//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines various classes for working with Instructions and // ConstantExprs. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_OPERATOR_H #define LLVM_IR_OPERATOR_H #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Type.h" namespace llvm { class GetElementPtrInst; class BinaryOperator; class ConstantExpr; /// This is a utility class that provides an abstraction for the common /// functionality between Instructions and ConstantExprs. class Operator : public User { private: // The Operator class is intended to be used as a utility, and is never itself // instantiated. void *operator new(size_t, unsigned) = delete; void *operator new(size_t s) = delete; Operator() = delete; protected: // NOTE: Cannot use = delete because it's not legal to delete // an overridden method that's not deleted in the base class. Cannot leave // this unimplemented because that leads to an ODR-violation. ~Operator() override; public: /// Return the opcode for this Instruction or ConstantExpr. unsigned getOpcode() const { if (const Instruction *I = dyn_cast(this)) return I->getOpcode(); return cast(this)->getOpcode(); } /// If V is an Instruction or ConstantExpr, return its opcode. /// Otherwise return UserOp1. static unsigned getOpcode(const Value *V) { if (const Instruction *I = dyn_cast(V)) return I->getOpcode(); if (const ConstantExpr *CE = dyn_cast(V)) return CE->getOpcode(); return Instruction::UserOp1; } static inline bool classof(const Instruction *) { return true; } static inline bool classof(const ConstantExpr *) { return true; } static inline bool classof(const Value *V) { return isa(V) || isa(V); } }; /// Utility class for integer arithmetic operators which may exhibit overflow - /// Add, Sub, and Mul. It does not include SDiv, despite that operator having /// the potential for overflow. class OverflowingBinaryOperator : public Operator { public: enum { NoUnsignedWrap = (1 << 0), NoSignedWrap = (1 << 1) }; private: friend class BinaryOperator; friend class ConstantExpr; void setHasNoUnsignedWrap(bool B) { SubclassOptionalData = (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap); } void setHasNoSignedWrap(bool B) { SubclassOptionalData = (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap); } public: /// Test whether this operation is known to never /// undergo unsigned overflow, aka the nuw property. bool hasNoUnsignedWrap() const { return SubclassOptionalData & NoUnsignedWrap; } /// Test whether this operation is known to never /// undergo signed overflow, aka the nsw property. bool hasNoSignedWrap() const { return (SubclassOptionalData & NoSignedWrap) != 0; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Add || I->getOpcode() == Instruction::Sub || I->getOpcode() == Instruction::Mul || I->getOpcode() == Instruction::Shl; } static inline bool classof(const ConstantExpr *CE) { return CE->getOpcode() == Instruction::Add || CE->getOpcode() == Instruction::Sub || CE->getOpcode() == Instruction::Mul || CE->getOpcode() == Instruction::Shl; } static inline bool classof(const Value *V) { return (isa(V) && classof(cast(V))) || (isa(V) && classof(cast(V))); } }; /// A udiv or sdiv instruction, which can be marked as "exact", /// indicating that no bits are destroyed. class PossiblyExactOperator : public Operator { public: enum { IsExact = (1 << 0) }; private: friend class BinaryOperator; friend class ConstantExpr; void setIsExact(bool B) { SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact); } public: /// Test whether this division is known to be exact, with zero remainder. bool isExact() const { return SubclassOptionalData & IsExact; } static bool isPossiblyExactOpcode(unsigned OpC) { return OpC == Instruction::SDiv || OpC == Instruction::UDiv || OpC == Instruction::AShr || OpC == Instruction::LShr; } static inline bool classof(const ConstantExpr *CE) { return isPossiblyExactOpcode(CE->getOpcode()); } static inline bool classof(const Instruction *I) { return isPossiblyExactOpcode(I->getOpcode()); } static inline bool classof(const Value *V) { return (isa(V) && classof(cast(V))) || (isa(V) && classof(cast(V))); } }; /// Convenience struct for specifying and reasoning about fast-math flags. class FastMathFlags { private: friend class FPMathOperator; unsigned Flags; FastMathFlags(unsigned F) : Flags(F) { } public: enum { UnsafeAlgebra = (1 << 0), NoNaNs = (1 << 1), NoInfs = (1 << 2), NoSignedZeros = (1 << 3), AllowReciprocal = (1 << 4) }; FastMathFlags() : Flags(0) { } /// Whether any flag is set bool any() const { return Flags != 0; } /// Set all the flags to false void clear() { Flags = 0; } /// Flag queries bool noNaNs() const { return 0 != (Flags & NoNaNs); } bool noInfs() const { return 0 != (Flags & NoInfs); } bool noSignedZeros() const { return 0 != (Flags & NoSignedZeros); } bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); } bool unsafeAlgebra() const { return 0 != (Flags & UnsafeAlgebra); } /// Flag setters void setNoNaNs() { Flags |= NoNaNs; } void setNoInfs() { Flags |= NoInfs; } void setNoSignedZeros() { Flags |= NoSignedZeros; } void setAllowReciprocal() { Flags |= AllowReciprocal; } void setUnsafeAlgebra() { Flags |= UnsafeAlgebra; setNoNaNs(); setNoInfs(); setNoSignedZeros(); setAllowReciprocal(); } void operator&=(const FastMathFlags &OtherFlags) { Flags &= OtherFlags.Flags; } }; /// Utility class for floating point operations which can have /// information about relaxed accuracy requirements attached to them. class FPMathOperator : public Operator { private: friend class Instruction; void setHasUnsafeAlgebra(bool B) { SubclassOptionalData = (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) | (B * FastMathFlags::UnsafeAlgebra); // Unsafe algebra implies all the others if (B) { setHasNoNaNs(true); setHasNoInfs(true); setHasNoSignedZeros(true); setHasAllowReciprocal(true); } } void setHasNoNaNs(bool B) { SubclassOptionalData = (SubclassOptionalData & ~FastMathFlags::NoNaNs) | (B * FastMathFlags::NoNaNs); } void setHasNoInfs(bool B) { SubclassOptionalData = (SubclassOptionalData & ~FastMathFlags::NoInfs) | (B * FastMathFlags::NoInfs); } void setHasNoSignedZeros(bool B) { SubclassOptionalData = (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) | (B * FastMathFlags::NoSignedZeros); } void setHasAllowReciprocal(bool B) { SubclassOptionalData = (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) | (B * FastMathFlags::AllowReciprocal); } /// Convenience function for setting multiple fast-math flags. /// FMF is a mask of the bits to set. void setFastMathFlags(FastMathFlags FMF) { SubclassOptionalData |= FMF.Flags; } /// Convenience function for copying all fast-math flags. /// All values in FMF are transferred to this operator. void copyFastMathFlags(FastMathFlags FMF) { SubclassOptionalData = FMF.Flags; } public: /// Test whether this operation is permitted to be /// algebraically transformed, aka the 'A' fast-math property. bool hasUnsafeAlgebra() const { return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0; } /// Test whether this operation's arguments and results are to be /// treated as non-NaN, aka the 'N' fast-math property. bool hasNoNaNs() const { return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0; } /// Test whether this operation's arguments and results are to be /// treated as NoN-Inf, aka the 'I' fast-math property. bool hasNoInfs() const { return (SubclassOptionalData & FastMathFlags::NoInfs) != 0; } /// Test whether this operation can treat the sign of zero /// as insignificant, aka the 'S' fast-math property. bool hasNoSignedZeros() const { return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0; } /// Test whether this operation is permitted to use /// reciprocal instead of division, aka the 'R' fast-math property. bool hasAllowReciprocal() const { return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0; } /// Convenience function for getting all the fast-math flags FastMathFlags getFastMathFlags() const { return FastMathFlags(SubclassOptionalData); } /// \brief Get the maximum error permitted by this operation in ULPs. An /// accuracy of 0.0 means that the operation should be performed with the /// default precision. float getFPAccuracy() const; static inline bool classof(const Instruction *I) { return I->getType()->isFPOrFPVectorTy(); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// A helper template for defining operators for individual opcodes. template class ConcreteOperator : public SuperClass { public: static inline bool classof(const Instruction *I) { return I->getOpcode() == Opc; } static inline bool classof(const ConstantExpr *CE) { return CE->getOpcode() == Opc; } static inline bool classof(const Value *V) { return (isa(V) && classof(cast(V))) || (isa(V) && classof(cast(V))); } }; class AddOperator : public ConcreteOperator { }; class SubOperator : public ConcreteOperator { }; class MulOperator : public ConcreteOperator { }; class ShlOperator : public ConcreteOperator { }; class SDivOperator : public ConcreteOperator { }; class UDivOperator : public ConcreteOperator { }; class AShrOperator : public ConcreteOperator { }; class LShrOperator : public ConcreteOperator { }; class ZExtOperator : public ConcreteOperator {}; class GEPOperator : public ConcreteOperator { enum { IsInBounds = (1 << 0) }; friend class GetElementPtrInst; friend class ConstantExpr; void setIsInBounds(bool B) { SubclassOptionalData = (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds); } public: /// Test whether this is an inbounds GEP, as defined by LangRef.html. bool isInBounds() const { return SubclassOptionalData & IsInBounds; } inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand } /// Method to return the pointer operand as a PointerType. Type *getPointerOperandType() const { return getPointerOperand()->getType(); } Type *getSourceElementType() const; /// Method to return the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); } unsigned getNumIndices() const { // Note: always non-negative return getNumOperands() - 1; } bool hasIndices() const { return getNumOperands() > 1; } /// Return true if all of the indices of this GEP are zeros. /// If so, the result pointer and the first operand have the same /// value, just potentially different types. bool hasAllZeroIndices() const { for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { if (ConstantInt *C = dyn_cast(I)) if (C->isZero()) continue; return false; } return true; } /// Return true if all of the indices of this GEP are constant integers. /// If so, the result pointer and the first operand have /// a constant offset between them. bool hasAllConstantIndices() const { for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { if (!isa(I)) return false; } return true; } /// \brief Accumulate the constant address offset of this GEP if possible. /// /// This routine accepts an APInt into which it will accumulate the constant /// offset of this GEP if the GEP is in fact constant. If the GEP is not /// all-constant, it returns false and the value of the offset APInt is /// undefined (it is *not* preserved!). The APInt passed into this routine /// must be at exactly as wide as the IntPtr type for the address space of the /// base GEP pointer. bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const { assert(Offset.getBitWidth() == DL.getPointerSizeInBits(getPointerAddressSpace()) && "The offset must have exactly as many bits as our pointer."); for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); GTI != GTE; ++GTI) { ConstantInt *OpC = dyn_cast(GTI.getOperand()); if (!OpC) return false; if (OpC->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = dyn_cast(*GTI)) { unsigned ElementIdx = OpC->getZExtValue(); const StructLayout *SL = DL.getStructLayout(STy); Offset += APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); continue; } // For array or vector indices, scale the index by the size of the type. APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); Offset += Index * APInt(Offset.getBitWidth(), DL.getTypeAllocSize(GTI.getIndexedType())); } return true; } }; class PtrToIntOperator : public ConcreteOperator { friend class PtrToInt; friend class ConstantExpr; public: Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand } /// Method to return the pointer operand as a PointerType. Type *getPointerOperandType() const { return getPointerOperand()->getType(); } /// Method to return the address space of the pointer operand. unsigned getPointerAddressSpace() const { return cast(getPointerOperandType())->getAddressSpace(); } }; class BitCastOperator : public ConcreteOperator { friend class BitCastInst; friend class ConstantExpr; public: Type *getSrcTy() const { return getOperand(0)->getType(); } Type *getDestTy() const { return getType(); } }; } // End llvm namespace #endif