//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the MRegisterInfo class. This // file is responsible for the frame pointer elimination optimization on X86. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86RegisterInfo.h" #include "X86InstrBuilder.h" #include "llvm/Constants.h" #include "llvm/Type.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; namespace { cl::opt NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions")); cl::opt PrintFailedFusing("print-failed-fuse-candidates", cl::desc("Print instructions that the allocator wants to" " fuse, but the X86 backend currently can't"), cl::Hidden); } X86RegisterInfo::X86RegisterInfo() : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP) {} void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, int FrameIdx, const TargetRegisterClass *RC) const { unsigned Opc; if (RC == &X86::R32RegClass) { Opc = X86::MOV32mr; } else if (RC == &X86::R8RegClass) { Opc = X86::MOV8mr; } else if (RC == &X86::R16RegClass) { Opc = X86::MOV16mr; } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { Opc = X86::FpST64m; } else if (RC == &X86::FR32RegClass) { Opc = X86::MOVSSmr; } else if (RC == &X86::FR64RegClass) { Opc = X86::MOVSDmr; } else if (RC == &X86::V4F32RegClass) { Opc = X86::MOVAPSmr; } else if (RC == &X86::V2F64RegClass) { Opc = X86::MOVAPDmr; } else { assert(0 && "Unknown regclass"); abort(); } addFrameReference(BuildMI(MBB, MI, Opc, 5), FrameIdx).addReg(SrcReg); } void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC) const{ unsigned Opc; if (RC == &X86::R32RegClass) { Opc = X86::MOV32rm; } else if (RC == &X86::R8RegClass) { Opc = X86::MOV8rm; } else if (RC == &X86::R16RegClass) { Opc = X86::MOV16rm; } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { Opc = X86::FpLD64m; } else if (RC == &X86::FR32RegClass) { Opc = X86::MOVSSrm; } else if (RC == &X86::FR64RegClass) { Opc = X86::MOVSDrm; } else if (RC == &X86::V4F32RegClass) { Opc = X86::MOVAPSrm; } else if (RC == &X86::V2F64RegClass) { Opc = X86::MOVAPDrm; } else { assert(0 && "Unknown regclass"); abort(); } addFrameReference(BuildMI(MBB, MI, Opc, 4, DestReg), FrameIdx); } void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *RC) const { unsigned Opc; if (RC == &X86::R32RegClass) { Opc = X86::MOV32rr; } else if (RC == &X86::R8RegClass) { Opc = X86::MOV8rr; } else if (RC == &X86::R16RegClass) { Opc = X86::MOV16rr; } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { Opc = X86::FpMOV; } else if (RC == &X86::FR32RegClass) { Opc = X86::FsMOVAPSrr; } else if (RC == &X86::FR64RegClass) { Opc = X86::FsMOVAPDrr; } else if (RC == &X86::V4F32RegClass) { Opc = X86::MOVAPSrr; } else if (RC == &X86::V2F64RegClass) { Opc = X86::MOVAPDrr; } else { assert(0 && "Unknown regclass"); abort(); } BuildMI(MBB, MI, Opc, 1, DestReg).addReg(SrcReg); } static MachineInstr *MakeMInst(unsigned Opcode, unsigned FrameIndex, MachineInstr *MI) { return addFrameReference(BuildMI(Opcode, 4), FrameIndex); } static MachineInstr *MakeMRInst(unsigned Opcode, unsigned FrameIndex, MachineInstr *MI) { return addFrameReference(BuildMI(Opcode, 5), FrameIndex) .addReg(MI->getOperand(1).getReg()); } static MachineInstr *MakeMRIInst(unsigned Opcode, unsigned FrameIndex, MachineInstr *MI) { return addFrameReference(BuildMI(Opcode, 6), FrameIndex) .addReg(MI->getOperand(1).getReg()) .addZImm(MI->getOperand(2).getImmedValue()); } static MachineInstr *MakeMIInst(unsigned Opcode, unsigned FrameIndex, MachineInstr *MI) { if (MI->getOperand(1).isImmediate()) return addFrameReference(BuildMI(Opcode, 5), FrameIndex) .addZImm(MI->getOperand(1).getImmedValue()); else if (MI->getOperand(1).isGlobalAddress()) return addFrameReference(BuildMI(Opcode, 5), FrameIndex) .addGlobalAddress(MI->getOperand(1).getGlobal(), false, MI->getOperand(1).getOffset()); assert(0 && "Unknown operand for MakeMI!"); return 0; } static MachineInstr *MakeRMInst(unsigned Opcode, unsigned FrameIndex, MachineInstr *MI) { const MachineOperand& op = MI->getOperand(0); return addFrameReference(BuildMI(Opcode, 5, op.getReg(), op.getUseType()), FrameIndex); } static MachineInstr *MakeRMIInst(unsigned Opcode, unsigned FrameIndex, MachineInstr *MI) { const MachineOperand& op = MI->getOperand(0); return addFrameReference(BuildMI(Opcode, 6, op.getReg(), op.getUseType()), FrameIndex).addZImm(MI->getOperand(2).getImmedValue()); } MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr* MI, unsigned i, int FrameIndex) const { if (NoFusing) return NULL; /// FIXME: This should obviously be autogenerated by tablegen when patterns /// are available! MachineBasicBlock& MBB = *MI->getParent(); if (i == 0) { switch(MI->getOpcode()) { case X86::XCHG8rr: return MakeMRInst(X86::XCHG8mr ,FrameIndex, MI); case X86::XCHG16rr: return MakeMRInst(X86::XCHG16mr,FrameIndex, MI); case X86::XCHG32rr: return MakeMRInst(X86::XCHG32mr,FrameIndex, MI); case X86::MOV8rr: return MakeMRInst(X86::MOV8mr , FrameIndex, MI); case X86::MOV16rr: return MakeMRInst(X86::MOV16mr, FrameIndex, MI); case X86::MOV32rr: return MakeMRInst(X86::MOV32mr, FrameIndex, MI); case X86::MOV8ri: return MakeMIInst(X86::MOV8mi , FrameIndex, MI); case X86::MOV16ri: return MakeMIInst(X86::MOV16mi, FrameIndex, MI); case X86::MOV32ri: return MakeMIInst(X86::MOV32mi, FrameIndex, MI); case X86::MUL8r: return MakeMInst( X86::MUL8m , FrameIndex, MI); case X86::MUL16r: return MakeMInst( X86::MUL16m, FrameIndex, MI); case X86::MUL32r: return MakeMInst( X86::MUL32m, FrameIndex, MI); case X86::IMUL8r: return MakeMInst( X86::IMUL8m , FrameIndex, MI); case X86::IMUL16r: return MakeMInst( X86::IMUL16m, FrameIndex, MI); case X86::IMUL32r: return MakeMInst( X86::IMUL32m, FrameIndex, MI); case X86::DIV8r: return MakeMInst( X86::DIV8m , FrameIndex, MI); case X86::DIV16r: return MakeMInst( X86::DIV16m, FrameIndex, MI); case X86::DIV32r: return MakeMInst( X86::DIV32m, FrameIndex, MI); case X86::IDIV8r: return MakeMInst( X86::IDIV8m , FrameIndex, MI); case X86::IDIV16r: return MakeMInst( X86::IDIV16m, FrameIndex, MI); case X86::IDIV32r: return MakeMInst( X86::IDIV32m, FrameIndex, MI); case X86::NEG8r: return MakeMInst( X86::NEG8m , FrameIndex, MI); case X86::NEG16r: return MakeMInst( X86::NEG16m, FrameIndex, MI); case X86::NEG32r: return MakeMInst( X86::NEG32m, FrameIndex, MI); case X86::NOT8r: return MakeMInst( X86::NOT8m , FrameIndex, MI); case X86::NOT16r: return MakeMInst( X86::NOT16m, FrameIndex, MI); case X86::NOT32r: return MakeMInst( X86::NOT32m, FrameIndex, MI); case X86::INC8r: return MakeMInst( X86::INC8m , FrameIndex, MI); case X86::INC16r: return MakeMInst( X86::INC16m, FrameIndex, MI); case X86::INC32r: return MakeMInst( X86::INC32m, FrameIndex, MI); case X86::DEC8r: return MakeMInst( X86::DEC8m , FrameIndex, MI); case X86::DEC16r: return MakeMInst( X86::DEC16m, FrameIndex, MI); case X86::DEC32r: return MakeMInst( X86::DEC32m, FrameIndex, MI); case X86::ADD8rr: return MakeMRInst(X86::ADD8mr , FrameIndex, MI); case X86::ADD16rr: return MakeMRInst(X86::ADD16mr, FrameIndex, MI); case X86::ADD32rr: return MakeMRInst(X86::ADD32mr, FrameIndex, MI); case X86::ADC32rr: return MakeMRInst(X86::ADC32mr, FrameIndex, MI); case X86::ADC32ri: return MakeMIInst(X86::ADC32mi, FrameIndex, MI); case X86::ADD8ri: return MakeMIInst(X86::ADD8mi , FrameIndex, MI); case X86::ADD16ri: return MakeMIInst(X86::ADD16mi, FrameIndex, MI); case X86::ADD32ri: return MakeMIInst(X86::ADD32mi, FrameIndex, MI); case X86::SUB8rr: return MakeMRInst(X86::SUB8mr , FrameIndex, MI); case X86::SUB16rr: return MakeMRInst(X86::SUB16mr, FrameIndex, MI); case X86::SUB32rr: return MakeMRInst(X86::SUB32mr, FrameIndex, MI); case X86::SBB32rr: return MakeMRInst(X86::SBB32mr, FrameIndex, MI); case X86::SBB8ri: return MakeMIInst(X86::SBB8mi, FrameIndex, MI); case X86::SBB16ri: return MakeMIInst(X86::SBB16mi, FrameIndex, MI); case X86::SBB32ri: return MakeMIInst(X86::SBB32mi, FrameIndex, MI); case X86::SUB8ri: return MakeMIInst(X86::SUB8mi , FrameIndex, MI); case X86::SUB16ri: return MakeMIInst(X86::SUB16mi, FrameIndex, MI); case X86::SUB32ri: return MakeMIInst(X86::SUB32mi, FrameIndex, MI); case X86::AND8rr: return MakeMRInst(X86::AND8mr , FrameIndex, MI); case X86::AND16rr: return MakeMRInst(X86::AND16mr, FrameIndex, MI); case X86::AND32rr: return MakeMRInst(X86::AND32mr, FrameIndex, MI); case X86::AND8ri: return MakeMIInst(X86::AND8mi , FrameIndex, MI); case X86::AND16ri: return MakeMIInst(X86::AND16mi, FrameIndex, MI); case X86::AND32ri: return MakeMIInst(X86::AND32mi, FrameIndex, MI); case X86::OR8rr: return MakeMRInst(X86::OR8mr , FrameIndex, MI); case X86::OR16rr: return MakeMRInst(X86::OR16mr, FrameIndex, MI); case X86::OR32rr: return MakeMRInst(X86::OR32mr, FrameIndex, MI); case X86::OR8ri: return MakeMIInst(X86::OR8mi , FrameIndex, MI); case X86::OR16ri: return MakeMIInst(X86::OR16mi, FrameIndex, MI); case X86::OR32ri: return MakeMIInst(X86::OR32mi, FrameIndex, MI); case X86::XOR8rr: return MakeMRInst(X86::XOR8mr , FrameIndex, MI); case X86::XOR16rr: return MakeMRInst(X86::XOR16mr, FrameIndex, MI); case X86::XOR32rr: return MakeMRInst(X86::XOR32mr, FrameIndex, MI); case X86::XOR8ri: return MakeMIInst(X86::XOR8mi , FrameIndex, MI); case X86::XOR16ri: return MakeMIInst(X86::XOR16mi, FrameIndex, MI); case X86::XOR32ri: return MakeMIInst(X86::XOR32mi, FrameIndex, MI); case X86::SHL8rCL: return MakeMInst( X86::SHL8mCL ,FrameIndex, MI); case X86::SHL16rCL: return MakeMInst( X86::SHL16mCL,FrameIndex, MI); case X86::SHL32rCL: return MakeMInst( X86::SHL32mCL,FrameIndex, MI); case X86::SHL8ri: return MakeMIInst(X86::SHL8mi , FrameIndex, MI); case X86::SHL16ri: return MakeMIInst(X86::SHL16mi, FrameIndex, MI); case X86::SHL32ri: return MakeMIInst(X86::SHL32mi, FrameIndex, MI); case X86::SHR8rCL: return MakeMInst( X86::SHR8mCL ,FrameIndex, MI); case X86::SHR16rCL: return MakeMInst( X86::SHR16mCL,FrameIndex, MI); case X86::SHR32rCL: return MakeMInst( X86::SHR32mCL,FrameIndex, MI); case X86::SHR8ri: return MakeMIInst(X86::SHR8mi , FrameIndex, MI); case X86::SHR16ri: return MakeMIInst(X86::SHR16mi, FrameIndex, MI); case X86::SHR32ri: return MakeMIInst(X86::SHR32mi, FrameIndex, MI); case X86::SAR8rCL: return MakeMInst( X86::SAR8mCL ,FrameIndex, MI); case X86::SAR16rCL: return MakeMInst( X86::SAR16mCL,FrameIndex, MI); case X86::SAR32rCL: return MakeMInst( X86::SAR32mCL,FrameIndex, MI); case X86::SAR8ri: return MakeMIInst(X86::SAR8mi , FrameIndex, MI); case X86::SAR16ri: return MakeMIInst(X86::SAR16mi, FrameIndex, MI); case X86::SAR32ri: return MakeMIInst(X86::SAR32mi, FrameIndex, MI); case X86::ROL8rCL: return MakeMInst( X86::ROL8mCL ,FrameIndex, MI); case X86::ROL16rCL: return MakeMInst( X86::ROL16mCL,FrameIndex, MI); case X86::ROL32rCL: return MakeMInst( X86::ROL32mCL,FrameIndex, MI); case X86::ROL8ri: return MakeMIInst(X86::ROL8mi , FrameIndex, MI); case X86::ROL16ri: return MakeMIInst(X86::ROL16mi, FrameIndex, MI); case X86::ROL32ri: return MakeMIInst(X86::ROL32mi, FrameIndex, MI); case X86::ROR8rCL: return MakeMInst( X86::ROR8mCL ,FrameIndex, MI); case X86::ROR16rCL: return MakeMInst( X86::ROR16mCL,FrameIndex, MI); case X86::ROR32rCL: return MakeMInst( X86::ROR32mCL,FrameIndex, MI); case X86::ROR8ri: return MakeMIInst(X86::ROR8mi , FrameIndex, MI); case X86::ROR16ri: return MakeMIInst(X86::ROR16mi, FrameIndex, MI); case X86::ROR32ri: return MakeMIInst(X86::ROR32mi, FrameIndex, MI); case X86::SHLD32rrCL:return MakeMRInst( X86::SHLD32mrCL,FrameIndex, MI); case X86::SHLD32rri8:return MakeMRIInst(X86::SHLD32mri8,FrameIndex, MI); case X86::SHRD32rrCL:return MakeMRInst( X86::SHRD32mrCL,FrameIndex, MI); case X86::SHRD32rri8:return MakeMRIInst(X86::SHRD32mri8,FrameIndex, MI); case X86::SHLD16rrCL:return MakeMRInst( X86::SHLD16mrCL,FrameIndex, MI); case X86::SHLD16rri8:return MakeMRIInst(X86::SHLD16mri8,FrameIndex, MI); case X86::SHRD16rrCL:return MakeMRInst( X86::SHRD16mrCL,FrameIndex, MI); case X86::SHRD16rri8:return MakeMRIInst(X86::SHRD16mri8,FrameIndex, MI); case X86::SETBr: return MakeMInst( X86::SETBm, FrameIndex, MI); case X86::SETAEr: return MakeMInst( X86::SETAEm, FrameIndex, MI); case X86::SETEr: return MakeMInst( X86::SETEm, FrameIndex, MI); case X86::SETNEr: return MakeMInst( X86::SETNEm, FrameIndex, MI); case X86::SETBEr: return MakeMInst( X86::SETBEm, FrameIndex, MI); case X86::SETAr: return MakeMInst( X86::SETAm, FrameIndex, MI); case X86::SETSr: return MakeMInst( X86::SETSm, FrameIndex, MI); case X86::SETNSr: return MakeMInst( X86::SETNSm, FrameIndex, MI); case X86::SETPr: return MakeMInst( X86::SETPm, FrameIndex, MI); case X86::SETNPr: return MakeMInst( X86::SETNPm, FrameIndex, MI); case X86::SETLr: return MakeMInst( X86::SETLm, FrameIndex, MI); case X86::SETGEr: return MakeMInst( X86::SETGEm, FrameIndex, MI); case X86::SETLEr: return MakeMInst( X86::SETLEm, FrameIndex, MI); case X86::SETGr: return MakeMInst( X86::SETGm, FrameIndex, MI); case X86::TEST8rr: return MakeMRInst(X86::TEST8mr ,FrameIndex, MI); case X86::TEST16rr: return MakeMRInst(X86::TEST16mr,FrameIndex, MI); case X86::TEST32rr: return MakeMRInst(X86::TEST32mr,FrameIndex, MI); case X86::TEST8ri: return MakeMIInst(X86::TEST8mi ,FrameIndex, MI); case X86::TEST16ri: return MakeMIInst(X86::TEST16mi,FrameIndex, MI); case X86::TEST32ri: return MakeMIInst(X86::TEST32mi,FrameIndex, MI); case X86::CMP8rr: return MakeMRInst(X86::CMP8mr , FrameIndex, MI); case X86::CMP16rr: return MakeMRInst(X86::CMP16mr, FrameIndex, MI); case X86::CMP32rr: return MakeMRInst(X86::CMP32mr, FrameIndex, MI); case X86::CMP8ri: return MakeMIInst(X86::CMP8mi , FrameIndex, MI); case X86::CMP16ri: return MakeMIInst(X86::CMP16mi, FrameIndex, MI); case X86::CMP32ri: return MakeMIInst(X86::CMP32mi, FrameIndex, MI); // Alias scalar SSE instructions case X86::FsMOVAPSrr: return MakeMRInst(X86::MOVSSmr, FrameIndex, MI); case X86::FsMOVAPDrr: return MakeMRInst(X86::MOVSDmr, FrameIndex, MI); // Scalar SSE instructions case X86::MOVSSrr: return MakeMRInst(X86::MOVSSmr, FrameIndex, MI); case X86::MOVSDrr: return MakeMRInst(X86::MOVSDmr, FrameIndex, MI); #if 0 // Packed SSE instructions // FIXME: Can't use these until we are spilling XMM registers to // 128-bit locations. case X86::MOVAPSrr: return MakeMRInst(X86::MOVAPSmr, FrameIndex, MI); case X86::MOVAPDrr: return MakeMRInst(X86::MOVAPDmr, FrameIndex, MI); #endif } } else if (i == 1) { switch(MI->getOpcode()) { case X86::XCHG8rr: return MakeRMInst(X86::XCHG8rm ,FrameIndex, MI); case X86::XCHG16rr: return MakeRMInst(X86::XCHG16rm,FrameIndex, MI); case X86::XCHG32rr: return MakeRMInst(X86::XCHG32rm,FrameIndex, MI); case X86::MOV8rr: return MakeRMInst(X86::MOV8rm , FrameIndex, MI); case X86::MOV16rr: return MakeRMInst(X86::MOV16rm, FrameIndex, MI); case X86::MOV32rr: return MakeRMInst(X86::MOV32rm, FrameIndex, MI); case X86::CMOVB16rr: return MakeRMInst(X86::CMOVB16rm , FrameIndex, MI); case X86::CMOVB32rr: return MakeRMInst(X86::CMOVB32rm , FrameIndex, MI); case X86::CMOVAE16rr: return MakeRMInst(X86::CMOVAE16rm , FrameIndex, MI); case X86::CMOVAE32rr: return MakeRMInst(X86::CMOVAE32rm , FrameIndex, MI); case X86::CMOVE16rr: return MakeRMInst(X86::CMOVE16rm , FrameIndex, MI); case X86::CMOVE32rr: return MakeRMInst(X86::CMOVE32rm , FrameIndex, MI); case X86::CMOVNE16rr:return MakeRMInst(X86::CMOVNE16rm, FrameIndex, MI); case X86::CMOVNE32rr:return MakeRMInst(X86::CMOVNE32rm, FrameIndex, MI); case X86::CMOVBE16rr:return MakeRMInst(X86::CMOVBE16rm, FrameIndex, MI); case X86::CMOVBE32rr:return MakeRMInst(X86::CMOVBE32rm, FrameIndex, MI); case X86::CMOVA16rr:return MakeRMInst(X86::CMOVA16rm, FrameIndex, MI); case X86::CMOVA32rr:return MakeRMInst(X86::CMOVA32rm, FrameIndex, MI); case X86::CMOVS16rr: return MakeRMInst(X86::CMOVS16rm , FrameIndex, MI); case X86::CMOVS32rr: return MakeRMInst(X86::CMOVS32rm , FrameIndex, MI); case X86::CMOVNS16rr: return MakeRMInst(X86::CMOVNS16rm , FrameIndex, MI); case X86::CMOVNS32rr: return MakeRMInst(X86::CMOVNS32rm , FrameIndex, MI); case X86::CMOVP16rr: return MakeRMInst(X86::CMOVP16rm , FrameIndex, MI); case X86::CMOVP32rr: return MakeRMInst(X86::CMOVP32rm , FrameIndex, MI); case X86::CMOVNP16rr: return MakeRMInst(X86::CMOVNP16rm , FrameIndex, MI); case X86::CMOVNP32rr: return MakeRMInst(X86::CMOVNP32rm , FrameIndex, MI); case X86::CMOVL16rr: return MakeRMInst(X86::CMOVL16rm , FrameIndex, MI); case X86::CMOVL32rr: return MakeRMInst(X86::CMOVL32rm , FrameIndex, MI); case X86::CMOVGE16rr: return MakeRMInst(X86::CMOVGE16rm , FrameIndex, MI); case X86::CMOVGE32rr: return MakeRMInst(X86::CMOVGE32rm , FrameIndex, MI); case X86::CMOVLE16rr: return MakeRMInst(X86::CMOVLE16rm , FrameIndex, MI); case X86::CMOVLE32rr: return MakeRMInst(X86::CMOVLE32rm , FrameIndex, MI); case X86::CMOVG16rr: return MakeRMInst(X86::CMOVG16rm , FrameIndex, MI); case X86::CMOVG32rr: return MakeRMInst(X86::CMOVG32rm , FrameIndex, MI); case X86::ADD8rr: return MakeRMInst(X86::ADD8rm , FrameIndex, MI); case X86::ADD16rr: return MakeRMInst(X86::ADD16rm, FrameIndex, MI); case X86::ADD32rr: return MakeRMInst(X86::ADD32rm, FrameIndex, MI); case X86::ADC32rr: return MakeRMInst(X86::ADC32rm, FrameIndex, MI); case X86::SUB8rr: return MakeRMInst(X86::SUB8rm , FrameIndex, MI); case X86::SUB16rr: return MakeRMInst(X86::SUB16rm, FrameIndex, MI); case X86::SUB32rr: return MakeRMInst(X86::SUB32rm, FrameIndex, MI); case X86::SBB32rr: return MakeRMInst(X86::SBB32rm, FrameIndex, MI); case X86::AND8rr: return MakeRMInst(X86::AND8rm , FrameIndex, MI); case X86::AND16rr: return MakeRMInst(X86::AND16rm, FrameIndex, MI); case X86::AND32rr: return MakeRMInst(X86::AND32rm, FrameIndex, MI); case X86::OR8rr: return MakeRMInst(X86::OR8rm , FrameIndex, MI); case X86::OR16rr: return MakeRMInst(X86::OR16rm, FrameIndex, MI); case X86::OR32rr: return MakeRMInst(X86::OR32rm, FrameIndex, MI); case X86::XOR8rr: return MakeRMInst(X86::XOR8rm , FrameIndex, MI); case X86::XOR16rr: return MakeRMInst(X86::XOR16rm, FrameIndex, MI); case X86::XOR32rr: return MakeRMInst(X86::XOR32rm, FrameIndex, MI); case X86::TEST8rr: return MakeRMInst(X86::TEST8rm ,FrameIndex, MI); case X86::TEST16rr: return MakeRMInst(X86::TEST16rm,FrameIndex, MI); case X86::TEST32rr: return MakeRMInst(X86::TEST32rm,FrameIndex, MI); case X86::IMUL16rr: return MakeRMInst(X86::IMUL16rm,FrameIndex, MI); case X86::IMUL32rr: return MakeRMInst(X86::IMUL32rm,FrameIndex, MI); case X86::IMUL16rri: return MakeRMIInst(X86::IMUL16rmi, FrameIndex, MI); case X86::IMUL32rri: return MakeRMIInst(X86::IMUL32rmi, FrameIndex, MI); case X86::CMP8rr: return MakeRMInst(X86::CMP8rm , FrameIndex, MI); case X86::CMP16rr: return MakeRMInst(X86::CMP16rm, FrameIndex, MI); case X86::CMP32rr: return MakeRMInst(X86::CMP32rm, FrameIndex, MI); case X86::MOVSX16rr8:return MakeRMInst(X86::MOVSX16rm8 , FrameIndex, MI); case X86::MOVSX32rr8:return MakeRMInst(X86::MOVSX32rm8, FrameIndex, MI); case X86::MOVSX32rr16:return MakeRMInst(X86::MOVSX32rm16, FrameIndex, MI); case X86::MOVZX16rr8:return MakeRMInst(X86::MOVZX16rm8 , FrameIndex, MI); case X86::MOVZX32rr8:return MakeRMInst(X86::MOVZX32rm8, FrameIndex, MI); case X86::MOVZX32rr16:return MakeRMInst(X86::MOVZX32rm16, FrameIndex, MI); // Alias scalar SSE instructions case X86::FsMOVAPSrr:return MakeRMInst(X86::MOVSSrm, FrameIndex, MI); case X86::FsMOVAPDrr:return MakeRMInst(X86::MOVSDrm, FrameIndex, MI); // Scalar SSE instructions case X86::MOVSSrr: return MakeRMInst(X86::MOVSSrm, FrameIndex, MI); case X86::MOVSDrr: return MakeRMInst(X86::MOVSDrm, FrameIndex, MI); case X86::CVTTSS2SIrr:return MakeRMInst(X86::CVTTSS2SIrm, FrameIndex, MI); case X86::CVTTSD2SIrr:return MakeRMInst(X86::CVTTSD2SIrm, FrameIndex, MI); case X86::CVTSS2SDrr:return MakeRMInst(X86::CVTSS2SDrm, FrameIndex, MI); case X86::CVTSD2SSrr:return MakeRMInst(X86::CVTSD2SSrm, FrameIndex, MI); case X86::CVTSI2SSrr:return MakeRMInst(X86::CVTSI2SSrm, FrameIndex, MI); case X86::CVTSI2SDrr:return MakeRMInst(X86::CVTSI2SDrm, FrameIndex, MI); case X86::SQRTSSrr: return MakeRMInst(X86::SQRTSSrm, FrameIndex, MI); case X86::SQRTSDrr: return MakeRMInst(X86::SQRTSDrm, FrameIndex, MI); case X86::UCOMISSrr: return MakeRMInst(X86::UCOMISSrm, FrameIndex, MI); case X86::UCOMISDrr: return MakeRMInst(X86::UCOMISDrm, FrameIndex, MI); case X86::ADDSSrr: return MakeRMInst(X86::ADDSSrm, FrameIndex, MI); case X86::ADDSDrr: return MakeRMInst(X86::ADDSDrm, FrameIndex, MI); case X86::MULSSrr: return MakeRMInst(X86::MULSSrm, FrameIndex, MI); case X86::MULSDrr: return MakeRMInst(X86::MULSDrm, FrameIndex, MI); case X86::DIVSSrr: return MakeRMInst(X86::DIVSSrm, FrameIndex, MI); case X86::DIVSDrr: return MakeRMInst(X86::DIVSDrm, FrameIndex, MI); case X86::SUBSSrr: return MakeRMInst(X86::SUBSSrm, FrameIndex, MI); case X86::SUBSDrr: return MakeRMInst(X86::SUBSDrm, FrameIndex, MI); case X86::CMPSSrr: return MakeRMInst(X86::CMPSSrm, FrameIndex, MI); case X86::CMPSDrr: return MakeRMInst(X86::CMPSDrm, FrameIndex, MI); #if 0 // Packed SSE instructions // FIXME: Can't use these until we are spilling XMM registers to // 128-bit locations. case X86::ANDPSrr: return MakeRMInst(X86::ANDPSrm, FrameIndex, MI); case X86::ANDPDrr: return MakeRMInst(X86::ANDPDrm, FrameIndex, MI); case X86::ORPSrr: return MakeRMInst(X86::ORPSrm, FrameIndex, MI); case X86::ORPDrr: return MakeRMInst(X86::ORPDrm, FrameIndex, MI); case X86::XORPSrr: return MakeRMInst(X86::XORPSrm, FrameIndex, MI); case X86::XORPDrr: return MakeRMInst(X86::XORPDrm, FrameIndex, MI); case X86::ANDNPSrr: return MakeRMInst(X86::ANDNPSrm, FrameIndex, MI); case X86::ANDNPDrr: return MakeRMInst(X86::ANDNPDrm, FrameIndex, MI); case X86::MOVAPSrr: return MakeRMInst(X86::MOVAPSrm, FrameIndex, MI); case X86::MOVAPDrr: return MakeRMInst(X86::MOVAPDrm, FrameIndex, MI); #endif } } if (PrintFailedFusing) std::cerr << "We failed to fuse: " << *MI; return NULL; } //===----------------------------------------------------------------------===// // Stack Frame Processing methods //===----------------------------------------------------------------------===// // hasFP - Return true if the specified function should have a dedicated frame // pointer register. This is true if the function has variable sized allocas or // if frame pointer elimination is disabled. // static bool hasFP(MachineFunction &MF) { return NoFramePointerElim || MF.getFrameInfo()->hasVarSizedObjects(); } void X86RegisterInfo:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { if (hasFP(MF)) { // If we have a frame pointer, turn the adjcallstackup instruction into a // 'sub ESP, ' and the adjcallstackdown instruction into 'add ESP, // ' MachineInstr *Old = I; unsigned Amount = Old->getOperand(0).getImmedValue(); if (Amount != 0) { // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); Amount = (Amount+Align-1)/Align*Align; MachineInstr *New = 0; if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) { New=BuildMI(X86::SUB32ri, 1, X86::ESP, MachineOperand::UseAndDef) .addZImm(Amount); } else { assert(Old->getOpcode() == X86::ADJCALLSTACKUP); // factor out the amount the callee already popped. unsigned CalleeAmt = Old->getOperand(1).getImmedValue(); Amount -= CalleeAmt; if (Amount) { unsigned Opc = Amount < 128 ? X86::ADD32ri8 : X86::ADD32ri; New = BuildMI(Opc, 1, X86::ESP, MachineOperand::UseAndDef).addZImm(Amount); } } // Replace the pseudo instruction with a new instruction... if (New) MBB.insert(I, New); } } else if (I->getOpcode() == X86::ADJCALLSTACKUP) { // If we are performing frame pointer elimination and if the callee pops // something off the stack pointer, add it back. We do this until we have // more advanced stack pointer tracking ability. if (unsigned CalleeAmt = I->getOperand(1).getImmedValue()) { unsigned Opc = CalleeAmt < 128 ? X86::SUB32ri8 : X86::SUB32ri; MachineInstr *New = BuildMI(Opc, 1, X86::ESP, MachineOperand::UseAndDef).addZImm(CalleeAmt); MBB.insert(I, New); } } MBB.erase(I); } void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const{ unsigned i = 0; MachineInstr &MI = *II; MachineFunction &MF = *MI.getParent()->getParent(); while (!MI.getOperand(i).isFrameIndex()) { ++i; assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } int FrameIndex = MI.getOperand(i).getFrameIndex(); // This must be part of a four operand memory reference. Replace the // FrameIndex with base register with EBP. Add add an offset to the offset. MI.SetMachineOperandReg(i, hasFP(MF) ? X86::EBP : X86::ESP); // Now add the frame object offset to the offset from EBP. int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + MI.getOperand(i+3).getImmedValue()+4; if (!hasFP(MF)) Offset += MF.getFrameInfo()->getStackSize(); else Offset += 4; // Skip the saved EBP MI.SetMachineOperandConst(i+3, MachineOperand::MO_SignExtendedImmed, Offset); } void X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{ if (hasFP(MF)) { // Create a frame entry for the EBP register that must be saved. int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, -8); assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() && "Slot for EBP register must be last in order to be found!"); } } void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineInstr *MI; // Get the number of bytes to allocate from the FrameInfo unsigned NumBytes = MFI->getStackSize(); if (hasFP(MF)) { // Get the offset of the stack slot for the EBP register... which is // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexBegin())+4; if (NumBytes) { // adjust stack pointer: ESP -= numbytes unsigned Opc = NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri; MI = BuildMI(Opc, 1, X86::ESP,MachineOperand::UseAndDef).addImm(NumBytes); MBB.insert(MBBI, MI); } // Save EBP into the appropriate stack slot... MI = addRegOffset(BuildMI(X86::MOV32mr, 5), // mov [ESP-], EBP X86::ESP, EBPOffset+NumBytes).addReg(X86::EBP); MBB.insert(MBBI, MI); // Update EBP with the new base value... if (NumBytes == 4) // mov EBP, ESP MI = BuildMI(X86::MOV32rr, 2, X86::EBP).addReg(X86::ESP); else // lea EBP, [ESP+StackSize] MI = addRegOffset(BuildMI(X86::LEA32r, 5, X86::EBP), X86::ESP,NumBytes-4); MBB.insert(MBBI, MI); } else { if (MFI->hasCalls()) { // When we have no frame pointer, we reserve argument space for call sites // in the function immediately on entry to the current function. This // eliminates the need for add/sub ESP brackets around call sites. // NumBytes += MFI->getMaxCallFrameSize(); // Round the size to a multiple of the alignment (don't forget the 4 byte // offset though). unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); NumBytes = ((NumBytes+4)+Align-1)/Align*Align - 4; } // Update frame info to pretend that this is part of the stack... MFI->setStackSize(NumBytes); if (NumBytes) { // adjust stack pointer: ESP -= numbytes unsigned Opc = NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri; MI= BuildMI(Opc, 1, X86::ESP, MachineOperand::UseAndDef).addImm(NumBytes); MBB.insert(MBBI, MI); } } } void X86RegisterInfo::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); MachineBasicBlock::iterator MBBI = prior(MBB.end()); switch (MBBI->getOpcode()) { case X86::RET: case X86::RETI: case X86::TAILJMPd: case X86::TAILJMPr: case X86::TAILJMPm: break; // These are ok default: assert(0 && "Can only insert epilog into returning blocks"); } if (hasFP(MF)) { // Get the offset of the stack slot for the EBP register... which is // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexEnd()-1)+4; // mov ESP, EBP BuildMI(MBB, MBBI, X86::MOV32rr, 1,X86::ESP).addReg(X86::EBP); // pop EBP BuildMI(MBB, MBBI, X86::POP32r, 0, X86::EBP); } else { // Get the number of bytes allocated from the FrameInfo... unsigned NumBytes = MFI->getStackSize(); if (NumBytes) { // adjust stack pointer back: ESP += numbytes // If there is an ADD32ri or SUB32ri of ESP immediately before this // instruction, merge the two instructions. if (MBBI != MBB.begin()) { MachineBasicBlock::iterator PI = prior(MBBI); if ((PI->getOpcode() == X86::ADD32ri || PI->getOpcode() == X86::ADD32ri8) && PI->getOperand(0).getReg() == X86::ESP) { NumBytes += PI->getOperand(1).getImmedValue(); MBB.erase(PI); } else if ((PI->getOpcode() == X86::SUB32ri || PI->getOpcode() == X86::SUB32ri8) && PI->getOperand(0).getReg() == X86::ESP) { NumBytes -= PI->getOperand(1).getImmedValue(); MBB.erase(PI); } else if (PI->getOpcode() == X86::ADJSTACKPTRri) { NumBytes += PI->getOperand(1).getImmedValue(); MBB.erase(PI); } } if (NumBytes > 0) { unsigned Opc = NumBytes < 128 ? X86::ADD32ri8 : X86::ADD32ri; BuildMI(MBB, MBBI, Opc, 2) .addReg(X86::ESP, MachineOperand::UseAndDef).addZImm(NumBytes); } else if ((int)NumBytes < 0) { unsigned Opc = -NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri; BuildMI(MBB, MBBI, Opc, 2) .addReg(X86::ESP, MachineOperand::UseAndDef).addZImm(-NumBytes); } } } } #include "X86GenRegisterInfo.inc"