//===-- Execution.cpp - Implement code to simulate the program ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the actual instruction interpreter. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "interpreter" #include "Interpreter.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" using namespace llvm; namespace { Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed"); Interpreter *TheEE = 0; } //===----------------------------------------------------------------------===// // Value Manipulation code //===----------------------------------------------------------------------===// static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeUDivInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSDivInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeFDivInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeURemInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSRemInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeFRemInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeLShrInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeAShrInst(GenericValue Src1, GenericValue Src2, const Type *Ty); static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3); GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, ExecutionContext &SF) { switch (CE->getOpcode()) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: return executeCastOperation(Instruction::CastOps(CE->getOpcode()), CE->getOperand(0), CE->getType(), SF); case Instruction::GetElementPtr: return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), gep_type_end(CE), SF); case Instruction::Add: return executeAddInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::Sub: return executeSubInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::Mul: return executeMulInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::SDiv: return executeSDivInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::UDiv: return executeUDivInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::FDiv: return executeFDivInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::URem: return executeURemInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::SRem: return executeSRemInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::FRem: return executeFRemInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::And: return executeAndInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::Or: return executeOrInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::Xor: return executeXorInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::SetEQ: return executeSetEQInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::SetNE: return executeSetNEInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::SetLE: return executeSetLEInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::SetGE: return executeSetGEInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::SetLT: return executeSetLTInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::SetGT: return executeSetGTInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::Shl: return executeShlInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::LShr: return executeLShrInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::AShr: return executeAShrInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::Select: return executeSelectInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), getOperandValue(CE->getOperand(2), SF)); default: llvm_cerr << "Unhandled ConstantExpr: " << *CE << "\n"; abort(); return GenericValue(); } } GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { if (ConstantExpr *CE = dyn_cast(V)) { return getConstantExprValue(CE, SF); } else if (Constant *CPV = dyn_cast(V)) { return getConstantValue(CPV); } else if (GlobalValue *GV = dyn_cast(V)) { return PTOGV(getPointerToGlobal(GV)); } else { return SF.Values[V]; } } static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { SF.Values[V] = Val; } void Interpreter::initializeExecutionEngine() { TheEE = this; } //===----------------------------------------------------------------------===// // Binary Instruction Implementations //===----------------------------------------------------------------------===// #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(+, UByte); IMPLEMENT_BINARY_OPERATOR(+, SByte); IMPLEMENT_BINARY_OPERATOR(+, UShort); IMPLEMENT_BINARY_OPERATOR(+, Short); IMPLEMENT_BINARY_OPERATOR(+, UInt); IMPLEMENT_BINARY_OPERATOR(+, Int); IMPLEMENT_BINARY_OPERATOR(+, ULong); IMPLEMENT_BINARY_OPERATOR(+, Long); IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); default: llvm_cerr << "Unhandled type for Add instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(-, UByte); IMPLEMENT_BINARY_OPERATOR(-, SByte); IMPLEMENT_BINARY_OPERATOR(-, UShort); IMPLEMENT_BINARY_OPERATOR(-, Short); IMPLEMENT_BINARY_OPERATOR(-, UInt); IMPLEMENT_BINARY_OPERATOR(-, Int); IMPLEMENT_BINARY_OPERATOR(-, ULong); IMPLEMENT_BINARY_OPERATOR(-, Long); IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); default: llvm_cerr << "Unhandled type for Sub instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(*, UByte); IMPLEMENT_BINARY_OPERATOR(*, SByte); IMPLEMENT_BINARY_OPERATOR(*, UShort); IMPLEMENT_BINARY_OPERATOR(*, Short); IMPLEMENT_BINARY_OPERATOR(*, UInt); IMPLEMENT_BINARY_OPERATOR(*, Int); IMPLEMENT_BINARY_OPERATOR(*, ULong); IMPLEMENT_BINARY_OPERATOR(*, Long); IMPLEMENT_BINARY_OPERATOR(*, Float); IMPLEMENT_BINARY_OPERATOR(*, Double); default: llvm_cerr << "Unhandled type for Mul instruction: " << *Ty << "\n"; abort(); } return Dest; } #define IMPLEMENT_SIGNLESS_BINOP(OP, TY1, TY2) \ case Type::TY2##TyID: IMPLEMENT_BINARY_OPERATOR(OP, TY1) static GenericValue executeUDivInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SIGNLESS_BINOP(/, UByte, SByte); IMPLEMENT_SIGNLESS_BINOP(/, UShort, Short); IMPLEMENT_SIGNLESS_BINOP(/, UInt, Int); IMPLEMENT_SIGNLESS_BINOP(/, ULong, Long); default: llvm_cerr << "Unhandled type for UDiv instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSDivInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SIGNLESS_BINOP(/, SByte, UByte); IMPLEMENT_SIGNLESS_BINOP(/, Short, UShort); IMPLEMENT_SIGNLESS_BINOP(/, Int, UInt); IMPLEMENT_SIGNLESS_BINOP(/, Long, ULong); default: llvm_cerr << "Unhandled type for SDiv instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeFDivInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(/, Float); IMPLEMENT_BINARY_OPERATOR(/, Double); default: llvm_cerr << "Unhandled type for Div instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeURemInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SIGNLESS_BINOP(%, UByte, SByte); IMPLEMENT_SIGNLESS_BINOP(%, UShort, Short); IMPLEMENT_SIGNLESS_BINOP(%, UInt, Int); IMPLEMENT_SIGNLESS_BINOP(%, ULong, Long); default: llvm_cerr << "Unhandled type for URem instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSRemInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SIGNLESS_BINOP(%, SByte, UByte); IMPLEMENT_SIGNLESS_BINOP(%, Short, UShort); IMPLEMENT_SIGNLESS_BINOP(%, Int, UInt); IMPLEMENT_SIGNLESS_BINOP(%, Long, ULong); default: llvm_cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeFRemInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { case Type::FloatTyID: Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); break; case Type::DoubleTyID: Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); break; default: llvm_cerr << "Unhandled type for Rem instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(&, Bool); IMPLEMENT_BINARY_OPERATOR(&, UByte); IMPLEMENT_BINARY_OPERATOR(&, SByte); IMPLEMENT_BINARY_OPERATOR(&, UShort); IMPLEMENT_BINARY_OPERATOR(&, Short); IMPLEMENT_BINARY_OPERATOR(&, UInt); IMPLEMENT_BINARY_OPERATOR(&, Int); IMPLEMENT_BINARY_OPERATOR(&, ULong); IMPLEMENT_BINARY_OPERATOR(&, Long); default: llvm_cerr << "Unhandled type for And instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(|, Bool); IMPLEMENT_BINARY_OPERATOR(|, UByte); IMPLEMENT_BINARY_OPERATOR(|, SByte); IMPLEMENT_BINARY_OPERATOR(|, UShort); IMPLEMENT_BINARY_OPERATOR(|, Short); IMPLEMENT_BINARY_OPERATOR(|, UInt); IMPLEMENT_BINARY_OPERATOR(|, Int); IMPLEMENT_BINARY_OPERATOR(|, ULong); IMPLEMENT_BINARY_OPERATOR(|, Long); default: llvm_cerr << "Unhandled type for Or instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(^, Bool); IMPLEMENT_BINARY_OPERATOR(^, UByte); IMPLEMENT_BINARY_OPERATOR(^, SByte); IMPLEMENT_BINARY_OPERATOR(^, UShort); IMPLEMENT_BINARY_OPERATOR(^, Short); IMPLEMENT_BINARY_OPERATOR(^, UInt); IMPLEMENT_BINARY_OPERATOR(^, Int); IMPLEMENT_BINARY_OPERATOR(^, ULong); IMPLEMENT_BINARY_OPERATOR(^, Long); default: llvm_cerr << "Unhandled type for Xor instruction: " << *Ty << "\n"; abort(); } return Dest; } #define IMPLEMENT_SETCC(OP, TY) \ case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break // Handle pointers specially because they must be compared with only as much // width as the host has. We _do not_ want to be comparing 64 bit values when // running on a 32-bit target, otherwise the upper 32 bits might mess up // comparisons if they contain garbage. #define IMPLEMENT_POINTERSETCC(OP) \ case Type::PointerTyID: \ Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \ (void*)(intptr_t)Src2.PointerVal; break static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SETCC(==, UByte); IMPLEMENT_SETCC(==, SByte); IMPLEMENT_SETCC(==, UShort); IMPLEMENT_SETCC(==, Short); IMPLEMENT_SETCC(==, UInt); IMPLEMENT_SETCC(==, Int); IMPLEMENT_SETCC(==, ULong); IMPLEMENT_SETCC(==, Long); IMPLEMENT_SETCC(==, Float); IMPLEMENT_SETCC(==, Double); IMPLEMENT_POINTERSETCC(==); default: llvm_cerr << "Unhandled type for SetEQ instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SETCC(!=, UByte); IMPLEMENT_SETCC(!=, SByte); IMPLEMENT_SETCC(!=, UShort); IMPLEMENT_SETCC(!=, Short); IMPLEMENT_SETCC(!=, UInt); IMPLEMENT_SETCC(!=, Int); IMPLEMENT_SETCC(!=, ULong); IMPLEMENT_SETCC(!=, Long); IMPLEMENT_SETCC(!=, Float); IMPLEMENT_SETCC(!=, Double); IMPLEMENT_POINTERSETCC(!=); default: llvm_cerr << "Unhandled type for SetNE instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SETCC(<=, UByte); IMPLEMENT_SETCC(<=, SByte); IMPLEMENT_SETCC(<=, UShort); IMPLEMENT_SETCC(<=, Short); IMPLEMENT_SETCC(<=, UInt); IMPLEMENT_SETCC(<=, Int); IMPLEMENT_SETCC(<=, ULong); IMPLEMENT_SETCC(<=, Long); IMPLEMENT_SETCC(<=, Float); IMPLEMENT_SETCC(<=, Double); IMPLEMENT_POINTERSETCC(<=); default: llvm_cerr << "Unhandled type for SetLE instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SETCC(>=, UByte); IMPLEMENT_SETCC(>=, SByte); IMPLEMENT_SETCC(>=, UShort); IMPLEMENT_SETCC(>=, Short); IMPLEMENT_SETCC(>=, UInt); IMPLEMENT_SETCC(>=, Int); IMPLEMENT_SETCC(>=, ULong); IMPLEMENT_SETCC(>=, Long); IMPLEMENT_SETCC(>=, Float); IMPLEMENT_SETCC(>=, Double); IMPLEMENT_POINTERSETCC(>=); default: llvm_cerr << "Unhandled type for SetGE instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SETCC(<, UByte); IMPLEMENT_SETCC(<, SByte); IMPLEMENT_SETCC(<, UShort); IMPLEMENT_SETCC(<, Short); IMPLEMENT_SETCC(<, UInt); IMPLEMENT_SETCC(<, Int); IMPLEMENT_SETCC(<, ULong); IMPLEMENT_SETCC(<, Long); IMPLEMENT_SETCC(<, Float); IMPLEMENT_SETCC(<, Double); IMPLEMENT_POINTERSETCC(<); default: llvm_cerr << "Unhandled type for SetLT instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SETCC(>, UByte); IMPLEMENT_SETCC(>, SByte); IMPLEMENT_SETCC(>, UShort); IMPLEMENT_SETCC(>, Short); IMPLEMENT_SETCC(>, UInt); IMPLEMENT_SETCC(>, Int); IMPLEMENT_SETCC(>, ULong); IMPLEMENT_SETCC(>, Long); IMPLEMENT_SETCC(>, Float); IMPLEMENT_SETCC(>, Double); IMPLEMENT_POINTERSETCC(>); default: llvm_cerr << "Unhandled type for SetGT instruction: " << *Ty << "\n"; abort(); } return Dest; } void Interpreter::visitBinaryOperator(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result switch (I.getOpcode()) { case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break; case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break; case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break; case Instruction::UDiv: R = executeUDivInst (Src1, Src2, Ty); break; case Instruction::SDiv: R = executeSDivInst (Src1, Src2, Ty); break; case Instruction::FDiv: R = executeFDivInst (Src1, Src2, Ty); break; case Instruction::URem: R = executeURemInst (Src1, Src2, Ty); break; case Instruction::SRem: R = executeSRemInst (Src1, Src2, Ty); break; case Instruction::FRem: R = executeFRemInst (Src1, Src2, Ty); break; case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break; case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break; case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break; case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break; case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break; case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break; case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break; case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break; case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break; default: llvm_cerr << "Don't know how to handle this binary operator!\n-->" << I; abort(); } SetValue(&I, R, SF); } static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3) { return Src1.BoolVal ? Src2 : Src3; } void Interpreter::visitSelectInst(SelectInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Src3 = getOperandValue(I.getOperand(2), SF); GenericValue R = executeSelectInst(Src1, Src2, Src3); SetValue(&I, R, SF); } //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::exitCalled(GenericValue GV) { // runAtExitHandlers() assumes there are no stack frames, but // if exit() was called, then it had a stack frame. Blow away // the stack before interpreting atexit handlers. ECStack.clear (); runAtExitHandlers (); exit (GV.IntVal); } /// Pop the last stack frame off of ECStack and then copy the result /// back into the result variable if we are not returning void. The /// result variable may be the ExitValue, or the Value of the calling /// CallInst if there was a previous stack frame. This method may /// invalidate any ECStack iterators you have. This method also takes /// care of switching to the normal destination BB, if we are returning /// from an invoke. /// void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy, GenericValue Result) { // Pop the current stack frame. ECStack.pop_back(); if (ECStack.empty()) { // Finished main. Put result into exit code... if (RetTy && RetTy->isIntegral()) { // Nonvoid return type? ExitValue = Result; // Capture the exit value of the program } else { memset(&ExitValue, 0, sizeof(ExitValue)); } } else { // If we have a previous stack frame, and we have a previous call, // fill in the return value... ExecutionContext &CallingSF = ECStack.back(); if (Instruction *I = CallingSF.Caller.getInstruction()) { if (CallingSF.Caller.getType() != Type::VoidTy) // Save result... SetValue(I, Result, CallingSF); if (InvokeInst *II = dyn_cast (I)) SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); CallingSF.Caller = CallSite(); // We returned from the call... } } } void Interpreter::visitReturnInst(ReturnInst &I) { ExecutionContext &SF = ECStack.back(); const Type *RetTy = Type::VoidTy; GenericValue Result; // Save away the return value... (if we are not 'ret void') if (I.getNumOperands()) { RetTy = I.getReturnValue()->getType(); Result = getOperandValue(I.getReturnValue(), SF); } popStackAndReturnValueToCaller(RetTy, Result); } void Interpreter::visitUnwindInst(UnwindInst &I) { // Unwind stack Instruction *Inst; do { ECStack.pop_back (); if (ECStack.empty ()) abort (); Inst = ECStack.back ().Caller.getInstruction (); } while (!(Inst && isa (Inst))); // Return from invoke ExecutionContext &InvokingSF = ECStack.back (); InvokingSF.Caller = CallSite (); // Go to exceptional destination BB of invoke instruction SwitchToNewBasicBlock(cast(Inst)->getUnwindDest(), InvokingSF); } void Interpreter::visitUnreachableInst(UnreachableInst &I) { llvm_cerr << "ERROR: Program executed an 'unreachable' instruction!\n"; abort(); } void Interpreter::visitBranchInst(BranchInst &I) { ExecutionContext &SF = ECStack.back(); BasicBlock *Dest; Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... if (!I.isUnconditional()) { Value *Cond = I.getCondition(); if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond... Dest = I.getSuccessor(1); } SwitchToNewBasicBlock(Dest, SF); } void Interpreter::visitSwitchInst(SwitchInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue CondVal = getOperandValue(I.getOperand(0), SF); const Type *ElTy = I.getOperand(0)->getType(); // Check to see if any of the cases match... BasicBlock *Dest = 0; for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) if (executeSetEQInst(CondVal, getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) { Dest = cast(I.getOperand(i+1)); break; } if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default SwitchToNewBasicBlock(Dest, SF); } // SwitchToNewBasicBlock - This method is used to jump to a new basic block. // This function handles the actual updating of block and instruction iterators // as well as execution of all of the PHI nodes in the destination block. // // This method does this because all of the PHI nodes must be executed // atomically, reading their inputs before any of the results are updated. Not // doing this can cause problems if the PHI nodes depend on other PHI nodes for // their inputs. If the input PHI node is updated before it is read, incorrect // results can happen. Thus we use a two phase approach. // void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... SF.CurBB = Dest; // Update CurBB to branch destination SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... if (!isa(SF.CurInst)) return; // Nothing fancy to do // Loop over all of the PHI nodes in the current block, reading their inputs. std::vector ResultValues; for (; PHINode *PN = dyn_cast(SF.CurInst); ++SF.CurInst) { // Search for the value corresponding to this previous bb... int i = PN->getBasicBlockIndex(PrevBB); assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); Value *IncomingValue = PN->getIncomingValue(i); // Save the incoming value for this PHI node... ResultValues.push_back(getOperandValue(IncomingValue, SF)); } // Now loop over all of the PHI nodes setting their values... SF.CurInst = SF.CurBB->begin(); for (unsigned i = 0; isa(SF.CurInst); ++SF.CurInst, ++i) { PHINode *PN = cast(SF.CurInst); SetValue(PN, ResultValues[i], SF); } } //===----------------------------------------------------------------------===// // Memory Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::visitAllocationInst(AllocationInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getType()->getElementType(); // Type to be allocated // Get the number of elements being allocated by the array... unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal; // Allocate enough memory to hold the type... void *Memory = malloc(NumElements * (size_t)TD.getTypeSize(Ty)); GenericValue Result = PTOGV(Memory); assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); SetValue(&I, Result, SF); if (I.getOpcode() == Instruction::Alloca) ECStack.back().Allocas.add(Memory); } void Interpreter::visitFreeInst(FreeInst &I) { ExecutionContext &SF = ECStack.back(); assert(isa(I.getOperand(0)->getType()) && "Freeing nonptr?"); GenericValue Value = getOperandValue(I.getOperand(0), SF); // TODO: Check to make sure memory is allocated free(GVTOP(Value)); // Free memory } // getElementOffset - The workhorse for getelementptr. // GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, gep_type_iterator E, ExecutionContext &SF) { assert(isa(Ptr->getType()) && "Cannot getElementOffset of a nonpointer type!"); PointerTy Total = 0; for (; I != E; ++I) { if (const StructType *STy = dyn_cast(*I)) { const StructLayout *SLO = TD.getStructLayout(STy); const ConstantInt *CPU = cast(I.getOperand()); unsigned Index = unsigned(CPU->getZExtValue()); Total += (PointerTy)SLO->MemberOffsets[Index]; } else { const SequentialType *ST = cast(*I); // Get the index number for the array... which must be long type... GenericValue IdxGV = getOperandValue(I.getOperand(), SF); uint64_t Idx; switch (I.getOperand()->getType()->getTypeID()) { default: assert(0 && "Illegal getelementptr index for sequential type!"); case Type::SByteTyID: Idx = IdxGV.SByteVal; break; case Type::ShortTyID: Idx = IdxGV.ShortVal; break; case Type::IntTyID: Idx = IdxGV.IntVal; break; case Type::LongTyID: Idx = IdxGV.LongVal; break; case Type::UByteTyID: Idx = IdxGV.UByteVal; break; case Type::UShortTyID: Idx = IdxGV.UShortVal; break; case Type::UIntTyID: Idx = IdxGV.UIntVal; break; case Type::ULongTyID: Idx = IdxGV.ULongVal; break; } Total += PointerTy(TD.getTypeSize(ST->getElementType())*Idx); } } GenericValue Result; Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total; return Result; } void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(), gep_type_begin(I), gep_type_end(I), SF), SF); } void Interpreter::visitLoadInst(LoadInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); GenericValue *Ptr = (GenericValue*)GVTOP(SRC); GenericValue Result = LoadValueFromMemory(Ptr, I.getType()); SetValue(&I, Result, SF); } void Interpreter::visitStoreInst(StoreInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue Val = getOperandValue(I.getOperand(0), SF); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), I.getOperand(0)->getType()); } //===----------------------------------------------------------------------===// // Miscellaneous Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::visitCallSite(CallSite CS) { ExecutionContext &SF = ECStack.back(); // Check to see if this is an intrinsic function call... if (Function *F = CS.getCalledFunction()) if (F->isExternal ()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: break; case Intrinsic::vastart: { // va_start GenericValue ArgIndex; ArgIndex.UIntPairVal.first = ECStack.size() - 1; ArgIndex.UIntPairVal.second = 0; SetValue(CS.getInstruction(), ArgIndex, SF); return; } case Intrinsic::vaend: // va_end is a noop for the interpreter return; case Intrinsic::vacopy: // va_copy: dest = src SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); return; default: // If it is an unknown intrinsic function, use the intrinsic lowering // class to transform it into hopefully tasty LLVM code. // Instruction *Prev = CS.getInstruction()->getPrev(); BasicBlock *Parent = CS.getInstruction()->getParent(); IL->LowerIntrinsicCall(cast(CS.getInstruction())); // Restore the CurInst pointer to the first instruction newly inserted, if // any. if (!Prev) { SF.CurInst = Parent->begin(); } else { SF.CurInst = Prev; ++SF.CurInst; } return; } SF.Caller = CS; std::vector ArgVals; const unsigned NumArgs = SF.Caller.arg_size(); ArgVals.reserve(NumArgs); for (CallSite::arg_iterator i = SF.Caller.arg_begin(), e = SF.Caller.arg_end(); i != e; ++i) { Value *V = *i; ArgVals.push_back(getOperandValue(V, SF)); // Promote all integral types whose size is < sizeof(int) into ints. We do // this by zero or sign extending the value as appropriate according to the // source type. const Type *Ty = V->getType(); if (Ty->isIntegral() && Ty->getPrimitiveSize() < 4) { if (Ty == Type::ShortTy) ArgVals.back().IntVal = ArgVals.back().ShortVal; else if (Ty == Type::UShortTy) ArgVals.back().UIntVal = ArgVals.back().UShortVal; else if (Ty == Type::SByteTy) ArgVals.back().IntVal = ArgVals.back().SByteVal; else if (Ty == Type::UByteTy) ArgVals.back().UIntVal = ArgVals.back().UByteVal; else if (Ty == Type::BoolTy) ArgVals.back().UIntVal = ArgVals.back().BoolVal; else assert(0 && "Unknown type!"); } } // To handle indirect calls, we must get the pointer value from the argument // and treat it as a function pointer. GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); callFunction((Function*)GVTOP(SRC), ArgVals); } #define IMPLEMENT_SHIFT(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break #define IMPLEMENT_SIGNLESS_SHIFT(OP, TY1, TY2) \ case Type::TY2##TyID: \ IMPLEMENT_SHIFT(OP, TY1) static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SHIFT(<<, UByte); IMPLEMENT_SHIFT(<<, SByte); IMPLEMENT_SHIFT(<<, UShort); IMPLEMENT_SHIFT(<<, Short); IMPLEMENT_SHIFT(<<, UInt); IMPLEMENT_SHIFT(<<, Int); IMPLEMENT_SHIFT(<<, ULong); IMPLEMENT_SHIFT(<<, Long); default: llvm_cerr << "Unhandled type for Shl instruction: " << *Ty << "\n"; } return Dest; } static GenericValue executeLShrInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SIGNLESS_SHIFT(>>, UByte, SByte); IMPLEMENT_SIGNLESS_SHIFT(>>, UShort, Short); IMPLEMENT_SIGNLESS_SHIFT(>>, UInt, Int); IMPLEMENT_SIGNLESS_SHIFT(>>, ULong, Long); default: llvm_cerr << "Unhandled type for LShr instruction: " << *Ty << "\n"; abort(); } return Dest; } static GenericValue executeAShrInst(GenericValue Src1, GenericValue Src2, const Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_SIGNLESS_SHIFT(>>, SByte, UByte); IMPLEMENT_SIGNLESS_SHIFT(>>, Short, UShort); IMPLEMENT_SIGNLESS_SHIFT(>>, Int, UInt); IMPLEMENT_SIGNLESS_SHIFT(>>, Long, ULong); default: llvm_cerr << "Unhandled type for AShr instruction: " << *Ty << "\n"; abort(); } return Dest; } void Interpreter::visitShl(ShiftInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Dest = executeShlInst (Src1, Src2, Ty); SetValue(&I, Dest, SF); } void Interpreter::visitLShr(ShiftInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Dest = executeLShrInst (Src1, Src2, Ty); SetValue(&I, Dest, SF); } void Interpreter::visitAShr(ShiftInst &I) { ExecutionContext &SF = ECStack.back(); const Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Dest = executeAShrInst (Src1, Src2, Ty); SetValue(&I, Dest, SF); } #define IMPLEMENT_CAST_START \ switch (DstTy->getTypeID()) { #define IMPLEMENT_CAST(DTY, DCTY, STY) \ case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; #define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ case Type::DESTTY##TyID: \ switch (SrcTy->getTypeID()) { \ IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \ IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Double) \ default: \ llvm_cerr << "Unhandled cast: " \ << *SrcTy << " to " << *DstTy << "\n"; \ abort(); \ } \ break #define IMPLEMENT_CAST_END \ default: llvm_cerr \ << "Unhandled dest type for cast instruction: " \ << *DstTy << "\n"; \ abort(); \ } GenericValue Interpreter::executeCastOperation(Instruction::CastOps opcode, Value *SrcVal, const Type *DstTy, ExecutionContext &SF) { const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (opcode == Instruction::Trunc && DstTy->getTypeID() == Type::BoolTyID) { // For truncations to bool, we must clear the high order bits of the source switch (SrcTy->getTypeID()) { case Type::BoolTyID: Src.BoolVal &= 1; break; case Type::SByteTyID: Src.SByteVal &= 1; break; case Type::UByteTyID: Src.UByteVal &= 1; break; case Type::ShortTyID: Src.ShortVal &= 1; break; case Type::UShortTyID: Src.UShortVal &= 1; break; case Type::IntTyID: Src.IntVal &= 1; break; case Type::UIntTyID: Src.UIntVal &= 1; break; case Type::LongTyID: Src.LongVal &= 1; break; case Type::ULongTyID: Src.ULongVal &= 1; break; default: assert(0 && "Can't trunc a non-integer!"); break; } } else if (opcode == Instruction::SExt && SrcTy->getTypeID() == Type::BoolTyID) { // For sign extension from bool, we must extend the source bits. SrcTy = Type::LongTy; Src.LongVal = 0 - Src.BoolVal; } switch (opcode) { case Instruction::Trunc: // src integer, dest integral (can't be long) IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Bool , (bool)); IMPLEMENT_CAST_CASE(UByte , (unsigned char)); IMPLEMENT_CAST_CASE(SByte , ( signed char)); IMPLEMENT_CAST_CASE(UShort , (unsigned short)); IMPLEMENT_CAST_CASE(Short , ( signed short)); IMPLEMENT_CAST_CASE(UInt , (unsigned int )); IMPLEMENT_CAST_CASE(Int , ( signed int )); IMPLEMENT_CAST_END break; case Instruction::ZExt: // src integral (can't be long), dest integer IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(UByte , (unsigned char)); IMPLEMENT_CAST_CASE(SByte , (signed char)(unsigned char)); IMPLEMENT_CAST_CASE(UShort , (unsigned short)); IMPLEMENT_CAST_CASE(Short , (signed short)(unsigned short)); IMPLEMENT_CAST_CASE(UInt , (unsigned int )); IMPLEMENT_CAST_CASE(Int , (signed int)(unsigned int )); IMPLEMENT_CAST_CASE(ULong , (uint64_t)); IMPLEMENT_CAST_CASE(Long , (int64_t)(uint64_t)); IMPLEMENT_CAST_END break; case Instruction::SExt: // src integral (can't be long), dest integer IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(UByte , (unsigned char)(signed char)); IMPLEMENT_CAST_CASE(SByte , (signed char)); IMPLEMENT_CAST_CASE(UShort , (unsigned short)(signed short)); IMPLEMENT_CAST_CASE(Short , (signed short)); IMPLEMENT_CAST_CASE(UInt , (unsigned int )(signed int)); IMPLEMENT_CAST_CASE(Int , (signed int)); IMPLEMENT_CAST_CASE(ULong , (uint64_t)(int64_t)); IMPLEMENT_CAST_CASE(Long , (int64_t)); IMPLEMENT_CAST_END break; case Instruction::FPTrunc: // src double, dest float IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Float , (float)); IMPLEMENT_CAST_END break; case Instruction::FPExt: // src float, dest double IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Double , (double)); IMPLEMENT_CAST_END break; case Instruction::UIToFP: // src integral, dest floating IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Float , (float)(uint64_t)); IMPLEMENT_CAST_CASE(Double , (double)(uint64_t)); IMPLEMENT_CAST_END break; case Instruction::SIToFP: // src integeral, dest floating IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Float , (float)(int64_t)); IMPLEMENT_CAST_CASE(Double , (double)(int64_t)); IMPLEMENT_CAST_END break; case Instruction::FPToUI: // src floating, dest integral IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Bool , (bool)); IMPLEMENT_CAST_CASE(UByte , (unsigned char)); IMPLEMENT_CAST_CASE(SByte , (signed char)(unsigned char)); IMPLEMENT_CAST_CASE(UShort , (unsigned short)); IMPLEMENT_CAST_CASE(Short , (signed short)(unsigned short)); IMPLEMENT_CAST_CASE(UInt , (unsigned int )); IMPLEMENT_CAST_CASE(Int , (signed int)(unsigned int )); IMPLEMENT_CAST_CASE(ULong , (uint64_t)); IMPLEMENT_CAST_CASE(Long , (int64_t)(uint64_t)); IMPLEMENT_CAST_END break; case Instruction::FPToSI: // src floating, dest integral IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Bool , (bool)); IMPLEMENT_CAST_CASE(UByte , (unsigned char)(signed char)); IMPLEMENT_CAST_CASE(SByte , (signed char)); IMPLEMENT_CAST_CASE(UShort , (unsigned short)(signed short)); IMPLEMENT_CAST_CASE(Short , (signed short)); IMPLEMENT_CAST_CASE(UInt , (unsigned int )(signed int)); IMPLEMENT_CAST_CASE(Int , (signed int)); IMPLEMENT_CAST_CASE(ULong , (uint64_t)(int64_t)); IMPLEMENT_CAST_CASE(Long , (int64_t)); IMPLEMENT_CAST_END break; case Instruction::PtrToInt: // src pointer, dest integral IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Bool , (bool)); IMPLEMENT_CAST_CASE(UByte , (unsigned char)); IMPLEMENT_CAST_CASE(SByte , (signed char)(unsigned char)); IMPLEMENT_CAST_CASE(UShort , (unsigned short)); IMPLEMENT_CAST_CASE(Short , (signed short)(unsigned short)); IMPLEMENT_CAST_CASE(UInt , (unsigned int)); IMPLEMENT_CAST_CASE(Int , (signed int)(unsigned int)); IMPLEMENT_CAST_CASE(ULong , (uint64_t)); IMPLEMENT_CAST_CASE(Long , (int64_t)(uint64_t)); IMPLEMENT_CAST_END break; case Instruction::IntToPtr: // src integral, dest pointer IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); IMPLEMENT_CAST_END break; case Instruction::BitCast: // src any, dest any (same size) IMPLEMENT_CAST_START IMPLEMENT_CAST_CASE(Bool , (bool)); IMPLEMENT_CAST_CASE(UByte , (unsigned char)); IMPLEMENT_CAST_CASE(SByte , ( signed char)); IMPLEMENT_CAST_CASE(UShort , (unsigned short)); IMPLEMENT_CAST_CASE(Short , ( signed short)); IMPLEMENT_CAST_CASE(UInt , (unsigned int)); IMPLEMENT_CAST_CASE(Int , ( signed int)); IMPLEMENT_CAST_CASE(ULong , (uint64_t)); IMPLEMENT_CAST_CASE(Long , ( int64_t)); IMPLEMENT_CAST_CASE(Pointer, (PointerTy)); IMPLEMENT_CAST_CASE(Float , (float)); IMPLEMENT_CAST_CASE(Double , (double)); IMPLEMENT_CAST_END break; default: llvm_cerr << "Invalid cast opcode for cast instruction: " << opcode << "\n"; abort(); } return Dest; } void Interpreter::visitCastInst(CastInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeCastOperation(I.getOpcode(), I.getOperand(0), I.getType(), SF), SF); } #define IMPLEMENT_VAARG(TY) \ case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break void Interpreter::visitVAArgInst(VAArgInst &I) { ExecutionContext &SF = ECStack.back(); // Get the incoming valist parameter. LLI treats the valist as a // (ec-stack-depth var-arg-index) pair. GenericValue VAList = getOperandValue(I.getOperand(0), SF); GenericValue Dest; GenericValue Src = ECStack[VAList.UIntPairVal.first] .VarArgs[VAList.UIntPairVal.second]; const Type *Ty = I.getType(); switch (Ty->getTypeID()) { IMPLEMENT_VAARG(UByte); IMPLEMENT_VAARG(SByte); IMPLEMENT_VAARG(UShort); IMPLEMENT_VAARG(Short); IMPLEMENT_VAARG(UInt); IMPLEMENT_VAARG(Int); IMPLEMENT_VAARG(ULong); IMPLEMENT_VAARG(Long); IMPLEMENT_VAARG(Pointer); IMPLEMENT_VAARG(Float); IMPLEMENT_VAARG(Double); IMPLEMENT_VAARG(Bool); default: llvm_cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; abort(); } // Set the Value of this Instruction. SetValue(&I, Dest, SF); // Move the pointer to the next vararg. ++VAList.UIntPairVal.second; } //===----------------------------------------------------------------------===// // Dispatch and Execution Code //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // callFunction - Execute the specified function... // void Interpreter::callFunction(Function *F, const std::vector &ArgVals) { assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || ECStack.back().Caller.arg_size() == ArgVals.size()) && "Incorrect number of arguments passed into function call!"); // Make a new stack frame... and fill it in. ECStack.push_back(ExecutionContext()); ExecutionContext &StackFrame = ECStack.back(); StackFrame.CurFunction = F; // Special handling for external functions. if (F->isExternal()) { GenericValue Result = callExternalFunction (F, ArgVals); // Simulate a 'ret' instruction of the appropriate type. popStackAndReturnValueToCaller (F->getReturnType (), Result); return; } // Get pointers to first LLVM BB & Instruction in function. StackFrame.CurBB = F->begin(); StackFrame.CurInst = StackFrame.CurBB->begin(); // Run through the function arguments and initialize their values... assert((ArgVals.size() == F->arg_size() || (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& "Invalid number of values passed to function invocation!"); // Handle non-varargs arguments... unsigned i = 0; for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i) SetValue(AI, ArgVals[i], StackFrame); // Handle varargs arguments... StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); } void Interpreter::run() { while (!ECStack.empty()) { // Interpret a single instruction & increment the "PC". ExecutionContext &SF = ECStack.back(); // Current stack frame Instruction &I = *SF.CurInst++; // Increment before execute // Track the number of dynamic instructions executed. ++NumDynamicInsts; DOUT << "About to interpret: " << I; visit(I); // Dispatch to one of the visit* methods... } }