//===-- PTXTargetMachine.cpp - Define TargetMachine for PTX ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Top-level implementation for the PTX target. // //===----------------------------------------------------------------------===// #include "PTX.h" #include "PTXTargetMachine.h" #include "llvm/PassManager.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFunctionAnalysis.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; namespace llvm { MCStreamer *createPTXAsmStreamer(MCContext &Ctx, formatted_raw_ostream &OS, bool isVerboseAsm, bool useLoc, bool useCFI, bool useDwarfDirectory, MCInstPrinter *InstPrint, MCCodeEmitter *CE, MCAsmBackend *MAB, bool ShowInst); } extern "C" void LLVMInitializePTXTarget() { RegisterTargetMachine X(ThePTX32Target); RegisterTargetMachine Y(ThePTX64Target); TargetRegistry::RegisterAsmStreamer(ThePTX32Target, createPTXAsmStreamer); TargetRegistry::RegisterAsmStreamer(ThePTX64Target, createPTXAsmStreamer); } namespace { const char* DataLayout32 = "e-p:32:32-i64:32:32-f64:32:32-v128:32:128-v64:32:64-n32:64"; const char* DataLayout64 = "e-p:64:64-i64:32:32-f64:32:32-v128:32:128-v64:32:64-n32:64"; // Copied from LLVMTargetMachine.cpp void printNoVerify(PassManagerBase &PM, const char *Banner) { if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(dbgs(), Banner)); } void printAndVerify(PassManagerBase &PM, const char *Banner) { if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(dbgs(), Banner)); //if (VerifyMachineCode) // PM.add(createMachineVerifierPass(Banner)); } } // DataLayout and FrameLowering are filled with dummy data PTXTargetMachine::PTXTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, Reloc::Model RM, CodeModel::Model CM, bool is64Bit) : LLVMTargetMachine(T, TT, CPU, FS, RM, CM), DataLayout(is64Bit ? DataLayout64 : DataLayout32), Subtarget(TT, CPU, FS, is64Bit), FrameLowering(Subtarget), InstrInfo(*this), TSInfo(*this), TLInfo(*this) { } PTX32TargetMachine::PTX32TargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, Reloc::Model RM, CodeModel::Model CM) : PTXTargetMachine(T, TT, CPU, FS, RM, CM, false) { } PTX64TargetMachine::PTX64TargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, Reloc::Model RM, CodeModel::Model CM) : PTXTargetMachine(T, TT, CPU, FS, RM, CM, true) { } bool PTXTargetMachine::addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { PM.add(createPTXISelDag(*this, OptLevel)); return false; } bool PTXTargetMachine::addPostRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel) { // PTXMFInfoExtract must after register allocation! //PM.add(createPTXMFInfoExtract(*this, OptLevel)); return false; } bool PTXTargetMachine::addPassesToEmitFile(PassManagerBase &PM, formatted_raw_ostream &Out, CodeGenFileType FileType, CodeGenOpt::Level OptLevel, bool DisableVerify) { // This is mostly based on LLVMTargetMachine::addPassesToEmitFile // Add common CodeGen passes. MCContext *Context = 0; if (addCommonCodeGenPasses(PM, OptLevel, DisableVerify, Context)) return true; assert(Context != 0 && "Failed to get MCContext"); if (hasMCSaveTempLabels()) Context->setAllowTemporaryLabels(false); const MCAsmInfo &MAI = *getMCAsmInfo(); const MCSubtargetInfo &STI = getSubtarget(); OwningPtr AsmStreamer; switch (FileType) { default: return true; case CGFT_AssemblyFile: { MCInstPrinter *InstPrinter = getTarget().createMCInstPrinter(MAI.getAssemblerDialect(), MAI, STI); // Create a code emitter if asked to show the encoding. MCCodeEmitter *MCE = 0; MCAsmBackend *MAB = 0; MCStreamer *S = getTarget().createAsmStreamer(*Context, Out, true, /* verbose asm */ hasMCUseLoc(), hasMCUseCFI(), hasMCUseDwarfDirectory(), InstPrinter, MCE, MAB, false /* show MC encoding */); AsmStreamer.reset(S); break; } case CGFT_ObjectFile: { llvm_unreachable("Object file emission is not supported with PTX"); } case CGFT_Null: // The Null output is intended for use for performance analysis and testing, // not real users. AsmStreamer.reset(createNullStreamer(*Context)); break; } // MC Logging //AsmStreamer.reset(createLoggingStreamer(AsmStreamer.take(), errs())); // Create the AsmPrinter, which takes ownership of AsmStreamer if successful. FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer); if (Printer == 0) return true; // If successful, createAsmPrinter took ownership of AsmStreamer. AsmStreamer.take(); PM.add(Printer); PM.add(createGCInfoDeleter()); return false; } bool PTXTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM, CodeGenOpt::Level OptLevel, bool DisableVerify, MCContext *&OutContext) { // Add standard LLVM codegen passes. // This is derived from LLVMTargetMachine::addCommonCodeGenPasses, with some // modifications for the PTX target. // Standard LLVM-Level Passes. // Basic AliasAnalysis support. // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that // BasicAliasAnalysis wins if they disagree. This is intended to help // support "obvious" type-punning idioms. PM.add(createTypeBasedAliasAnalysisPass()); PM.add(createBasicAliasAnalysisPass()); // Before running any passes, run the verifier to determine if the input // coming from the front-end and/or optimizer is valid. if (!DisableVerify) PM.add(createVerifierPass()); // Run loop strength reduction before anything else. if (OptLevel != CodeGenOpt::None) { PM.add(createLoopStrengthReducePass(getTargetLowering())); //PM.add(createPrintFunctionPass("\n\n*** Code after LSR ***\n", &dbgs())); } PM.add(createGCLoweringPass()); // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); PM.add(createLowerInvokePass(getTargetLowering())); // The lower invoke pass may create unreachable code. Remove it. PM.add(createUnreachableBlockEliminationPass()); if (OptLevel != CodeGenOpt::None) PM.add(createCodeGenPreparePass(getTargetLowering())); PM.add(createStackProtectorPass(getTargetLowering())); addPreISel(PM, OptLevel); //PM.add(createPrintFunctionPass("\n\n" // "*** Final LLVM Code input to ISel ***\n", // &dbgs())); // All passes which modify the LLVM IR are now complete; run the verifier // to ensure that the IR is valid. if (!DisableVerify) PM.add(createVerifierPass()); // Standard Lower-Level Passes. // Install a MachineModuleInfo class, which is an immutable pass that holds // all the per-module stuff we're generating, including MCContext. MachineModuleInfo *MMI = new MachineModuleInfo(*getMCAsmInfo(), *getRegisterInfo(), &getTargetLowering()->getObjFileLowering()); PM.add(MMI); OutContext = &MMI->getContext(); // Return the MCContext specifically by-ref. // Set up a MachineFunction for the rest of CodeGen to work on. PM.add(new MachineFunctionAnalysis(*this, OptLevel)); // Ask the target for an isel. if (addInstSelector(PM, OptLevel)) return true; // Print the instruction selected machine code... printAndVerify(PM, "After Instruction Selection"); // Expand pseudo-instructions emitted by ISel. PM.add(createExpandISelPseudosPass()); // Pre-ra tail duplication. if (OptLevel != CodeGenOpt::None) { PM.add(createTailDuplicatePass(true)); printAndVerify(PM, "After Pre-RegAlloc TailDuplicate"); } // Optimize PHIs before DCE: removing dead PHI cycles may make more // instructions dead. if (OptLevel != CodeGenOpt::None) PM.add(createOptimizePHIsPass()); // If the target requests it, assign local variables to stack slots relative // to one another and simplify frame index references where possible. PM.add(createLocalStackSlotAllocationPass()); if (OptLevel != CodeGenOpt::None) { // With optimization, dead code should already be eliminated. However // there is one known exception: lowered code for arguments that are only // used by tail calls, where the tail calls reuse the incoming stack // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll). PM.add(createDeadMachineInstructionElimPass()); printAndVerify(PM, "After codegen DCE pass"); PM.add(createMachineLICMPass()); PM.add(createMachineCSEPass()); PM.add(createMachineSinkingPass()); printAndVerify(PM, "After Machine LICM, CSE and Sinking passes"); PM.add(createPeepholeOptimizerPass()); printAndVerify(PM, "After codegen peephole optimization pass"); } // Run pre-ra passes. if (addPreRegAlloc(PM, OptLevel)) printAndVerify(PM, "After PreRegAlloc passes"); // Perform register allocation. PM.add(createPTXRegisterAllocator()); printAndVerify(PM, "After Register Allocation"); // Perform stack slot coloring and post-ra machine LICM. if (OptLevel != CodeGenOpt::None) { // FIXME: Re-enable coloring with register when it's capable of adding // kill markers. PM.add(createStackSlotColoringPass(false)); // FIXME: Post-RA LICM has asserts that fire on virtual registers. // Run post-ra machine LICM to hoist reloads / remats. //if (!DisablePostRAMachineLICM) // PM.add(createMachineLICMPass(false)); printAndVerify(PM, "After StackSlotColoring and postra Machine LICM"); } // Run post-ra passes. if (addPostRegAlloc(PM, OptLevel)) printAndVerify(PM, "After PostRegAlloc passes"); PM.add(createExpandPostRAPseudosPass()); printAndVerify(PM, "After ExpandPostRAPseudos"); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); printAndVerify(PM, "After PrologEpilogCodeInserter"); // Run pre-sched2 passes. if (addPreSched2(PM, OptLevel)) printAndVerify(PM, "After PreSched2 passes"); // Second pass scheduler. if (OptLevel != CodeGenOpt::None) { PM.add(createPostRAScheduler(OptLevel)); printAndVerify(PM, "After PostRAScheduler"); } // Branch folding must be run after regalloc and prolog/epilog insertion. if (OptLevel != CodeGenOpt::None) { PM.add(createBranchFoldingPass(getEnableTailMergeDefault())); printNoVerify(PM, "After BranchFolding"); } // Tail duplication. if (OptLevel != CodeGenOpt::None) { PM.add(createTailDuplicatePass(false)); printNoVerify(PM, "After TailDuplicate"); } PM.add(createGCMachineCodeAnalysisPass()); //if (PrintGCInfo) // PM.add(createGCInfoPrinter(dbgs())); if (OptLevel != CodeGenOpt::None) { PM.add(createCodePlacementOptPass()); printNoVerify(PM, "After CodePlacementOpt"); } if (addPreEmitPass(PM, OptLevel)) printNoVerify(PM, "After PreEmit passes"); PM.add(createPTXMFInfoExtract(*this, OptLevel)); PM.add(createPTXFPRoundingModePass(*this, OptLevel)); return false; }