//===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both /// of these conform to an LLVM "Allocator" concept which consists of an /// Allocate method accepting a size and alignment, and a Deallocate accepting /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of /// Allocate and Deallocate for setting size and alignment based on the final /// type. These overloads are typically provided by a base class template \c /// AllocatorBase. /// //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_ALLOCATOR_H #define LLVM_SUPPORT_ALLOCATOR_H #include "llvm/ADT/SmallVector.h" #include "llvm/Support/AlignOf.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Memory.h" #include #include #include #include namespace llvm { /// \brief CRTP base class providing obvious overloads for the core \c /// Allocate() methods of LLVM-style allocators. /// /// This base class both documents the full public interface exposed by all /// LLVM-style allocators, and redirects all of the overloads to a single core /// set of methods which the derived class must define. template class AllocatorBase { public: /// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method /// must be implemented by \c DerivedT. void *Allocate(size_t Size, size_t Alignment) { #ifdef __clang__ static_assert(static_cast( &AllocatorBase::Allocate) != static_cast( &DerivedT::Allocate), "Class derives from AllocatorBase without implementing the " "core Allocate(size_t, size_t) overload!"); #endif return static_cast(this)->Allocate(Size, Alignment); } /// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this /// allocator. void Deallocate(const void *Ptr, size_t Size) { #ifdef __clang__ static_assert(static_cast( &AllocatorBase::Deallocate) != static_cast( &DerivedT::Deallocate), "Class derives from AllocatorBase without implementing the " "core Deallocate(void *) overload!"); #endif return static_cast(this)->Deallocate(Ptr, Size); } // The rest of these methods are helpers that redirect to one of the above // core methods. /// \brief Allocate space for a sequence of objects without constructing them. template T *Allocate(size_t Num = 1) { return static_cast(Allocate(Num * sizeof(T), AlignOf::Alignment)); } /// \brief Deallocate space for a sequence of objects without constructing them. template typename std::enable_if< !std::is_same::type, void>::value, void>::type Deallocate(T *Ptr, size_t Num = 1) { Deallocate(static_cast(Ptr), Num * sizeof(T)); } }; class MallocAllocator : public AllocatorBase { public: void Reset() {} LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, size_t /*Alignment*/) { return malloc(Size); } // Pull in base class overloads. using AllocatorBase::Allocate; void Deallocate(const void *Ptr, size_t /*Size*/) { free(const_cast(Ptr)); } // Pull in base class overloads. using AllocatorBase::Deallocate; void PrintStats() const {} }; namespace detail { // We call out to an external function to actually print the message as the // printing code uses Allocator.h in its implementation. void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated, size_t TotalMemory); } // End namespace detail. /// \brief Allocate memory in an ever growing pool, as if by bump-pointer. /// /// This isn't strictly a bump-pointer allocator as it uses backing slabs of /// memory rather than relying on a boundless contiguous heap. However, it has /// bump-pointer semantics in that it is a monotonically growing pool of memory /// where every allocation is found by merely allocating the next N bytes in /// the slab, or the next N bytes in the next slab. /// /// Note that this also has a threshold for forcing allocations above a certain /// size into their own slab. /// /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator /// object, which wraps malloc, to allocate memory, but it can be changed to /// use a custom allocator. template class BumpPtrAllocatorImpl : public AllocatorBase< BumpPtrAllocatorImpl> { public: static_assert(SizeThreshold <= SlabSize, "The SizeThreshold must be at most the SlabSize to ensure " "that objects larger than a slab go into their own memory " "allocation."); BumpPtrAllocatorImpl() : CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator() {} template BumpPtrAllocatorImpl(T &&Allocator) : CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator(std::forward(Allocator)) {} // Manually implement a move constructor as we must clear the old allocator's // slabs as a matter of correctness. BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old) : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)), CustomSizedSlabs(std::move(Old.CustomSizedSlabs)), BytesAllocated(Old.BytesAllocated), Allocator(std::move(Old.Allocator)) { Old.CurPtr = Old.End = nullptr; Old.BytesAllocated = 0; Old.Slabs.clear(); Old.CustomSizedSlabs.clear(); } ~BumpPtrAllocatorImpl() { DeallocateSlabs(Slabs.begin(), Slabs.end()); DeallocateCustomSizedSlabs(); } BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) { DeallocateSlabs(Slabs.begin(), Slabs.end()); DeallocateCustomSizedSlabs(); CurPtr = RHS.CurPtr; End = RHS.End; BytesAllocated = RHS.BytesAllocated; Slabs = std::move(RHS.Slabs); CustomSizedSlabs = std::move(RHS.CustomSizedSlabs); Allocator = std::move(RHS.Allocator); RHS.CurPtr = RHS.End = nullptr; RHS.BytesAllocated = 0; RHS.Slabs.clear(); RHS.CustomSizedSlabs.clear(); return *this; } /// \brief Deallocate all but the current slab and reset the current pointer /// to the beginning of it, freeing all memory allocated so far. void Reset() { if (Slabs.empty()) return; // Reset the state. BytesAllocated = 0; CurPtr = (char *)Slabs.front(); End = CurPtr + SlabSize; // Deallocate all but the first slab, and deallocate all custom-sized slabs. DeallocateSlabs(std::next(Slabs.begin()), Slabs.end()); Slabs.erase(std::next(Slabs.begin()), Slabs.end()); DeallocateCustomSizedSlabs(); CustomSizedSlabs.clear(); } /// \brief Allocate space at the specified alignment. LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void * Allocate(size_t Size, size_t Alignment) { assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead."); // Keep track of how many bytes we've allocated. BytesAllocated += Size; size_t Adjustment = alignmentAdjustment(CurPtr, Alignment); assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow"); // Check if we have enough space. if (Adjustment + Size <= size_t(End - CurPtr)) { char *AlignedPtr = CurPtr + Adjustment; CurPtr = AlignedPtr + Size; // Update the allocation point of this memory block in MemorySanitizer. // Without this, MemorySanitizer messages for values originated from here // will point to the allocation of the entire slab. __msan_allocated_memory(AlignedPtr, Size); return AlignedPtr; } // If Size is really big, allocate a separate slab for it. size_t PaddedSize = Size + Alignment - 1; if (PaddedSize > SizeThreshold) { void *NewSlab = Allocator.Allocate(PaddedSize, 0); CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize)); uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment); assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize); char *AlignedPtr = (char*)AlignedAddr; __msan_allocated_memory(AlignedPtr, Size); return AlignedPtr; } // Otherwise, start a new slab and try again. StartNewSlab(); uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment); assert(AlignedAddr + Size <= (uintptr_t)End && "Unable to allocate memory!"); char *AlignedPtr = (char*)AlignedAddr; CurPtr = AlignedPtr + Size; __msan_allocated_memory(AlignedPtr, Size); return AlignedPtr; } // Pull in base class overloads. using AllocatorBase::Allocate; void Deallocate(const void * /*Ptr*/, size_t /*Size*/) {} // Pull in base class overloads. using AllocatorBase::Deallocate; size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); } size_t getTotalMemory() const { size_t TotalMemory = 0; for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I) TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I)); for (auto &PtrAndSize : CustomSizedSlabs) TotalMemory += PtrAndSize.second; return TotalMemory; } void PrintStats() const { detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated, getTotalMemory()); } private: /// \brief The current pointer into the current slab. /// /// This points to the next free byte in the slab. char *CurPtr; /// \brief The end of the current slab. char *End; /// \brief The slabs allocated so far. SmallVector Slabs; /// \brief Custom-sized slabs allocated for too-large allocation requests. SmallVector, 0> CustomSizedSlabs; /// \brief How many bytes we've allocated. /// /// Used so that we can compute how much space was wasted. size_t BytesAllocated; /// \brief The allocator instance we use to get slabs of memory. AllocatorT Allocator; static size_t computeSlabSize(unsigned SlabIdx) { // Scale the actual allocated slab size based on the number of slabs // allocated. Every 128 slabs allocated, we double the allocated size to // reduce allocation frequency, but saturate at multiplying the slab size by // 2^30. return SlabSize * ((size_t)1 << std::min(30, SlabIdx / 128)); } /// \brief Allocate a new slab and move the bump pointers over into the new /// slab, modifying CurPtr and End. void StartNewSlab() { size_t AllocatedSlabSize = computeSlabSize(Slabs.size()); void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0); Slabs.push_back(NewSlab); CurPtr = (char *)(NewSlab); End = ((char *)NewSlab) + AllocatedSlabSize; } /// \brief Deallocate a sequence of slabs. void DeallocateSlabs(SmallVectorImpl::iterator I, SmallVectorImpl::iterator E) { for (; I != E; ++I) { size_t AllocatedSlabSize = computeSlabSize(std::distance(Slabs.begin(), I)); Allocator.Deallocate(*I, AllocatedSlabSize); } } /// \brief Deallocate all memory for custom sized slabs. void DeallocateCustomSizedSlabs() { for (auto &PtrAndSize : CustomSizedSlabs) { void *Ptr = PtrAndSize.first; size_t Size = PtrAndSize.second; Allocator.Deallocate(Ptr, Size); } } template friend class SpecificBumpPtrAllocator; }; /// \brief The standard BumpPtrAllocator which just uses the default template /// paramaters. typedef BumpPtrAllocatorImpl<> BumpPtrAllocator; /// \brief A BumpPtrAllocator that allows only elements of a specific type to be /// allocated. /// /// This allows calling the destructor in DestroyAll() and when the allocator is /// destroyed. template class SpecificBumpPtrAllocator { BumpPtrAllocator Allocator; public: SpecificBumpPtrAllocator() : Allocator() {} SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old) : Allocator(std::move(Old.Allocator)) {} ~SpecificBumpPtrAllocator() { DestroyAll(); } SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) { Allocator = std::move(RHS.Allocator); return *this; } /// Call the destructor of each allocated object and deallocate all but the /// current slab and reset the current pointer to the beginning of it, freeing /// all memory allocated so far. void DestroyAll() { auto DestroyElements = [](char *Begin, char *End) { assert(Begin == (char*)alignAddr(Begin, alignOf())); for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T)) reinterpret_cast(Ptr)->~T(); }; for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E; ++I) { size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize( std::distance(Allocator.Slabs.begin(), I)); char *Begin = (char*)alignAddr(*I, alignOf()); char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr : (char *)*I + AllocatedSlabSize; DestroyElements(Begin, End); } for (auto &PtrAndSize : Allocator.CustomSizedSlabs) { void *Ptr = PtrAndSize.first; size_t Size = PtrAndSize.second; DestroyElements((char*)alignAddr(Ptr, alignOf()), (char *)Ptr + Size); } Allocator.Reset(); } /// \brief Allocate space for an array of objects without constructing them. T *Allocate(size_t num = 1) { return Allocator.Allocate(num); } }; } // end namespace llvm template void *operator new(size_t Size, llvm::BumpPtrAllocatorImpl &Allocator) { struct S { char c; union { double D; long double LD; long long L; void *P; } x; }; return Allocator.Allocate( Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x))); } template void operator delete( void *, llvm::BumpPtrAllocatorImpl &) { } #endif // LLVM_SUPPORT_ALLOCATOR_H