//===-- lib/MC/Disassembler.cpp - Disassembler Public C Interface ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Disassembler.h" #include "llvm-c/Disassembler.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCRelocationInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbolizer.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/MemoryObject.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; // LLVMCreateDisasm() creates a disassembler for the TripleName. Symbolic // disassembly is supported by passing a block of information in the DisInfo // parameter and specifying the TagType and callback functions as described in // the header llvm-c/Disassembler.h . The pointer to the block and the // functions can all be passed as NULL. If successful, this returns a // disassembler context. If not, it returns NULL. // LLVMDisasmContextRef LLVMCreateDisasmCPU(const char *Triple, const char *CPU, void *DisInfo, int TagType, LLVMOpInfoCallback GetOpInfo, LLVMSymbolLookupCallback SymbolLookUp){ // Get the target. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); if (!TheTarget) return nullptr; const MCRegisterInfo *MRI = TheTarget->createMCRegInfo(Triple); if (!MRI) return nullptr; // Get the assembler info needed to setup the MCContext. const MCAsmInfo *MAI = TheTarget->createMCAsmInfo(*MRI, Triple); if (!MAI) return nullptr; const MCInstrInfo *MII = TheTarget->createMCInstrInfo(); if (!MII) return nullptr; // Package up features to be passed to target/subtarget std::string FeaturesStr; const MCSubtargetInfo *STI = TheTarget->createMCSubtargetInfo(Triple, CPU, FeaturesStr); if (!STI) return nullptr; // Set up the MCContext for creating symbols and MCExpr's. MCContext *Ctx = new MCContext(MAI, MRI, nullptr); if (!Ctx) return nullptr; // Set up disassembler. MCDisassembler *DisAsm = TheTarget->createMCDisassembler(*STI, *Ctx); if (!DisAsm) return nullptr; std::unique_ptr RelInfo( TheTarget->createMCRelocationInfo(Triple, *Ctx)); if (!RelInfo) return nullptr; std::unique_ptr Symbolizer(TheTarget->createMCSymbolizer( Triple, GetOpInfo, SymbolLookUp, DisInfo, Ctx, RelInfo.release())); DisAsm->setSymbolizer(std::move(Symbolizer)); // Set up the instruction printer. int AsmPrinterVariant = MAI->getAssemblerDialect(); MCInstPrinter *IP = TheTarget->createMCInstPrinter(AsmPrinterVariant, *MAI, *MII, *MRI, *STI); if (!IP) return nullptr; LLVMDisasmContext *DC = new LLVMDisasmContext(Triple, DisInfo, TagType, GetOpInfo, SymbolLookUp, TheTarget, MAI, MRI, STI, MII, Ctx, DisAsm, IP); if (!DC) return nullptr; DC->setCPU(CPU); return DC; } LLVMDisasmContextRef LLVMCreateDisasm(const char *Triple, void *DisInfo, int TagType, LLVMOpInfoCallback GetOpInfo, LLVMSymbolLookupCallback SymbolLookUp) { return LLVMCreateDisasmCPU(Triple, "", DisInfo, TagType, GetOpInfo, SymbolLookUp); } // // LLVMDisasmDispose() disposes of the disassembler specified by the context. // void LLVMDisasmDispose(LLVMDisasmContextRef DCR){ LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR; delete DC; } namespace { // // The memory object created by LLVMDisasmInstruction(). // class DisasmMemoryObject : public MemoryObject { uint8_t *Bytes; uint64_t Size; uint64_t BasePC; public: DisasmMemoryObject(uint8_t *bytes, uint64_t size, uint64_t basePC) : Bytes(bytes), Size(size), BasePC(basePC) {} uint64_t getBase() const override { return BasePC; } uint64_t getExtent() const override { return Size; } int readByte(uint64_t Addr, uint8_t *Byte) const override { if (Addr - BasePC >= Size) return -1; *Byte = Bytes[Addr - BasePC]; return 0; } }; } // end anonymous namespace /// \brief Emits the comments that are stored in \p DC comment stream. /// Each comment in the comment stream must end with a newline. static void emitComments(LLVMDisasmContext *DC, formatted_raw_ostream &FormattedOS) { // Flush the stream before taking its content. DC->CommentStream.flush(); StringRef Comments = DC->CommentsToEmit.str(); // Get the default information for printing a comment. const MCAsmInfo *MAI = DC->getAsmInfo(); const char *CommentBegin = MAI->getCommentString(); unsigned CommentColumn = MAI->getCommentColumn(); bool IsFirst = true; while (!Comments.empty()) { if (!IsFirst) FormattedOS << '\n'; // Emit a line of comments. FormattedOS.PadToColumn(CommentColumn); size_t Position = Comments.find('\n'); FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position); // Move after the newline character. Comments = Comments.substr(Position+1); IsFirst = false; } FormattedOS.flush(); // Tell the comment stream that the vector changed underneath it. DC->CommentsToEmit.clear(); DC->CommentStream.resync(); } /// \brief Gets latency information for \p Inst form the itinerary /// scheduling model, based on \p DC information. /// \return The maximum expected latency over all the operands or -1 /// if no information are available. static int getItineraryLatency(LLVMDisasmContext *DC, const MCInst &Inst) { const int NoInformationAvailable = -1; // Check if we have a CPU to get the itinerary information. if (DC->getCPU().empty()) return NoInformationAvailable; // Get itinerary information. const MCSubtargetInfo *STI = DC->getSubtargetInfo(); InstrItineraryData IID = STI->getInstrItineraryForCPU(DC->getCPU()); // Get the scheduling class of the requested instruction. const MCInstrDesc& Desc = DC->getInstrInfo()->get(Inst.getOpcode()); unsigned SCClass = Desc.getSchedClass(); int Latency = 0; for (unsigned OpIdx = 0, OpIdxEnd = Inst.getNumOperands(); OpIdx != OpIdxEnd; ++OpIdx) Latency = std::max(Latency, IID.getOperandCycle(SCClass, OpIdx)); return Latency; } /// \brief Gets latency information for \p Inst, based on \p DC information. /// \return The maximum expected latency over all the definitions or -1 /// if no information are available. static int getLatency(LLVMDisasmContext *DC, const MCInst &Inst) { // Try to compute scheduling information. const MCSubtargetInfo *STI = DC->getSubtargetInfo(); const MCSchedModel SCModel = STI->getSchedModel(); const int NoInformationAvailable = -1; // Check if we have a scheduling model for instructions. if (!SCModel.hasInstrSchedModel()) // Try to fall back to the itinerary model if the scheduling model doesn't // have a scheduling table. Note the default does not have a table. return getItineraryLatency(DC, Inst); // Get the scheduling class of the requested instruction. const MCInstrDesc& Desc = DC->getInstrInfo()->get(Inst.getOpcode()); unsigned SCClass = Desc.getSchedClass(); const MCSchedClassDesc *SCDesc = SCModel.getSchedClassDesc(SCClass); // Resolving the variant SchedClass requires an MI to pass to // SubTargetInfo::resolveSchedClass. if (!SCDesc || !SCDesc->isValid() || SCDesc->isVariant()) return NoInformationAvailable; // Compute output latency. int Latency = 0; for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries; DefIdx != DefEnd; ++DefIdx) { // Lookup the definition's write latency in SubtargetInfo. const MCWriteLatencyEntry *WLEntry = STI->getWriteLatencyEntry(SCDesc, DefIdx); Latency = std::max(Latency, WLEntry->Cycles); } return Latency; } /// \brief Emits latency information in DC->CommentStream for \p Inst, based /// on the information available in \p DC. static void emitLatency(LLVMDisasmContext *DC, const MCInst &Inst) { int Latency = getLatency(DC, Inst); // Report only interesting latency. if (Latency < 2) return; DC->CommentStream << "Latency: " << Latency << '\n'; } // // LLVMDisasmInstruction() disassembles a single instruction using the // disassembler context specified in the parameter DC. The bytes of the // instruction are specified in the parameter Bytes, and contains at least // BytesSize number of bytes. The instruction is at the address specified by // the PC parameter. If a valid instruction can be disassembled its string is // returned indirectly in OutString which whos size is specified in the // parameter OutStringSize. This function returns the number of bytes in the // instruction or zero if there was no valid instruction. If this function // returns zero the caller will have to pick how many bytes they want to step // over by printing a .byte, .long etc. to continue. // size_t LLVMDisasmInstruction(LLVMDisasmContextRef DCR, uint8_t *Bytes, uint64_t BytesSize, uint64_t PC, char *OutString, size_t OutStringSize){ LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR; // Wrap the pointer to the Bytes, BytesSize and PC in a MemoryObject. DisasmMemoryObject MemoryObject(Bytes, BytesSize, PC); uint64_t Size; MCInst Inst; const MCDisassembler *DisAsm = DC->getDisAsm(); MCInstPrinter *IP = DC->getIP(); MCDisassembler::DecodeStatus S; SmallVector InsnStr; raw_svector_ostream Annotations(InsnStr); S = DisAsm->getInstruction(Inst, Size, MemoryObject, PC, /*REMOVE*/ nulls(), Annotations); switch (S) { case MCDisassembler::Fail: case MCDisassembler::SoftFail: // FIXME: Do something different for soft failure modes? return 0; case MCDisassembler::Success: { Annotations.flush(); StringRef AnnotationsStr = Annotations.str(); SmallVector InsnStr; raw_svector_ostream OS(InsnStr); formatted_raw_ostream FormattedOS(OS); IP->printInst(&Inst, FormattedOS, AnnotationsStr); if (DC->getOptions() & LLVMDisassembler_Option_PrintLatency) emitLatency(DC, Inst); emitComments(DC, FormattedOS); OS.flush(); assert(OutStringSize != 0 && "Output buffer cannot be zero size"); size_t OutputSize = std::min(OutStringSize-1, InsnStr.size()); std::memcpy(OutString, InsnStr.data(), OutputSize); OutString[OutputSize] = '\0'; // Terminate string. return Size; } } llvm_unreachable("Invalid DecodeStatus!"); } // // LLVMSetDisasmOptions() sets the disassembler's options. It returns 1 if it // can set all the Options and 0 otherwise. // int LLVMSetDisasmOptions(LLVMDisasmContextRef DCR, uint64_t Options){ if (Options & LLVMDisassembler_Option_UseMarkup){ LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR; MCInstPrinter *IP = DC->getIP(); IP->setUseMarkup(1); DC->addOptions(LLVMDisassembler_Option_UseMarkup); Options &= ~LLVMDisassembler_Option_UseMarkup; } if (Options & LLVMDisassembler_Option_PrintImmHex){ LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR; MCInstPrinter *IP = DC->getIP(); IP->setPrintImmHex(1); DC->addOptions(LLVMDisassembler_Option_PrintImmHex); Options &= ~LLVMDisassembler_Option_PrintImmHex; } if (Options & LLVMDisassembler_Option_AsmPrinterVariant){ LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR; // Try to set up the new instruction printer. const MCAsmInfo *MAI = DC->getAsmInfo(); const MCInstrInfo *MII = DC->getInstrInfo(); const MCRegisterInfo *MRI = DC->getRegisterInfo(); const MCSubtargetInfo *STI = DC->getSubtargetInfo(); int AsmPrinterVariant = MAI->getAssemblerDialect(); AsmPrinterVariant = AsmPrinterVariant == 0 ? 1 : 0; MCInstPrinter *IP = DC->getTarget()->createMCInstPrinter( AsmPrinterVariant, *MAI, *MII, *MRI, *STI); if (IP) { DC->setIP(IP); DC->addOptions(LLVMDisassembler_Option_AsmPrinterVariant); Options &= ~LLVMDisassembler_Option_AsmPrinterVariant; } } if (Options & LLVMDisassembler_Option_SetInstrComments) { LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR; MCInstPrinter *IP = DC->getIP(); IP->setCommentStream(DC->CommentStream); DC->addOptions(LLVMDisassembler_Option_SetInstrComments); Options &= ~LLVMDisassembler_Option_SetInstrComments; } if (Options & LLVMDisassembler_Option_PrintLatency) { LLVMDisasmContext *DC = (LLVMDisasmContext *)DCR; DC->addOptions(LLVMDisassembler_Option_PrintLatency); Options &= ~LLVMDisassembler_Option_PrintLatency; } return (Options == 0); }