode(const DSNode &N) : Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) { } void DSNode::removeReferrer(DSNodeHandle *H) { // Search backwards, because we depopulate the list from the back for // efficiency (because it's a vector). vector::reverse_iterator I = std::find(Referrers.rbegin(), Referrers.rend(), H); assert(I != Referrers.rend() && "Referrer not pointing to node!"); Referrers.erase(I.base()-1); } // addGlobal - Add an entry for a global value to the Globals list. This also // marks the node with the 'G' flag if it does not already have it. // void DSNode::addGlobal(GlobalValue *GV) { // Keep the list sorted. vector::iterator I = std::lower_bound(Globals.begin(), Globals.end(), GV); if (I == Globals.end() || *I != GV) { assert(GV->getType()->getElementType() == Ty); Globals.insert(I, GV); NodeType |= GlobalNode; } } // addEdgeTo - Add an edge from the current node to the specified node. This // can cause merging of nodes in the graph. // void DSNode::addEdgeTo(unsigned LinkNo, DSNode *N) { assert(LinkNo < Links.size() && "LinkNo out of range!"); if (N == 0 || Links[LinkNo] == N) return; // Nothing to do if (Links[LinkNo] == 0) { // No merging to perform Links[LinkNo] = N; return; } // Merge the two nodes... Links[LinkNo]->mergeWith(N); } // mergeWith - Merge this node into the specified node, moving all links to and // from the argument node into the current node. The specified node may be a // null pointer (in which case, nothing happens). // void DSNode::mergeWith(DSNode *N) { if (N == 0 || N == this) return; // Noop assert(N->Ty == Ty && N->Links.size() == Links.size() && "Cannot merge nodes of two different types!"); // Remove all edges pointing at N, causing them to point to 'this' instead. while (!N->Referrers.empty()) *N->Referrers.back() = this; // Make all of the outgoing links of N now be outgoing links of this. This // can cause recursive merging! // for (unsigned i = 0, e = Links.size(); i != e; ++i) { addEdgeTo(i, N->Links[i]); N->Links[i] = 0; // Reduce unneccesary edges in graph. N is dead } // Merge the node types NodeType |= N->NodeType; N->NodeType = 0; // N is now a dead node. // Merge the globals list... if (!N->Globals.empty()) { // Save the current globals off to the side... vector OldGlobals(Globals); // Resize the globals vector to be big enough to hold both of them... Globals.resize(Globals.size()+N->Globals.size()); // Merge the two sorted globals lists together... std::merge(OldGlobals.begin(), OldGlobals.end(), N->Globals.begin(), N->Globals.end(), Globals.begin()); // Erase duplicate entries from the globals list... Globals.erase(std::unique(Globals.begin(), Globals.end()), Globals.end()); // Delete the globals from the old node... N->Globals.clear(); } } //===----------------------------------------------------------------------===// // DSGraph Implementation //===----------------------------------------------------------------------===// DSGraph::DSGraph(const DSGraph &G) : Func(G.Func), GlobalsGraph(G.GlobalsGraph){ GlobalsGraph->addReference(this); std::map NodeMap; // ignored RetNode = cloneInto(G, ValueMap, NodeMap); } DSGraph::~DSGraph() { GlobalsGraph->removeReference(this); FunctionCalls.clear(); OrigFunctionCalls.clear(); ValueMap.clear(); RetNode = 0; #ifndef NDEBUG // Drop all intra-node references, so that assertions don't fail... std::for_each(Nodes.begin(), Nodes.end(), std::mem_fun(&DSNode::dropAllReferences)); #endif // Delete all of the nodes themselves... std::for_each(Nodes.begin(), Nodes.end(), deleter); } // dump - Allow inspection of graph in a debugger. void DSGraph::dump() const { print(std::cerr); } // Helper function used to clone a function list. // Each call really shd have an explicit representation as a separate class. void CopyFunctionCallsList(const std::vector >& fromCalls, std::vector >& toCalls, std::map& NodeMap) { unsigned FC = toCalls.size(); // FirstCall toCalls.reserve(FC+fromCalls.size()); for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) { toCalls.push_back(std::vector()); toCalls[FC+i].reserve(fromCalls[i].size()); for (unsigned j = 0, ej = fromCalls[i].size(); j != ej; ++j) toCalls[FC+i].push_back(NodeMap[fromCalls[i][j]]); } } // cloneInto - Clone the specified DSGraph into the current graph, returning the // Return node of the graph. The translated ValueMap for the old function is // filled into the OldValMap member. If StripLocals is set to true, Scalar and // Alloca markers are removed from the graph, as the graph is being cloned into // a calling function's graph. // DSNode *DSGraph::cloneInto(const DSGraph &G, std::map &OldValMap, std::map &OldNodeMap, bool StripScalars, bool StripAllocas, bool CopyCallers, bool CopyOrigCalls) { assert(OldNodeMap.size()==0 && "Return arg. OldNodeMap shd be empty"); OldNodeMap[0] = 0; // Null pointer maps to null unsigned FN = Nodes.size(); // First new node... // Duplicate all of the nodes, populating the node map... Nodes.reserve(FN+G.Nodes.size()); for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { DSNode *Old = G.Nodes[i], *New = new DSNode(*Old); Nodes.push_back(New); OldNodeMap[Old] = New; } // Rewrite the links in the new nodes to point into the current graph now. for (unsigned i = FN, e = Nodes.size(); i != e; ++i) for (unsigned j = 0, e = Nodes[i]->getNumLinks(); j != e; ++j) Nodes[i]->setLink(j, OldNodeMap.find(Nodes[i]->getLink(j))->second); // Remove local markers as specified if (StripScalars || StripAllocas) { char keepBits = ~((StripScalars? DSNode::ScalarNode : 0) | (StripAllocas? DSNode::AllocaNode : 0)); for (unsigned i = FN, e = Nodes.size(); i != e; ++i) Nodes[i]->NodeType &= keepBits; } // Copy the value map... for (std::map::const_iterator I = G.ValueMap.begin(), E = G.ValueMap.end(); I != E; ++I) OldValMap[I->first] = OldNodeMap[I->second]; // Copy the function calls list... CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap); if (CopyOrigCalls) CopyFunctionCallsList(G.OrigFunctionCalls, OrigFunctionCalls, OldNodeMap); // Copy the list of unresolved callers if (CopyCallers) PendingCallers.insert(G.PendingCallers.begin(), G.PendingCallers.end()); // Return the returned node pointer... return OldNodeMap[G.RetNode]; } // cloneGlobalInto - Clone the given global node and all its target links // (and all their llinks, recursively). // DSNode* DSGraph::cloneGlobalInto(const DSNode* GNode) { if (GNode == 0 || GNode->getGlobals().size() == 0) return 0; // If a clone has already been created for GNode, return it. DSNodeHandle& ValMapEntry = ValueMap[GNode->getGlobals()[0]]; if (ValMapEntry != 0) return ValMapEntry; // Clone the node and update the ValMap. DSNode* NewNode = new DSNode(*GNode); ValMapEntry = NewNode; // j=0 case of loop below! Nodes.push_back(NewNode); for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j) ValueMap[NewNode->getGlobals()[j]] = NewNode; // Rewrite the links in the new node to point into the current graph. for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j) NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j))); return NewNode; } // markIncompleteNodes - Mark the specified node as having contents that are not // known with the current analysis we have performed. Because a node makes all // of the nodes it can reach imcomplete if the node itself is incomplete, we // must recursively traverse the data structure graph, marking all reachable // nodes as incomplete. // static void markIncompleteNode(DSNode *N) { // Stop recursion if no node, or if node already marked... if (N == 0 || (N->NodeType & DSNode::Incomplete)) return; // Actually mark the node N->NodeType |= DSNode::Incomplete; // Recusively process children... for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) markIncompleteNode(N->getLink(i)); } // markIncompleteNodes - Traverse the graph, identifying nodes that may be // modified by other functions that have not been resolved yet. This marks // nodes that are reachable through three sources of "unknownness": // // Global Variables, Function Calls, and Incoming Arguments // // For any node that may have unknown components (because something outside the // scope of current analysis may have modified it), the 'Incomplete' flag is // added to the NodeType. // void DSGraph::markIncompleteNodes(bool markFormalArgs) { // Mark any incoming arguments as incomplete... if (markFormalArgs) for (Function::aiterator I = Func.abegin(), E = Func.aend(); I != E; ++I) if (isa(I->getType())) markIncompleteNode(ValueMap[I]->getLink(0)); // Mark stuff passed into functions calls as being incomplete... for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { vector &Args = FunctionCalls[i]; // Then the return value is certainly incomplete! markIncompleteNode(Args[0]); // The call does not make the function argument incomplete... // All arguments to the function call are incomplete though! for (unsigned i = 2, e = Args.size(); i != e; ++i) markIncompleteNode(Args[i]); } // Mark all of the nodes pointed to by global or cast nodes as incomplete... for (unsigned i = 0, e = Nodes.size(); i != e; ++i) if (Nodes[i]->NodeType & (DSNode::GlobalNode | DSNode::CastNode)) { DSNode *N = Nodes[i]; for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) markIncompleteNode(N->getLink(i)); } } // removeRefsToGlobal - Helper function that removes globals from the // ValueMap so that the referrer count will go down to zero. static void removeRefsToGlobal(DSNode* N, std::map& ValueMap) { while (!N->getGlobals().empty()) { GlobalValue *GV = N->getGlobals().back(); N->getGlobals().pop_back(); ValueMap.erase(GV); } } // isNodeDead - This method checks to see if a node is dead, and if it isn't, it // checks to see if there are simple transformations that it can do to make it // dead. // bool DSGraph::isNodeDead(DSNode *N) { // Is it a trivially dead shadow node... if (N->getReferrers().empty() && N->NodeType == 0) return true; // Is it a function node or some other trivially unused global? if (N->NodeType != 0 && (N->NodeType & ~DSNode::GlobalNode) == 0 && N->getNumLinks() == 0 && N->getReferrers().size() == N->getGlobals().size()) { // Remove the globals from the valuemap, so that the referrer count will go // down to zero. removeRefsToGlobal(N, ValueMap); assert(N->getReferrers().empty() && "Referrers should all be gone now!"); return true; } return false; } static void removeIdenticalCalls(std::vector > &Calls, const std::string &where) { // Remove trivially identical function calls unsigned NumFns = Calls.size(); std::sort(Calls.begin(), Calls.end()); Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end()); DEBUG(if (NumFns != Calls.size()) std::cerr << "Merged " << (NumFns-Calls.size()) << " call nodes in " << where << "\n";); } // removeTriviallyDeadNodes - After the graph has been constructed, this method // removes all unreachable nodes that are created because they got merged with // other nodes in the graph. These nodes will all be trivially unreachable, so // we don't have to perform any non-trivial analysis here. // void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) { for (unsigned i = 0; i != Nodes.size(); ++i) if (! KeepAllGlobals || ! (Nodes[i]->NodeType & DSNode::GlobalNode)) if (isNodeDead(Nodes[i])) { // This node is dead! delete Nodes[i]; // Free memory... Nodes.erase(Nodes.begin()+i--); // Remove from node list... } removeIdenticalCalls(FunctionCalls, Func.getName()); } // markAlive - Simple graph traverser that recursively walks the graph marking // stuff to be alive. // static void markAlive(DSNode *N, std::set &Alive) { if (N == 0) return; Alive.insert(N); for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) if (N->getLink(i) && !Alive.count(N->getLink(i))) markAlive(N->getLink(i), Alive); } static bool checkGlobalAlive(DSNode *N, std::set &Alive, std::set &Visiting) { if (N == 0) return false; if (Visiting.count(N) > 0) return false; // terminate recursion on a cycle Visiting.insert(N); // If any immediate successor is alive, N is alive for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) if (N->getLink(i) && Alive.count(N->getLink(i))) { Visiting.erase(N); return true; } // Else if any successor reaches a live node, N is alive for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) if (N->getLink(i) && checkGlobalAlive(N->getLink(i), Alive, Visiting)) { Visiting.erase(N); return true; } Visiting.erase(N); return false; } // markGlobalsIteration - Recursive helper function for markGlobalsAlive(). // This would be unnecessary if function calls were real nodes! In that case, // the simple iterative loop in the first few lines below suffice. // static void markGlobalsIteration(std::set& GlobalNodes, std::vector > &Calls, std::set &Alive, bool FilterCalls) { // Iterate, marking globals or cast nodes alive until no new live nodes // are added to Alive std::set Visiting; // Used to identify cycles std::set::iterator I=GlobalNodes.begin(), E=GlobalNodes.end(); for (size_t liveCount = 0; liveCount < Alive.size(); ) { liveCount = Alive.size(); for ( ; I != E; ++I) if (Alive.count(*I) == 0) { Visiting.clear(); if (checkGlobalAlive(*I, Alive, Visiting)) markAlive(*I, Alive); } } // Find function calls with some dead and some live nodes. // Since all call nodes must be live if any one is live, we have to mark // all nodes of the call as live and continue the iteration (via recursion). if (FilterCalls) { bool recurse = false; for (int i = 0, ei = Calls.size(); i < ei; ++i) { bool CallIsDead = true, CallHasDeadArg = false; for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) { bool argIsDead = Calls[i][j] == 0 || Alive.count(Calls[i][j]) == 0; CallHasDeadArg = CallHasDeadArg || (Calls[i][j] != 0 && argIsDead); CallIsDead = CallIsDead && argIsDead; } if (!CallIsDead && CallHasDeadArg) { // Some node in this call is live and another is dead. // Mark all nodes of call as live and iterate once more. recurse = true; for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) markAlive(Calls[i][j], Alive); } } if (recurse) markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); } } // markGlobalsAlive - Mark global nodes and cast nodes alive if they // can reach any other live node. Since this can produce new live nodes, // we use a simple iterative algorithm. // static void markGlobalsAlive(DSGraph& G, std::set &Alive, bool FilterCalls) { // Add global and cast nodes to a set so we don't walk all nodes every time std::set GlobalNodes; for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i) if (G.getNodes()[i]->NodeType & (DSNode::CastNode | DSNode::GlobalNode)) GlobalNodes.insert(G.getNodes()[i]); // Add all call nodes to the same set std::vector > &Calls = G.getFunctionCalls(); if (FilterCalls) { for (unsigned i = 0, e = Calls.size(); i != e; ++i) for (unsigned j = 0, e = Calls[i].size(); j != e; ++j) if (Calls[i][j]) GlobalNodes.insert(Calls[i][j]); } // Iterate and recurse until no new live node are discovered. // This would be a simple iterative loop if function calls were real nodes! markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); // Free up references to dead globals from the ValueMap std::set::iterator I=GlobalNodes.begin(), E=GlobalNodes.end(); for( ; I != E; ++I) if (Alive.count(*I) == 0) removeRefsToGlobal(*I, G.getValueMap()); // Delete dead function calls if (FilterCalls) for (int ei = Calls.size(), i = ei-1; i >= 0; --i) { bool CallIsDead = true; for (unsigned j = 0, ej= Calls[i].size(); CallIsDead && j != ej; ++j) CallIsDead = (Alive.count(Calls[i][j]) == 0); if (CallIsDead) Calls.erase(Calls.begin() + i); // remove the call entirely } } // removeDeadNodes - Use a more powerful reachability analysis to eliminate // subgraphs that are unreachable. This often occurs because the data // structure doesn't "escape" into it's caller, and thus should be eliminated // from the caller's graph entirely. This is only appropriate to use when // inlining graphs. // void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) { assert((!KeepAllGlobals || KeepCalls) && "KeepAllGlobals without KeepCalls is meaningless"); // Reduce the amount of work we have to do... removeTriviallyDeadNodes(KeepAllGlobals); // FIXME: Merge nontrivially identical call nodes... // Alive - a set that holds all nodes found to be reachable/alive. std::set Alive; // If KeepCalls, mark all nodes reachable by call nodes as alive... if (KeepCalls) for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) for (unsigned j = 0, e = FunctionCalls[i].size(); j != e; ++j) markAlive(FunctionCalls[i][j], Alive); for (unsigned i = 0, e = OrigFunctionCalls.size(); i != e; ++i) for (unsigned j = 0, e = OrigFunctionCalls[i].size(); j != e; ++j) markAlive(OrigFunctionCalls[i][j], Alive); // Mark all nodes reachable by scalar nodes (and global nodes, if // keeping them was specified) as alive... char keepBits = DSNode::ScalarNode | (KeepAllGlobals? DSNode::GlobalNode : 0); for (unsigned i = 0, e = Nodes.size(); i != e; ++i) if (Nodes[i]->NodeType & keepBits) markAlive(Nodes[i], Alive); // The return value is alive as well... markAlive(RetNode, Alive); // Mark all globals or cast nodes that can reach a live node as alive. // This also marks all nodes reachable from such nodes as alive. // Of course, if KeepAllGlobals is specified, they would be live already. if (! KeepAllGlobals) markGlobalsAlive(*this, Alive, ! KeepCalls); // Loop over all unreachable nodes, dropping their references... std::vector DeadNodes; DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed. for (unsigned i = 0; i != Nodes.size(); ++i) if (!Alive.count(Nodes[i])) { DSNode *N = Nodes[i]; Nodes.erase(Nodes.begin()+i--); // Erase node from alive list. DeadNodes.push_back(N); // Add node to our list of dead nodes N->dropAllReferences(); // Drop all outgoing edges } // Delete all dead nodes... std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter); } // maskNodeTypes - Apply a mask to all of the node types in the graph. This // is useful for clearing out markers like Scalar or Incomplete. // void DSGraph::maskNodeTypes(unsigned char Mask) { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) Nodes[i]->NodeType &= Mask; } //===----------------------------------------------------------------------===// // GlobalDSGraph Implementation //===----------------------------------------------------------------------===// GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) { } GlobalDSGraph::~GlobalDSGraph() { assert(Referrers.size() == 0 && "Deleting global graph while references from other graphs exist"); } void GlobalDSGraph::addReference(const DSGraph* referrer) { if (referrer != this) Referrers.insert(referrer); } void GlobalDSGraph::removeReference(const DSGraph* referrer) { if (referrer != this) { assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!"); Referrers.erase(referrer); if (Referrers.size() == 0) delete this; } } // Bits used in the next function static const char ExternalTypeBits = (DSNode::GlobalNode | DSNode::NewNode | DSNode::SubElement | DSNode::CastNode); // GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally // visible target links (and recursively their such links) into this graph. // NodeCache maps the node being cloned to its clone in the Globals graph, // in order to track cycles. // GlobalsAreFinal is a flag that says whether it is safe to assume that // an existing global node is complete. This is important to avoid // reinserting all globals when inserting Calls to functions. // This is a helper function for cloneGlobals and cloneCalls. // DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode, std::map &NodeCache, bool GlobalsAreFinal) { if (OldNode == 0) return 0; // The caller should check this is an external node. Just more efficient... assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node"); // If a clone has already been created for OldNode, return it. DSNode*& CacheEntry = NodeCache[OldNode]; if (CacheEntry != 0) return CacheEntry; // The result value... DSNode* NewNode = 0; // If nodes already exist for any of the globals of OldNode, // merge all such nodes together since they are merged in OldNode. // If ValueCacheIsFinal==true, look for an existing node that has // an identical list of globals and return it if it exists. // for (unsigned j = 0, N = OldNode->getGlobals().size(); j < N; ++j) if (DSNode* PrevNode = ValueMap[OldNode->getGlobals()[j]]) { if (NewNode == 0) { NewNode = PrevNode; // first existing node found if (GlobalsAreFinal && j == 0) if (OldNode->getGlobals() == PrevNode->getGlobals()) { CacheEntry = NewNode; return NewNode; } } else if (NewNode != PrevNode) { // found another, different from prev // update ValMap *before* merging PrevNode into NewNode for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k) ValueMap[PrevNode->getGlobals()[k]] = NewNode; NewNode->mergeWith(PrevNode); } } else if (NewNode != 0) { ValueMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node } // If no existing node was found, clone the node and update the ValMap. if (NewNode == 0) { NewNode = new DSNode(*OldNode); Nodes.push_back(NewNode); for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j) NewNode->setLink(j, 0); for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j) ValueMap[NewNode->getGlobals()[j]] = NewNode; } else NewNode->NodeType |= OldNode->NodeType; // Markers may be different! // Add the entry to NodeCache CacheEntry = NewNode; // Rewrite the links in the new node to point into the current graph, // but only for links to external nodes. Set other links to NULL. for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) { DSNode* OldTarget = OldNode->getLink(j); if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) { DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache); if (NewNode->getLink(j)) NewNode->getLink(j)->mergeWith(NewLink); else NewNode->setLink(j, NewLink); } } // Remove all local markers NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode); return NewNode; } // GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally // visible target links (and recursively their such links) into this graph. // void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) { std::map NodeCache; for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i) if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode) GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false); if (CloneCalls) GlobalsGraph->cloneCalls(Graph); GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true); } // GlobalDSGraph::cloneCalls - Clone function calls and their visible target // links (and recursively their such links) into this graph. // void GlobalDSGraph::cloneCalls(DSGraph& Graph) { std::map NodeCache; std::vector >& FromCalls =Graph.FunctionCalls; FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size()); for (int i = 0, ei = FromCalls.size(); i < ei; ++i) { FunctionCalls.push_back(std::vector()); FunctionCalls.back().reserve(FromCalls[i].size()); for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j) FunctionCalls.back().push_back ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits)) ? cloneNodeInto(FromCalls[i][j], NodeCache, true) : 0); } // remove trivially identical function calls removeIdenticalCalls(FunctionCalls, "Globals Graph"); } //===----------------------------------------------------------------------===// // LocalDataStructures Implementation //===----------------------------------------------------------------------===// // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // void LocalDataStructures::releaseMemory() { for (std::map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) delete I->second; // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); } bool LocalDataStructures::run(Module &M) { // Create a globals graph for the module. Deleted when all graphs go away. GlobalDSGraph* GG = new GlobalDSGraph; // Calculate all of the graphs... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) DSInfo.insert(std::make_pair(&*I, new DSGraph(*I, GG))); return false; }