//===-- llvm/Attributes.h - Container for Attributes ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file contains the simple types necessary to represent the /// attributes associated with functions and their calls. /// //===----------------------------------------------------------------------===// #ifndef LLVM_IR_ATTRIBUTES_H #define LLVM_IR_ATTRIBUTES_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/PointerLikeTypeTraits.h" #include #include #include #include namespace llvm { class AttrBuilder; class AttributeImpl; class AttributeSetImpl; class AttributeSetNode; class Constant; template struct DenseMapInfo; class LLVMContext; class Type; //===----------------------------------------------------------------------===// /// \class /// \brief Functions, function parameters, and return types can have attributes /// to indicate how they should be treated by optimizations and code /// generation. This class represents one of those attributes. It's light-weight /// and should be passed around by-value. class Attribute { public: /// This enumeration lists the attributes that can be associated with /// parameters, function results, or the function itself. /// /// Note: The `uwtable' attribute is about the ABI or the user mandating an /// entry in the unwind table. The `nounwind' attribute is about an exception /// passing by the function. /// /// In a theoretical system that uses tables for profiling and SjLj for /// exceptions, they would be fully independent. In a normal system that uses /// tables for both, the semantics are: /// /// nil = Needs an entry because an exception might pass by. /// nounwind = No need for an entry /// uwtable = Needs an entry because the ABI says so and because /// an exception might pass by. /// uwtable + nounwind = Needs an entry because the ABI says so. enum AttrKind { // IR-Level Attributes None, ///< No attributes have been set Alignment, ///< Alignment of parameter (5 bits) ///< stored as log2 of alignment with +1 bias ///< 0 means unaligned (different from align(1)) AlwaysInline, ///< inline=always Builtin, ///< Callee is recognized as a builtin, despite ///< nobuiltin attribute on its declaration. ByVal, ///< Pass structure by value InAlloca, ///< Pass structure in an alloca Cold, ///< Marks function as being in a cold path. InlineHint, ///< Source said inlining was desirable InReg, ///< Force argument to be passed in register JumpTable, ///< Build jump-instruction tables and replace refs. MinSize, ///< Function must be optimized for size first Naked, ///< Naked function Nest, ///< Nested function static chain NoAlias, ///< Considered to not alias after call NoBuiltin, ///< Callee isn't recognized as a builtin NoCapture, ///< Function creates no aliases of pointer NoDuplicate, ///< Call cannot be duplicated NoImplicitFloat, ///< Disable implicit floating point insts NoInline, ///< inline=never NonLazyBind, ///< Function is called early and/or ///< often, so lazy binding isn't worthwhile NonNull, ///< Pointer is known to be not null Dereferenceable, ///< Pointer is known to be dereferenceable DereferenceableOrNull, ///< Pointer is either null or dereferenceable NoRedZone, ///< Disable redzone NoReturn, ///< Mark the function as not returning NoUnwind, ///< Function doesn't unwind stack OptimizeForSize, ///< opt_size OptimizeNone, ///< Function must not be optimized. ReadNone, ///< Function does not access memory ReadOnly, ///< Function only reads from memory Returned, ///< Return value is always equal to this argument ReturnsTwice, ///< Function can return twice SExt, ///< Sign extended before/after call StackAlignment, ///< Alignment of stack for function (3 bits) ///< stored as log2 of alignment with +1 bias 0 ///< means unaligned (different from ///< alignstack=(1)) StackProtect, ///< Stack protection. StackProtectReq, ///< Stack protection required. StackProtectStrong, ///< Strong Stack protection. StructRet, ///< Hidden pointer to structure to return SanitizeAddress, ///< AddressSanitizer is on. SanitizeThread, ///< ThreadSanitizer is on. SanitizeMemory, ///< MemorySanitizer is on. UWTable, ///< Function must be in a unwind table ZExt, ///< Zero extended before/after call EndAttrKinds ///< Sentinal value useful for loops }; private: AttributeImpl *pImpl; Attribute(AttributeImpl *A) : pImpl(A) {} public: Attribute() : pImpl(nullptr) {} //===--------------------------------------------------------------------===// // Attribute Construction //===--------------------------------------------------------------------===// /// \brief Return a uniquified Attribute object. static Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val = 0); static Attribute get(LLVMContext &Context, StringRef Kind, StringRef Val = StringRef()); /// \brief Return a uniquified Attribute object that has the specific /// alignment set. static Attribute getWithAlignment(LLVMContext &Context, uint64_t Align); static Attribute getWithStackAlignment(LLVMContext &Context, uint64_t Align); static Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes); static Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes); //===--------------------------------------------------------------------===// // Attribute Accessors //===--------------------------------------------------------------------===// /// \brief Return true if the attribute is an Attribute::AttrKind type. bool isEnumAttribute() const; /// \brief Return true if the attribute is an integer attribute. bool isIntAttribute() const; /// \brief Return true if the attribute is a string (target-dependent) /// attribute. bool isStringAttribute() const; /// \brief Return true if the attribute is present. bool hasAttribute(AttrKind Val) const; /// \brief Return true if the target-dependent attribute is present. bool hasAttribute(StringRef Val) const; /// \brief Return the attribute's kind as an enum (Attribute::AttrKind). This /// requires the attribute to be an enum or alignment attribute. Attribute::AttrKind getKindAsEnum() const; /// \brief Return the attribute's value as an integer. This requires that the /// attribute be an alignment attribute. uint64_t getValueAsInt() const; /// \brief Return the attribute's kind as a string. This requires the /// attribute to be a string attribute. StringRef getKindAsString() const; /// \brief Return the attribute's value as a string. This requires the /// attribute to be a string attribute. StringRef getValueAsString() const; /// \brief Returns the alignment field of an attribute as a byte alignment /// value. unsigned getAlignment() const; /// \brief Returns the stack alignment field of an attribute as a byte /// alignment value. unsigned getStackAlignment() const; /// \brief Returns the number of dereferenceable bytes from the /// dereferenceable attribute (or zero if unknown). uint64_t getDereferenceableBytes() const; /// \brief Returns the number of dereferenceable_or_null bytes from the /// dereferenceable_or_null attribute (or zero if unknown). uint64_t getDereferenceableOrNullBytes() const; /// \brief The Attribute is converted to a string of equivalent mnemonic. This /// is, presumably, for writing out the mnemonics for the assembly writer. std::string getAsString(bool InAttrGrp = false) const; /// \brief Equality and non-equality operators. bool operator==(Attribute A) const { return pImpl == A.pImpl; } bool operator!=(Attribute A) const { return pImpl != A.pImpl; } /// \brief Less-than operator. Useful for sorting the attributes list. bool operator<(Attribute A) const; void Profile(FoldingSetNodeID &ID) const { ID.AddPointer(pImpl); } }; //===----------------------------------------------------------------------===// /// \class /// \brief This class holds the attributes for a function, its return value, and /// its parameters. You access the attributes for each of them via an index into /// the AttributeSet object. The function attributes are at index /// `AttributeSet::FunctionIndex', the return value is at index /// `AttributeSet::ReturnIndex', and the attributes for the parameters start at /// index `1'. class AttributeSet { public: enum AttrIndex : unsigned { ReturnIndex = 0U, FunctionIndex = ~0U }; private: friend class AttrBuilder; friend class AttributeSetImpl; template friend struct DenseMapInfo; /// \brief The attributes that we are managing. This can be null to represent /// the empty attributes list. AttributeSetImpl *pImpl; /// \brief The attributes for the specified index are returned. AttributeSetNode *getAttributes(unsigned Index) const; /// \brief Create an AttributeSet with the specified parameters in it. static AttributeSet get(LLVMContext &C, ArrayRef > Attrs); static AttributeSet get(LLVMContext &C, ArrayRef > Attrs); static AttributeSet getImpl(LLVMContext &C, ArrayRef > Attrs); explicit AttributeSet(AttributeSetImpl *LI) : pImpl(LI) {} public: AttributeSet() : pImpl(nullptr) {} //===--------------------------------------------------------------------===// // AttributeSet Construction and Mutation //===--------------------------------------------------------------------===// /// \brief Return an AttributeSet with the specified parameters in it. static AttributeSet get(LLVMContext &C, ArrayRef Attrs); static AttributeSet get(LLVMContext &C, unsigned Index, ArrayRef Kind); static AttributeSet get(LLVMContext &C, unsigned Index, const AttrBuilder &B); /// \brief Add an attribute to the attribute set at the given index. Because /// attribute sets are immutable, this returns a new set. AttributeSet addAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Attr) const; /// \brief Add an attribute to the attribute set at the given index. Because /// attribute sets are immutable, this returns a new set. AttributeSet addAttribute(LLVMContext &C, unsigned Index, StringRef Kind) const; AttributeSet addAttribute(LLVMContext &C, unsigned Index, StringRef Kind, StringRef Value) const; /// \brief Add attributes to the attribute set at the given index. Because /// attribute sets are immutable, this returns a new set. AttributeSet addAttributes(LLVMContext &C, unsigned Index, AttributeSet Attrs) const; /// \brief Remove the specified attribute at the specified index from this /// attribute list. Because attribute lists are immutable, this returns the /// new list. AttributeSet removeAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Attr) const; /// \brief Remove the specified attributes at the specified index from this /// attribute list. Because attribute lists are immutable, this returns the /// new list. AttributeSet removeAttributes(LLVMContext &C, unsigned Index, AttributeSet Attrs) const; /// \brief Remove the specified attributes at the specified index from this /// attribute list. Because attribute lists are immutable, this returns the /// new list. AttributeSet removeAttributes(LLVMContext &C, unsigned Index, const AttrBuilder &Attrs) const; /// \brief Add the dereferenceable attribute to the attribute set at the given /// index. Because attribute sets are immutable, this returns a new set. AttributeSet addDereferenceableAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const; /// \brief Add the dereferenceable_or_null attribute to the attribute set at /// the given index. Because attribute sets are immutable, this returns a new /// set. AttributeSet addDereferenceableOrNullAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const; //===--------------------------------------------------------------------===// // AttributeSet Accessors //===--------------------------------------------------------------------===// /// \brief Retrieve the LLVM context. LLVMContext &getContext() const; /// \brief The attributes for the specified index are returned. AttributeSet getParamAttributes(unsigned Index) const; /// \brief The attributes for the ret value are returned. AttributeSet getRetAttributes() const; /// \brief The function attributes are returned. AttributeSet getFnAttributes() const; /// \brief Return true if the attribute exists at the given index. bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const; /// \brief Return true if the attribute exists at the given index. bool hasAttribute(unsigned Index, StringRef Kind) const; /// \brief Return true if attribute exists at the given index. bool hasAttributes(unsigned Index) const; /// \brief Return true if the specified attribute is set for at least one /// parameter or for the return value. bool hasAttrSomewhere(Attribute::AttrKind Attr) const; /// \brief Return the attribute object that exists at the given index. Attribute getAttribute(unsigned Index, Attribute::AttrKind Kind) const; /// \brief Return the attribute object that exists at the given index. Attribute getAttribute(unsigned Index, StringRef Kind) const; /// \brief Return the alignment for the specified function parameter. unsigned getParamAlignment(unsigned Index) const; /// \brief Get the stack alignment. unsigned getStackAlignment(unsigned Index) const; /// \brief Get the number of dereferenceable bytes (or zero if unknown). uint64_t getDereferenceableBytes(unsigned Index) const; /// \brief Get the number of dereferenceable_or_null bytes (or zero if /// unknown). uint64_t getDereferenceableOrNullBytes(unsigned Index) const; /// \brief Return the attributes at the index as a string. std::string getAsString(unsigned Index, bool InAttrGrp = false) const; typedef ArrayRef::iterator iterator; iterator begin(unsigned Slot) const; iterator end(unsigned Slot) const; /// operator==/!= - Provide equality predicates. bool operator==(const AttributeSet &RHS) const { return pImpl == RHS.pImpl; } bool operator!=(const AttributeSet &RHS) const { return pImpl != RHS.pImpl; } //===--------------------------------------------------------------------===// // AttributeSet Introspection //===--------------------------------------------------------------------===// // FIXME: Remove this. uint64_t Raw(unsigned Index) const; /// \brief Return a raw pointer that uniquely identifies this attribute list. void *getRawPointer() const { return pImpl; } /// \brief Return true if there are no attributes. bool isEmpty() const { return getNumSlots() == 0; } /// \brief Return the number of slots used in this attribute list. This is /// the number of arguments that have an attribute set on them (including the /// function itself). unsigned getNumSlots() const; /// \brief Return the index for the given slot. unsigned getSlotIndex(unsigned Slot) const; /// \brief Return the attributes at the given slot. AttributeSet getSlotAttributes(unsigned Slot) const; void dump() const; }; //===----------------------------------------------------------------------===// /// \class /// \brief Provide DenseMapInfo for AttributeSet. template<> struct DenseMapInfo { static inline AttributeSet getEmptyKey() { uintptr_t Val = static_cast(-1); Val <<= PointerLikeTypeTraits::NumLowBitsAvailable; return AttributeSet(reinterpret_cast(Val)); } static inline AttributeSet getTombstoneKey() { uintptr_t Val = static_cast(-2); Val <<= PointerLikeTypeTraits::NumLowBitsAvailable; return AttributeSet(reinterpret_cast(Val)); } static unsigned getHashValue(AttributeSet AS) { return (unsigned((uintptr_t)AS.pImpl) >> 4) ^ (unsigned((uintptr_t)AS.pImpl) >> 9); } static bool isEqual(AttributeSet LHS, AttributeSet RHS) { return LHS == RHS; } }; //===----------------------------------------------------------------------===// /// \class /// \brief This class is used in conjunction with the Attribute::get method to /// create an Attribute object. The object itself is uniquified. The Builder's /// value, however, is not. So this can be used as a quick way to test for /// equality, presence of attributes, etc. class AttrBuilder { std::bitset Attrs; std::map TargetDepAttrs; uint64_t Alignment; uint64_t StackAlignment; uint64_t DerefBytes; uint64_t DerefOrNullBytes; public: AttrBuilder() : Attrs(0), Alignment(0), StackAlignment(0), DerefBytes(0), DerefOrNullBytes(0) {} explicit AttrBuilder(uint64_t Val) : Attrs(0), Alignment(0), StackAlignment(0), DerefBytes(0), DerefOrNullBytes(0) { addRawValue(Val); } AttrBuilder(const Attribute &A) : Attrs(0), Alignment(0), StackAlignment(0), DerefBytes(0), DerefOrNullBytes(0) { addAttribute(A); } AttrBuilder(AttributeSet AS, unsigned Idx); void clear(); /// \brief Add an attribute to the builder. AttrBuilder &addAttribute(Attribute::AttrKind Val); /// \brief Add the Attribute object to the builder. AttrBuilder &addAttribute(Attribute A); /// \brief Add the target-dependent attribute to the builder. AttrBuilder &addAttribute(StringRef A, StringRef V = StringRef()); /// \brief Remove an attribute from the builder. AttrBuilder &removeAttribute(Attribute::AttrKind Val); /// \brief Remove the attributes from the builder. AttrBuilder &removeAttributes(AttributeSet A, uint64_t Index); /// \brief Remove the target-dependent attribute to the builder. AttrBuilder &removeAttribute(StringRef A); /// \brief Add the attributes from the builder. AttrBuilder &merge(const AttrBuilder &B); /// \brief Remove the attributes from the builder. AttrBuilder &remove(const AttrBuilder &B); /// \brief Return true if the builder has any attribute that's in the /// specified builder. bool overlaps(const AttrBuilder &B) const; /// \brief Return true if the builder has the specified attribute. bool contains(Attribute::AttrKind A) const { assert((unsigned)A < Attribute::EndAttrKinds && "Attribute out of range!"); return Attrs[A]; } /// \brief Return true if the builder has the specified target-dependent /// attribute. bool contains(StringRef A) const; /// \brief Return true if the builder has IR-level attributes. bool hasAttributes() const; /// \brief Return true if the builder has any attribute that's in the /// specified attribute. bool hasAttributes(AttributeSet A, uint64_t Index) const; /// \brief Return true if the builder has an alignment attribute. bool hasAlignmentAttr() const; /// \brief Retrieve the alignment attribute, if it exists. uint64_t getAlignment() const { return Alignment; } /// \brief Retrieve the stack alignment attribute, if it exists. uint64_t getStackAlignment() const { return StackAlignment; } /// \brief Retrieve the number of dereferenceable bytes, if the dereferenceable /// attribute exists (zero is returned otherwise). uint64_t getDereferenceableBytes() const { return DerefBytes; } /// \brief Retrieve the number of dereferenceable_or_null bytes, if the /// dereferenceable_or_null attribute exists (zero is returned otherwise). uint64_t getDereferenceableOrNullBytes() const { return DerefOrNullBytes; } /// \brief This turns an int alignment (which must be a power of 2) into the /// form used internally in Attribute. AttrBuilder &addAlignmentAttr(unsigned Align); /// \brief This turns an int stack alignment (which must be a power of 2) into /// the form used internally in Attribute. AttrBuilder &addStackAlignmentAttr(unsigned Align); /// \brief This turns the number of dereferenceable bytes into the form used /// internally in Attribute. AttrBuilder &addDereferenceableAttr(uint64_t Bytes); /// \brief This turns the number of dereferenceable_or_null bytes into the /// form used internally in Attribute. AttrBuilder &addDereferenceableOrNullAttr(uint64_t Bytes); /// \brief Return true if the builder contains no target-independent /// attributes. bool empty() const { return Attrs.none(); } // Iterators for target-dependent attributes. typedef std::pair td_type; typedef std::map::iterator td_iterator; typedef std::map::const_iterator td_const_iterator; typedef llvm::iterator_range td_range; typedef llvm::iterator_range td_const_range; td_iterator td_begin() { return TargetDepAttrs.begin(); } td_iterator td_end() { return TargetDepAttrs.end(); } td_const_iterator td_begin() const { return TargetDepAttrs.begin(); } td_const_iterator td_end() const { return TargetDepAttrs.end(); } td_range td_attrs() { return td_range(td_begin(), td_end()); } td_const_range td_attrs() const { return td_const_range(td_begin(), td_end()); } bool td_empty() const { return TargetDepAttrs.empty(); } bool operator==(const AttrBuilder &B); bool operator!=(const AttrBuilder &B) { return !(*this == B); } // FIXME: Remove this in 4.0. /// \brief Add the raw value to the internal representation. AttrBuilder &addRawValue(uint64_t Val); }; namespace AttributeFuncs { /// \brief Which attributes cannot be applied to a type. AttrBuilder typeIncompatible(const Type *Ty); } // end AttributeFuncs namespace } // end llvm namespace #endif