//===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the JIT interfaces for the X86 target. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "X86JITInfo.h" #include "X86Relocations.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/Config/alloca.h" #include #include using namespace llvm; #ifdef _MSC_VER extern "C" void *_AddressOfReturnAddress(void); #pragma intrinsic(_AddressOfReturnAddress) #endif void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) { unsigned char *OldByte = (unsigned char *)Old; *OldByte++ = 0xE9; // Emit JMP opcode. unsigned *OldWord = (unsigned *)OldByte; unsigned NewAddr = (intptr_t)New; unsigned OldAddr = (intptr_t)OldWord; *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code. } /// JITCompilerFunction - This contains the address of the JIT function used to /// compile a function lazily. static TargetJITInfo::JITCompilerFn JITCompilerFunction; // Provide a wrapper for X86CompilationCallback2 that saves non-traditional // callee saved registers, for the fastcc calling convention. extern "C" { #if defined(__i386__) || defined(i386) || defined(_M_IX86) #ifndef _MSC_VER void X86CompilationCallback(void); asm( ".text\n" ".align 8\n" #if defined(__CYGWIN__) || defined(__APPLE__) || defined(__MINGW32__) ".globl _X86CompilationCallback\n" "_X86CompilationCallback:\n" #else ".globl X86CompilationCallback\n" "X86CompilationCallback:\n" #endif "pushl %ebp\n" "movl %esp, %ebp\n" // Standard prologue #if FASTCC_NUM_INT_ARGS_INREGS > 0 "pushl %eax\n" "pushl %edx\n" // Save EAX/EDX #endif #if defined(__APPLE__) "andl $-16, %esp\n" // Align ESP on 16-byte boundary #endif "subl $16, %esp\n" "movl 4(%ebp), %eax\n" // Pass prev frame and return address "movl %eax, 4(%esp)\n" "movl %ebp, (%esp)\n" #if defined(__CYGWIN__) || defined(__MINGW32__) || defined(__APPLE__) "call _X86CompilationCallback2\n" #else "call X86CompilationCallback2\n" #endif #if defined(__APPLE__) "movl %ebp, %esp\n" // Restore ESP #endif #if FASTCC_NUM_INT_ARGS_INREGS > 0 #if defined(__APPLE__) "subl $8, %esp\n" #endif "popl %edx\n" "popl %eax\n" #endif "popl %ebp\n" "ret\n"); #else void X86CompilationCallback2(void); _declspec(naked) void X86CompilationCallback(void) { __asm { push eax push edx call X86CompilationCallback2 pop edx pop eax ret } } #endif // _MSC_VER #else // Not an i386 host void X86CompilationCallback() { std::cerr << "Cannot call X86CompilationCallback() on a non-x86 arch!\n"; abort(); } #endif } /// X86CompilationCallback - This is the target-specific function invoked by the /// function stub when we did not know the real target of a call. This function /// must locate the start of the stub or call site and pass it into the JIT /// compiler function. #ifdef _MSC_VER extern "C" void X86CompilationCallback2() { assert(sizeof(size_t) == 4); // FIXME: handle Win64 unsigned *RetAddrLoc = (unsigned *)_AddressOfReturnAddress(); RetAddrLoc += 3; // skip over ret addr, edx, eax unsigned RetAddr = *RetAddrLoc; #else extern "C" void X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) { intptr_t *RetAddrLoc = &StackPtr[1]; #endif assert(*RetAddrLoc == RetAddr && "Could not find return address on the stack!"); // It's a stub if there is an interrupt marker after the call. bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD; // The call instruction should have pushed the return value onto the stack... RetAddr -= 4; // Backtrack to the reference itself... #if 0 DEBUG(std::cerr << "In callback! Addr=" << (void*)RetAddr << " ESP=" << (void*)StackPtr << ": Resolving call to function: " << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"); #endif // Sanity check to make sure this really is a call instruction. assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!"); unsigned NewVal = (intptr_t)JITCompilerFunction((void*)(intptr_t)RetAddr); // Rewrite the call target... so that we don't end up here every time we // execute the call. *(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4; if (isStub) { // If this is a stub, rewrite the call into an unconditional branch // instruction so that two return addresses are not pushed onto the stack // when the requested function finally gets called. This also makes the // 0xCD byte (interrupt) dead, so the marker doesn't effect anything. ((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9; } // Change the return address to reexecute the call instruction... *RetAddrLoc -= 5; } TargetJITInfo::LazyResolverFn X86JITInfo::getLazyResolverFunction(JITCompilerFn F) { JITCompilerFunction = F; return X86CompilationCallback; } void *X86JITInfo::emitFunctionStub(void *Fn, MachineCodeEmitter &MCE) { // Note, we cast to intptr_t here to silence a -pedantic warning that // complains about casting a function pointer to a normal pointer. if (Fn != (void*)(intptr_t)X86CompilationCallback) { MCE.startFunctionStub(5); MCE.emitByte(0xE9); MCE.emitWordLE((intptr_t)Fn-MCE.getCurrentPCValue()-4); return MCE.finishFunctionStub(0); } MCE.startFunctionStub(6); MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... MCE.emitWordLE((intptr_t)Fn-MCE.getCurrentPCValue()-4); MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub! return MCE.finishFunctionStub(0); } /// relocate - Before the JIT can run a block of code that has been emitted, /// it must rewrite the code to contain the actual addresses of any /// referenced global symbols. void X86JITInfo::relocate(void *Function, MachineRelocation *MR, unsigned NumRelocs, unsigned char* GOTBase) { for (unsigned i = 0; i != NumRelocs; ++i, ++MR) { void *RelocPos = (char*)Function + MR->getMachineCodeOffset(); intptr_t ResultPtr = (intptr_t)MR->getResultPointer(); switch ((X86::RelocationType)MR->getRelocationType()) { case X86::reloc_pcrel_word: // PC relative relocation, add the relocated value to the value already in // memory, after we adjust it for where the PC is. ResultPtr = ResultPtr-(intptr_t)RelocPos-4; *((intptr_t*)RelocPos) += ResultPtr; break; case X86::reloc_absolute_word: // Absolute relocation, just add the relocated value to the value already // in memory. *((intptr_t*)RelocPos) += ResultPtr; break; } } }