//===- AlphaInstrInfo.td - The Alpha Instruction Set -------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// include "AlphaInstrFormats.td" //******************** //Paterns for matching //******************** def immUExt8 : PatLeaf<(imm), [{ // immUExt8 predicate - True if the immediate fits in a 8-bit zero extended // field. Used by instructions like 'addi'. return (unsigned long)N->getValue() == (unsigned char)N->getValue(); }]>; def immSExt16 : PatLeaf<(imm), [{ // immSExt16 predicate - True if the immediate fits in a 16-bit sign extended // field. Used by instructions like 'lda'. return (int)N->getValue() == (short)N->getValue(); }]>; def iZAPX : SDNodeXFormgetValue(); unsigned int build = 0; for(int i = 0; i < 8; ++i) { if ((UImm & 0x00FF) == 0x00FF) build |= 1 << i; else if ((UImm & 0x00FF) != 0) { build = 0; break; } UImm >>= 8; } return getI64Imm(build); }]>; def immZAP : PatLeaf<(imm), [{ // immZAP predicate - True if the immediate fits is suitable for use in a // ZAP instruction uint64_t UImm = (uint64_t)N->getValue(); unsigned int build = 0; for(int i = 0; i < 8; ++i) { if ((UImm & 0x00FF) == 0x00FF) build |= 1 << i; else if ((UImm & 0x00FF) != 0) { build = 0; break; } UImm >>= 8; } return build != 0; }]>; def intop : PatFrag<(ops node:$op), (sext_inreg node:$op, i32)>; def add4 : PatFrag<(ops node:$op1, node:$op2), (add (shl node:$op1, 2), node:$op2)>; def sub4 : PatFrag<(ops node:$op1, node:$op2), (sub (shl node:$op1, 2), node:$op2)>; def add8 : PatFrag<(ops node:$op1, node:$op2), (add (shl node:$op1, 3), node:$op2)>; def sub8 : PatFrag<(ops node:$op1, node:$op2), (sub (shl node:$op1, 3), node:$op2)>; // //#define FP $15 // //#define RA $26 // //#define PV $27 // //#define GP $29 // //#define SP $30 def PHI : PseudoInstAlpha<(ops variable_ops), "#phi">; def IDEF : PseudoInstAlpha<(ops GPRC:$RA), "#idef $RA">; def WTF : PseudoInstAlpha<(ops variable_ops), "#wtf">; def ADJUSTSTACKUP : PseudoInstAlpha<(ops variable_ops), "ADJUP">; def ADJUSTSTACKDOWN : PseudoInstAlpha<(ops variable_ops), "ADJDOWN">; def ALTENT : PseudoInstAlpha<(ops s64imm:$TARGET), "$TARGET:\n">; def PCLABEL : PseudoInstAlpha<(ops s64imm:$num), "PCMARKER_$num:\n">; def MEMLABEL : PseudoInstAlpha<(ops s64imm:$i, s64imm:$j, s64imm:$k, s64imm:$m), "LSMARKER$$$i$$$j$$$k$$$m:\n">; //***************** //These are shortcuts, the assembler expands them //***************** //AT = R28 //T0-T7 = R1 - R8 //T8-T11 = R22-R25 //An even better improvement on the Int = SetCC(FP): SelectCC! //These are evil because they hide control flow in a MBB //really the ISel should emit multiple MBB let isTwoAddress = 1 in { //Conditional move of an int based on a FP CC def CMOVEQ_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, FPRC:$RCOND), "fbne $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n">; def CMOVEQi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, FPRC:$RCOND), "fbne $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n">; def CMOVNE_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, FPRC:$RCOND), "fbeq $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n">; def CMOVNEi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, FPRC:$RCOND), "fbeq $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n">; //Conditional move of an FP based on a Int CC def FCMOVEQ_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, FPRC:$RCOND), "bne $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n">; def FCMOVNE_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, FPRC:$RCOND), "beq $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n">; } //*********************** //Real instructions //*********************** //Operation Form: //conditional moves, int def CMOVEQ : OForm4< 0x11, 0x24, "cmoveq $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND = zero def CMOVEQi : OForm4L< 0x11, 0x24, "cmoveq $RCOND,$L,$RDEST">; //CMOVE if RCOND = zero def CMOVGE : OForm4< 0x11, 0x46, "cmovge $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND >= zero def CMOVGEi : OForm4L< 0x11, 0x46, "cmovge $RCOND,$L,$RDEST">; //CMOVE if RCOND >= zero def CMOVGT : OForm4< 0x11, 0x66, "cmovgt $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND > zero def CMOVGTi : OForm4L< 0x11, 0x66, "cmovgt $RCOND,$L,$RDEST">; //CMOVE if RCOND > zero def CMOVLBC : OForm4< 0x11, 0x16, "cmovlbc $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND low bit clear def CMOVLBCi : OForm4L< 0x11, 0x16, "cmovlbc $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit clear def CMOVLBS : OForm4< 0x11, 0x14, "cmovlbs $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND low bit set def CMOVLBSi : OForm4L< 0x11, 0x14, "cmovlbs $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit set def CMOVLE : OForm4< 0x11, 0x64, "cmovle $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND <= zero def CMOVLEi : OForm4L< 0x11, 0x64, "cmovle $RCOND,$L,$RDEST">; //CMOVE if RCOND <= zero def CMOVLT : OForm4< 0x11, 0x44, "cmovlt $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND < zero def CMOVLTi : OForm4L< 0x11, 0x44, "cmovlt $RCOND,$L,$RDEST">; //CMOVE if RCOND < zero def CMOVNE : OForm4< 0x11, 0x26, "cmovne $RCOND,$RSRC,$RDEST">; //CMOVE if RCOND != zero def CMOVNEi : OForm4L< 0x11, 0x26, "cmovne $RCOND,$L,$RDEST">; //CMOVE if RCOND != zero let isTwoAddress = 1 in { //conditional moves, fp def FCMOVEQ : FPFormCM<0x17, 0x02A, (ops FPRC:$RDEST, FPRC:$RSRC2, FPRC:$RSRC, FPRC:$RCOND), "fcmoveq $RCOND,$RSRC,$RDEST">; //FCMOVE if = zero def FCMOVGE : FPFormCM<0x17, 0x02D, (ops FPRC:$RDEST, FPRC:$RSRC2, FPRC:$RSRC, FPRC:$RCOND), "fcmovge $RCOND,$RSRC,$RDEST">; //FCMOVE if >= zero def FCMOVGT : FPFormCM<0x17, 0x02F, (ops FPRC:$RDEST, FPRC:$RSRC2, FPRC:$RSRC, FPRC:$RCOND), "fcmovgt $RCOND,$RSRC,$RDEST">; //FCMOVE if > zero def FCMOVLE : FPFormCM<0x17, 0x02E, (ops FPRC:$RDEST, FPRC:$RSRC2, FPRC:$RSRC, FPRC:$RCOND), "fcmovle $RCOND,$RSRC,$RDEST">; //FCMOVE if <= zero def FCMOVLT : FPFormCM<0x17, 0x02, (ops FPRC:$RDEST, FPRC:$RSRC2, FPRC:$RSRC, FPRC:$RCOND), "fcmovlt $RCOND,$RSRC,$RDEST">; // FCMOVE if < zero def FCMOVNE : FPFormCM<0x17, 0x02B, (ops FPRC:$RDEST, FPRC:$RSRC2, FPRC:$RSRC, FPRC:$RCOND), "fcmovne $RCOND,$RSRC,$RDEST">; //FCMOVE if != zero } def ADDL : OForm< 0x10, 0x00, "addl $RA,$RB,$RC", [(set GPRC:$RC, (intop (add GPRC:$RA, GPRC:$RB)))]>; def ADDLi : OFormL<0x10, 0x00, "addl $RA,$L,$RC", [(set GPRC:$RC, (intop (add GPRC:$RA, immUExt8:$L)))]>; def ADDQ : OForm< 0x10, 0x20, "addq $RA,$RB,$RC", [(set GPRC:$RC, (add GPRC:$RA, GPRC:$RB))]>; def ADDQi : OFormL<0x10, 0x20, "addq $RA,$L,$RC", [(set GPRC:$RC, (add GPRC:$RA, immUExt8:$L))]>; //def AMASK : OForm< 0x11, 0x61, "AMASK $RA,$RB,$RC", []>; //Architecture mask //def AMASKi : OFormL<0x11, 0x61, "AMASK $RA,$L,$RC", []>; //Architecture mask def AND : OForm< 0x11, 0x00, "and $RA,$RB,$RC", [(set GPRC:$RC, (and GPRC:$RA, GPRC:$RB))]>; def ANDi : OFormL<0x11, 0x00, "and $RA,$L,$RC", [(set GPRC:$RC, (and GPRC:$RA, immUExt8:$L))]>; def BIC : OForm< 0x11, 0x08, "bic $RA,$RB,$RC", [(set GPRC:$RC, (and GPRC:$RA, (not GPRC:$RB)))]>; def BICi : OFormL<0x11, 0x08, "bic $RA,$L,$RC", []>; // [(set GPRC:$RC, (and GPRC:$RA, (not immUExt8:$L)))]>; //FIXME? def BIS : OForm< 0x11, 0x20, "bis $RA,$RB,$RC", [(set GPRC:$RC, (or GPRC:$RA, GPRC:$RB))]>; def BISi : OFormL<0x11, 0x20, "bis $RA,$L,$RC", [(set GPRC:$RC, (or GPRC:$RA, immUExt8:$L))]>; def CTLZ : OForm2<0x1C, 0x32, "CTLZ $RB,$RC", [(set GPRC:$RC, (ctlz GPRC:$RB))]>; def CTPOP : OForm2<0x1C, 0x30, "CTPOP $RB,$RC", [(set GPRC:$RC, (ctpop GPRC:$RB))]>; def CTTZ : OForm2<0x1C, 0x33, "CTTZ $RB,$RC", [(set GPRC:$RC, (cttz GPRC:$RB))]>; def EQV : OForm< 0x11, 0x48, "eqv $RA,$RB,$RC", [(set GPRC:$RC, (xor GPRC:$RA, (not GPRC:$RB)))]>; def EQVi : OFormL<0x11, 0x48, "eqv $RA,$L,$RC", []>; // [(set GPRC:$RC, (xor GPRC:$RA, (not immUExt8:$L)))]>; //def EXTBL : OForm< 0x12, 0x06, "EXTBL $RA,$RB,$RC", []>; //Extract byte low //def EXTBLi : OFormL<0x12, 0x06, "EXTBL $RA,$L,$RC", []>; //Extract byte low //def EXTLH : OForm< 0x12, 0x6A, "EXTLH $RA,$RB,$RC", []>; //Extract longword high //def EXTLHi : OFormL<0x12, 0x6A, "EXTLH $RA,$L,$RC", []>; //Extract longword high //def EXTLL : OForm< 0x12, 0x26, "EXTLL $RA,$RB,$RC", []>; //Extract longword low //def EXTLLi : OFormL<0x12, 0x26, "EXTLL $RA,$L,$RC", []>; //Extract longword low //def EXTQH : OForm< 0x12, 0x7A, "EXTQH $RA,$RB,$RC", []>; //Extract quadword high //def EXTQHi : OFormL<0x12, 0x7A, "EXTQH $RA,$L,$RC", []>; //Extract quadword high //def EXTQ : OForm< 0x12, 0x36, "EXTQ $RA,$RB,$RC", []>; //Extract quadword low //def EXTQi : OFormL<0x12, 0x36, "EXTQ $RA,$L,$RC", []>; //Extract quadword low //def EXTWH : OForm< 0x12, 0x5A, "EXTWH $RA,$RB,$RC", []>; //Extract word high //def EXTWHi : OFormL<0x12, 0x5A, "EXTWH $RA,$L,$RC", []>; //Extract word high //def EXTWL : OForm< 0x12, 0x16, "EXTWL $RA,$RB,$RC", []>; //Extract word low //def EXTWLi : OFormL<0x12, 0x16, "EXTWL $RA,$L,$RC", []>; //Extract word low //def IMPLVER : OForm< 0x11, 0x6C, "IMPLVER $RA,$RB,$RC", []>; //Implementation version //def IMPLVERi : OFormL<0x11, 0x6C, "IMPLVER $RA,$L,$RC", []>; //Implementation version //def INSBL : OForm< 0x12, 0x0B, "INSBL $RA,$RB,$RC", []>; //Insert byte low //def INSBLi : OFormL<0x12, 0x0B, "INSBL $RA,$L,$RC", []>; //Insert byte low //def INSLH : OForm< 0x12, 0x67, "INSLH $RA,$RB,$RC", []>; //Insert longword high //def INSLHi : OFormL<0x12, 0x67, "INSLH $RA,$L,$RC", []>; //Insert longword high //def INSLL : OForm< 0x12, 0x2B, "INSLL $RA,$RB,$RC", []>; //Insert longword low //def INSLLi : OFormL<0x12, 0x2B, "INSLL $RA,$L,$RC", []>; //Insert longword low //def INSQH : OForm< 0x12, 0x77, "INSQH $RA,$RB,$RC", []>; //Insert quadword high //def INSQHi : OFormL<0x12, 0x77, "INSQH $RA,$L,$RC", []>; //Insert quadword high //def INSQL : OForm< 0x12, 0x3B, "INSQL $RA,$RB,$RC", []>; //Insert quadword low //def INSQLi : OFormL<0x12, 0x3B, "INSQL $RA,$L,$RC", []>; //Insert quadword low //def INSWH : OForm< 0x12, 0x57, "INSWH $RA,$RB,$RC", []>; //Insert word high //def INSWHi : OFormL<0x12, 0x57, "INSWH $RA,$L,$RC", []>; //Insert word high //def INSWL : OForm< 0x12, 0x1B, "INSWL $RA,$RB,$RC", []>; //Insert word low //def INSWLi : OFormL<0x12, 0x1B, "INSWL $RA,$L,$RC", []>; //Insert word low //def MSKBL : OForm< 0x12, 0x02, "MSKBL $RA,$RB,$RC", []>; //Mask byte low //def MSKBLi : OFormL<0x12, 0x02, "MSKBL $RA,$L,$RC", []>; //Mask byte low //def MSKLH : OForm< 0x12, 0x62, "MSKLH $RA,$RB,$RC", []>; //Mask longword high //def MSKLHi : OFormL<0x12, 0x62, "MSKLH $RA,$L,$RC", []>; //Mask longword high //def MSKLL : OForm< 0x12, 0x22, "MSKLL $RA,$RB,$RC", []>; //Mask longword low //def MSKLLi : OFormL<0x12, 0x22, "MSKLL $RA,$L,$RC", []>; //Mask longword low //def MSKQH : OForm< 0x12, 0x72, "MSKQH $RA,$RB,$RC", []>; //Mask quadword high //def MSKQHi : OFormL<0x12, 0x72, "MSKQH $RA,$L,$RC", []>; //Mask quadword high //def MSKQL : OForm< 0x12, 0x32, "MSKQL $RA,$RB,$RC", []>; //Mask quadword low //def MSKQLi : OFormL<0x12, 0x32, "MSKQL $RA,$L,$RC", []>; //Mask quadword low //def MSKWH : OForm< 0x12, 0x52, "MSKWH $RA,$RB,$RC", []>; //Mask word high //def MSKWHi : OFormL<0x12, 0x52, "MSKWH $RA,$L,$RC", []>; //Mask word high //def MSKWL : OForm< 0x12, 0x12, "MSKWL $RA,$RB,$RC", []>; //Mask word low //def MSKWLi : OFormL<0x12, 0x12, "MSKWL $RA,$L,$RC", []>; //Mask word low def MULL : OForm< 0x13, 0x00, "mull $RA,$RB,$RC", [(set GPRC:$RC, (intop (mul GPRC:$RA, GPRC:$RB)))]>; def MULLi : OFormL<0x13, 0x00, "mull $RA,$L,$RC", [(set GPRC:$RC, (intop (mul GPRC:$RA, immUExt8:$L)))]>; def MULQ : OForm< 0x13, 0x20, "mulq $RA,$RB,$RC", [(set GPRC:$RC, (mul GPRC:$RA, GPRC:$RB))]>; def MULQi : OFormL<0x13, 0x20, "mulq $RA,$L,$RC", [(set GPRC:$RC, (mul GPRC:$RA, immUExt8:$L))]>; def ORNOT : OForm< 0x11, 0x28, "ornot $RA,$RB,$RC", [(set GPRC:$RC, (or GPRC:$RA, (not GPRC:$RB)))]>; def ORNOTi : OFormL<0x11, 0x28, "ornot $RA,$L,$RC", []>; // [(set GPRC:$RC, (or GPRC:$RA, (not immUExt8:$L)))]>; def S4ADDL : OForm< 0x10, 0x02, "s4addl $RA,$RB,$RC", [(set GPRC:$RC, (intop (add4 GPRC:$RA, GPRC:$RB)))]>; def S4ADDLi : OFormL<0x10, 0x02, "s4addl $RA,$L,$RC", [(set GPRC:$RC, (intop (add4 GPRC:$RA, immUExt8:$L)))]>; def S4ADDQ : OForm< 0x10, 0x22, "s4addq $RA,$RB,$RC", [(set GPRC:$RC, (add4 GPRC:$RA, GPRC:$RB))]>; def S4ADDQi : OFormL<0x10, 0x22, "s4addq $RA,$L,$RC", [(set GPRC:$RC, (add4 GPRC:$RA, immUExt8:$L))]>; def S4SUBL : OForm< 0x10, 0x0B, "s4subl $RA,$RB,$RC", [(set GPRC:$RC, (intop (sub4 GPRC:$RA, GPRC:$RB)))]>; def S4SUBLi : OFormL<0x10, 0x0B, "s4subl $RA,$L,$RC", [(set GPRC:$RC, (intop (sub4 GPRC:$RA, immUExt8:$L)))]>; def S4SUBQ : OForm< 0x10, 0x2B, "s4subq $RA,$RB,$RC", [(set GPRC:$RC, (sub4 GPRC:$RA, GPRC:$RB))]>; def S4SUBQi : OFormL<0x10, 0x2B, "s4subq $RA,$L,$RC", [(set GPRC:$RC, (sub4 GPRC:$RA, immUExt8:$L))]>; def S8ADDL : OForm< 0x10, 0x12, "s8addl $RA,$RB,$RC", [(set GPRC:$RC, (intop (add8 GPRC:$RA, GPRC:$RB)))]>; def S8ADDLi : OFormL<0x10, 0x12, "s8addl $RA,$L,$RC", [(set GPRC:$RC, (intop (add8 GPRC:$RA, immUExt8:$L)))]>; def S8ADDQ : OForm< 0x10, 0x32, "s8addq $RA,$RB,$RC", [(set GPRC:$RC, (add8 GPRC:$RA, GPRC:$RB))]>; def S8ADDQi : OFormL<0x10, 0x32, "s8addq $RA,$L,$RC", [(set GPRC:$RC, (add8 GPRC:$RA, immUExt8:$L))]>; def S8SUBL : OForm< 0x10, 0x1B, "s8subl $RA,$RB,$RC", [(set GPRC:$RC, (intop (sub8 GPRC:$RA, GPRC:$RB)))]>; def S8SUBLi : OFormL<0x10, 0x1B, "s8subl $RA,$L,$RC", [(set GPRC:$RC, (intop (sub8 GPRC:$RA, immUExt8:$L)))]>; def S8SUBQ : OForm< 0x10, 0x3B, "s8subq $RA,$RB,$RC", [(set GPRC:$RC, (sub8 GPRC:$RA, GPRC:$RB))]>; def S8SUBQi : OFormL<0x10, 0x3B, "s8subq $RA,$L,$RC", [(set GPRC:$RC, (sub8 GPRC:$RA, immUExt8:$L))]>; def SEXTB : OForm2<0x1C, 0x00, "sextb $RB,$RC", [(set GPRC:$RC, (sext_inreg GPRC:$RB, i8))]>; def SEXTW : OForm2<0x1C, 0x01, "sextw $RB,$RC", [(set GPRC:$RC, (sext_inreg GPRC:$RB, i16))]>; def SL : OForm< 0x12, 0x39, "sll $RA,$RB,$RC", [(set GPRC:$RC, (shl GPRC:$RA, GPRC:$RB))]>; def SLi : OFormL<0x12, 0x39, "sll $RA,$L,$RC", [(set GPRC:$RC, (shl GPRC:$RA, immUExt8:$L))]>; def SRA : OForm< 0x12, 0x3C, "sra $RA,$RB,$RC", [(set GPRC:$RC, (sra GPRC:$RA, GPRC:$RB))]>; def SRAi : OFormL<0x12, 0x3C, "sra $RA,$L,$RC", [(set GPRC:$RC, (sra GPRC:$RA, immUExt8:$L))]>; def SRL : OForm< 0x12, 0x34, "srl $RA,$RB,$RC", [(set GPRC:$RC, (srl GPRC:$RA, GPRC:$RB))]>; def SRLi : OFormL<0x12, 0x34, "srl $RA,$L,$RC", [(set GPRC:$RC, (srl GPRC:$RA, immUExt8:$L))]>; def SUBL : OForm< 0x10, 0x09, "subl $RA,$RB,$RC", [(set GPRC:$RC, (intop (sub GPRC:$RA, GPRC:$RB)))]>; def SUBLi : OFormL<0x10, 0x09, "subl $RA,$L,$RC", [(set GPRC:$RC, (intop (sub GPRC:$RA, immUExt8:$L)))]>; def SUBQ : OForm< 0x10, 0x29, "subq $RA,$RB,$RC", [(set GPRC:$RC, (sub GPRC:$RA, GPRC:$RB))]>; def SUBQi : OFormL<0x10, 0x29, "subq $RA,$L,$RC", [(set GPRC:$RC, (sub GPRC:$RA, immUExt8:$L))]>; def UMULH : OForm< 0x13, 0x30, "umulh $RA,$RB,$RC", [(set GPRC:$RC, (mulhu GPRC:$RA, GPRC:$RB))]>; def UMULHi : OFormL<0x13, 0x30, "umulh $RA,$L,$RC", [(set GPRC:$RC, (mulhu GPRC:$RA, immUExt8:$L))]>; def XOR : OForm< 0x11, 0x40, "xor $RA,$RB,$RC", [(set GPRC:$RC, (xor GPRC:$RA, GPRC:$RB))]>; def XORi : OFormL<0x11, 0x40, "xor $RA,$L,$RC", [(set GPRC:$RC, (xor GPRC:$RA, immUExt8:$L))]>; //FIXME: what to do about zap? the cases it catches are very complex def ZAP : OForm< 0x12, 0x30, "zap $RA,$RB,$RC", []>; //Zero bytes //ZAPi is useless give ZAPNOTi def ZAPi : OFormL<0x12, 0x30, "zap $RA,$L,$RC", []>; //Zero bytes //FIXME: what to do about zapnot? see ZAP :) def ZAPNOT : OForm< 0x12, 0x31, "zapnot $RA,$RB,$RC", []>; //Zero bytes not def ZAPNOTi : OFormL<0x12, 0x31, "zapnot $RA,$L,$RC", []>; def : Pat<(and GPRC:$OP1, immZAP:$OP2), (ZAPNOTi GPRC:$OP1, (iZAPX immZAP:$OP2))>; //Comparison, int def CMPBGE : OForm< 0x10, 0x0F, "cmpbge $RA,$RB,$RC", []>; //Compare byte def CMPBGEi : OFormL<0x10, 0x0F, "cmpbge $RA,$L,$RC", []>; //Compare byte def CMPEQ : OForm< 0x10, 0x2D, "cmpeq $RA,$RB,$RC", []>; //Compare signed quadword equal def CMPEQi : OFormL<0x10, 0x2D, "cmpeq $RA,$L,$RC", []>; //Compare signed quadword equal def CMPLE : OForm< 0x10, 0x6D, "cmple $RA,$RB,$RC", []>; //Compare signed quadword less than or equal def CMPLEi : OFormL<0x10, 0x6D, "cmple $RA,$L,$RC", []>; //Compare signed quadword less than or equal def CMPLT : OForm< 0x10, 0x4D, "cmplt $RA,$RB,$RC", []>; //Compare signed quadword less than def CMPLTi : OFormL<0x10, 0x4D, "cmplt $RA,$L,$RC", []>; //Compare signed quadword less than def CMPULE : OForm< 0x10, 0x3D, "cmpule $RA,$RB,$RC", []>; //Compare unsigned quadword less than or equal def CMPULEi : OFormL<0x10, 0x3D, "cmpule $RA,$L,$RC", []>; //Compare unsigned quadword less than or equal def CMPULT : OForm< 0x10, 0x1D, "cmpult $RA,$RB,$RC", []>; //Compare unsigned quadword less than def CMPULTi : OFormL<0x10, 0x1D, "cmpult $RA,$L,$RC", []>; //Compare unsigned quadword less than //Comparison, FP def CMPTEQ : FPForm<0x16, 0x0A5, "cmpteq/su $RA,$RB,$RC">; //Compare T_floating equal def CMPTLE : FPForm<0x16, 0x0A7, "cmptle/su $RA,$RB,$RC">; //Compare T_floating less than or equal def CMPTLT : FPForm<0x16, 0x0A6, "cmptlt/su $RA,$RB,$RC">; //Compare T_floating less than def CMPTUN : FPForm<0x16, 0x0A4, "cmptun/su $RA,$RB,$RC">; //Compare T_floating unordered //There are in the Multimedia extentions, so let's not use them yet //def MAXSB8 : OForm<0x1C, 0x3E, "MAXSB8 $RA,$RB,$RC">; //Vector signed byte maximum //def MAXSW4 : OForm< 0x1C, 0x3F, "MAXSW4 $RA,$RB,$RC">; //Vector signed word maximum //def MAXUB8 : OForm<0x1C, 0x3C, "MAXUB8 $RA,$RB,$RC">; //Vector unsigned byte maximum //def MAXUW4 : OForm< 0x1C, 0x3D, "MAXUW4 $RA,$RB,$RC">; //Vector unsigned word maximum //def MINSB8 : OForm< 0x1C, 0x38, "MINSB8 $RA,$RB,$RC">; //Vector signed byte minimum //def MINSW4 : OForm< 0x1C, 0x39, "MINSW4 $RA,$RB,$RC">; //Vector signed word minimum //def MINUB8 : OForm< 0x1C, 0x3A, "MINUB8 $RA,$RB,$RC">; //Vector unsigned byte minimum //def MINUW4 : OForm< 0x1C, 0x3B, "MINUW4 $RA,$RB,$RC">; //Vector unsigned word minimum //def PERR : OForm< 0x1C, 0x31, "PERR $RA,$RB,$RC">; //Pixel error //def PKLB : OForm< 0x1C, 0x37, "PKLB $RA,$RB,$RC">; //Pack longwords to bytes //def PKWB : OForm<0x1C, 0x36, "PKWB $RA,$RB,$RC">; //Pack words to bytes //def UNPKBL : OForm< 0x1C, 0x35, "UNPKBL $RA,$RB,$RC">; //Unpack bytes to longwords //def UNPKBW : OForm< 0x1C, 0x34, "UNPKBW $RA,$RB,$RC">; //Unpack bytes to words //End operate let isReturn = 1, isTerminator = 1 in def RET : MbrForm< 0x1A, 0x02, (ops GPRC:$RD, GPRC:$RS, s64imm:$DISP), "ret $RD,($RS),$DISP">; //Return from subroutine //DAG Version: let isReturn = 1, isTerminator = 1, Ra = 31, Rb = 26, disp = 1, Uses = [R26] in def RETDAG : MbrForm< 0x1A, 0x02, (ops), "ret $$31,($$26),1">; //Return from subroutine def JMP : MbrForm< 0x1A, 0x00, (ops GPRC:$RD, GPRC:$RS, GPRC:$DISP), "jmp $RD,($RS),$DISP">; //Jump let isCall = 1, Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R27, R28, R29, F0, F1, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R29] in { def JSR : MbrForm< 0x1A, 0x01, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr $RD,($RS),$DISP">; //Jump to subroutine def BSR : BForm<0x34, "bsr $RA,$DISP">; //Branch to subroutine } let isCall = 1, Defs = [R24, R25, R27, R28], Uses = [R24, R25] in def JSRs : MbrForm< 0x1A, 0x01, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr $RD,($RS),$DISP">; //Jump to div or rem def JSR_COROUTINE : MbrForm< 0x1A, 0x03, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr_coroutine $RD,($RS),$DISP">; //Jump to subroutine return def BR : BForm<0x30, "br $RA,$DISP">; //Branch def BR_DAG : BFormD<0x30, "br $$31,$DISP">; //Branch //Stores, int def STB : MForm<0x0E, "stb $RA,$DISP($RB)">; // Store byte def STW : MForm<0x0D, "stw $RA,$DISP($RB)">; // Store word def STL : MForm<0x2C, "stl $RA,$DISP($RB)">; // Store longword def STQ : MForm<0x2D, "stq $RA,$DISP($RB)">; //Store quadword //Loads, int def LDL : MForm<0x28, "ldl $RA,$DISP($RB)">; // Load sign-extended longword def LDQ : MForm<0x29, "ldq $RA,$DISP($RB)">; //Load quadword def LDBU : MForm<0x0A, "ldbu $RA,$DISP($RB)">; //Load zero-extended byte def LDWU : MForm<0x0C, "ldwu $RA,$DISP($RB)">; //Load zero-extended word //Stores, float def STS : MForm<0x26, "sts $RA,$DISP($RB)">; //Store S_floating def STT : MForm<0x27, "stt $RA,$DISP($RB)">; //Store T_floating //Loads, float def LDS : MForm<0x22, "lds $RA,$DISP($RB)">; //Load S_floating def LDT : MForm<0x23, "ldt $RA,$DISP($RB)">; //Load T_floating //Load address def LDA : MForm<0x08, "lda $RA,$DISP($RB)">; //Load address def LDAH : MForm<0x09, "ldah $RA,$DISP($RB)">; //Load address high //Loads, int, Rellocated Low form def LDLr : MForm<0x28, "ldl $RA,$DISP($RB)\t\t!gprellow">; // Load sign-extended longword def LDQr : MForm<0x29, "ldq $RA,$DISP($RB)\t\t!gprellow">; //Load quadword def LDBUr : MForm<0x0A, "ldbu $RA,$DISP($RB)\t\t!gprellow">; //Load zero-extended byte def LDWUr : MForm<0x0C, "ldwu $RA,$DISP($RB)\t\t!gprellow">; //Load zero-extended word //Loads, float, Rellocated Low form def LDSr : MForm<0x22, "lds $RA,$DISP($RB)\t\t!gprellow">; //Load S_floating def LDTr : MForm<0x23, "ldt $RA,$DISP($RB)\t\t!gprellow">; //Load T_floating //Load address, rellocated low and high form def LDAr : MForm<0x08, "lda $RA,$DISP($RB)\t\t!gprellow">; //Load address def LDAHr : MForm<0x09, "ldah $RA,$DISP($RB)\t\t!gprelhigh">; //Load address high //load address, rellocated gpdist form def LDAg : MgForm<0x08, "lda $RA,0($RB)\t\t!gpdisp!$NUM">; //Load address def LDAHg : MgForm<0x09, "ldah $RA,0($RB)\t\t!gpdisp!$NUM">; //Load address //Load quad, rellocated literal form def LDQl : MForm<0x29, "ldq $RA,$DISP($RB)\t\t!literal">; //Load quadword //Stores, int def STBr : MForm<0x0E, "stb $RA,$DISP($RB)\t\t!gprellow">; // Store byte def STWr : MForm<0x0D, "stw $RA,$DISP($RB)\t\t!gprellow">; // Store word def STLr : MForm<0x2C, "stl $RA,$DISP($RB)\t\t!gprellow">; // Store longword def STQr : MForm<0x2D, "stq $RA,$DISP($RB)\t\t!gprellow">; //Store quadword //Stores, float def STSr : MForm<0x26, "sts $RA,$DISP($RB)\t\t!gprellow">; //Store S_floating def STTr : MForm<0x27, "stt $RA,$DISP($RB)\t\t!gprellow">; //Store T_floating //Branches, int def BEQ : BForm<0x39, "beq $RA,$DISP">; //Branch if = zero def BGE : BForm<0x3E, "bge $RA,$DISP">; //Branch if >= zero def BGT : BForm<0x3F, "bgt $RA,$DISP">; //Branch if > zero def BLBC : BForm<0x38, "blbc $RA,$DISP">; //Branch if low bit clear def BLBS : BForm<0x3C, "blbs $RA,$DISP">; //Branch if low bit set def BLE : BForm<0x3B, "ble $RA,$DISP">; //Branch if <= zero def BLT : BForm<0x3A, "blt $RA,$DISP">; //Branch if < zero def BNE : BForm<0x3D, "bne $RA,$DISP">; //Branch if != zero //Branches, float def FBEQ : FBForm<0x31, "fbeq $RA,$DISP">; //Floating branch if = zero def FBGE : FBForm<0x36, "fbge $RA,$DISP">; //Floating branch if >= zero def FBGT : FBForm<0x37, "fbgt $RA,$DISP">; //Floating branch if > zero def FBLE : FBForm<0x33, "fble $RA,$DISP">; //Floating branch if <= zero def FBLT : FBForm<0x32, "fblt $RA,$DISP">; //Floating branch if < zero def FBNE : FBForm<0x35, "fbne $RA,$DISP">; //Floating branch if != zero //Funky Floating point ops def CPYS : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC">; //Copy sign def CPYSE : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC">; //Copy sign and exponent def CPYSN : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC">; //Copy sign negate //Basic Floating point ops def ADDS : FPForm<0x16, 0x580, "adds/su $RA,$RB,$RC">; //Add S_floating def ADDT : FPForm<0x16, 0x5A0, "addt/su $RA,$RB,$RC">; //Add T_floating def SUBS : FPForm<0x16, 0x581, "subs/su $RA,$RB,$RC">; //Subtract S_floating def SUBT : FPForm<0x16, 0x5A1, "subt/su $RA,$RB,$RC">; //Subtract T_floating def DIVS : FPForm<0x16, 0x583, "divs/su $RA,$RB,$RC">; //Divide S_floating def DIVT : FPForm<0x16, 0x5A3, "divt/su $RA,$RB,$RC">; //Divide T_floating def MULS : FPForm<0x16, 0x582, "muls/su $RA,$RB,$RC">; //Multiply S_floating def MULT : FPForm<0x16, 0x5A2, "mult/su $RA,$RB,$RC">; //Multiply T_floating def SQRTS : FPForm<0x14, 0x58B, "sqrts/su $RA,$RB,$RC">; //Square root S_floating def SQRTT : FPForm<0x14, 0x5AB, "sqrtt/su $RA,$RB,$RC">; //Square root T_floating //INT reg to FP reg and back again //not supported on 21164 def FTOIS : FPForm<0x1C, 0x078, "ftois $RA,$RC">; //Floating to integer move, S_floating def FTOIT : FPForm<0x1C, 0x070, "ftoit $RA,$RC">; //Floating to integer move, T_floating def ITOFS : FPForm<0x14, 0x004, "itofs $RA,$RC">; //Integer to floating move, S_floating def ITOFT : FPForm<0x14, 0x024, "itoft $RA,$RC">; //Integer to floating move, T_floating //CVTLQ F-P 17.010 Convert longword to quadword //CVTQL F-P 17.030 Convert quadword to longword //These use SW completion, may not have function code for that set right (matters for JIT) def CVTQS : FPForm<0x16, 0x0BC, "cvtqs $RB,$RC">; //Convert quadword to S_floating def CVTQT : FPForm<0x16, 0x0BE, "cvtqt $RB,$RC">; //Convert quadword to T_floating def CVTST : FPForm<0x16, 0x2AC, "cvtsts $RB,$RC">; //Convert S_floating to T_floating def CVTTQ : FPForm<0x16, 0x52F, "cvttq/svc $RB,$RC">; //Convert T_floating to quadword def CVTTS : FPForm<0x16, 0x5AC, "cvtts/su $RB,$RC">; //Convert T_floating to S_floating //S_floating : IEEE Single //T_floating : IEEE Double //Mnemonic Format Opcode Description //CALL_PAL Pcd 00 Trap to PALcode //ECB Mfc 18.E800 Evict cache block //EXCB Mfc 18.0400 Exception barrier //FETCH Mfc 18.8000 Prefetch data //FETCH_M Mfc 18.A000 Prefetch data, modify intent //LDL_L Mem 2A Load sign-extended longword locked //LDQ_L Mem 2B Load quadword locked //LDQ_U Mem 0B Load unaligned quadword //MB Mfc 18.4000 Memory barrier //RPCC Mfc 18.C000 Read process cycle counter //STL_C Mem 2E Store longword conditional //STQ_C Mem 2F Store quadword conditional //STQ_U Mem 0F Store unaligned quadword //TRAPB Mfc 18.0000 Trap barrier //WH64 Mfc 18.F800 Write hint  64 bytes //WMB Mfc 18.4400 Write memory barrier //MF_FPCR F-P 17.025 Move from FPCR //MT_FPCR F-P 17.024 Move to FPCR def : Pat<(i64 immSExt16:$imm), (LDA immSExt16:$imm, R31)>;