//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements bottom-up and top-down register pressure reduction list // schedulers, using standard algorithms. The basic approach uses a priority // queue of available nodes to schedule. One at a time, nodes are taken from // the priority queue (thus in priority order), checked for legality to // schedule, and emitted if legal. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include #include #include "llvm/Support/CommandLine.h" using namespace llvm; STATISTIC(NumBacktracks, "Number of times scheduler backtracked"); STATISTIC(NumUnfolds, "Number of nodes unfolded"); STATISTIC(NumDups, "Number of duplicated nodes"); STATISTIC(NumCCCopies, "Number of cross class copies"); static RegisterScheduler burrListDAGScheduler("list-burr", " Bottom-up register reduction list scheduling", createBURRListDAGScheduler); static RegisterScheduler tdrListrDAGScheduler("list-tdrr", " Top-down register reduction list scheduling", createTDRRListDAGScheduler); namespace { //===----------------------------------------------------------------------===// /// ScheduleDAGRRList - The actual register reduction list scheduler /// implementation. This supports both top-down and bottom-up scheduling. /// class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG { private: /// isBottomUp - This is true if the scheduling problem is bottom-up, false if /// it is top-down. bool isBottomUp; /// AvailableQueue - The priority queue to use for the available SUnits. SchedulingPriorityQueue *AvailableQueue; /// LiveRegs / LiveRegDefs - A set of physical registers and their definition /// that are "live". These nodes must be scheduled before any other nodes that /// modifies the registers can be scheduled. SmallSet LiveRegs; std::vector LiveRegDefs; std::vector LiveRegCycles; public: ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb, const TargetMachine &tm, bool isbottomup, SchedulingPriorityQueue *availqueue) : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), AvailableQueue(availqueue) { } ~ScheduleDAGRRList() { delete AvailableQueue; } void Schedule(); /// IsReachable - Checks if SU is reachable from TargetSU. bool IsReachable(SUnit *SU, SUnit *TargetSU); /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will /// create a cycle. bool WillCreateCycle(SUnit *SU, SUnit *TargetSU); /// AddPred - This adds the specified node X as a predecessor of /// the current node Y if not already. /// This returns true if this is a new predecessor. /// Updates the topological ordering if required. bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial, unsigned PhyReg = 0, int Cost = 1); /// RemovePred - This removes the specified node N from the predecessors of /// the current node M. Updates the topological ordering if required. bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial); private: void ReleasePred(SUnit*, bool, unsigned); void ReleaseSucc(SUnit*, bool isChain, unsigned); void CapturePred(SUnit*, SUnit*, bool); void ScheduleNodeBottomUp(SUnit*, unsigned); void ScheduleNodeTopDown(SUnit*, unsigned); void UnscheduleNodeBottomUp(SUnit*); void BacktrackBottomUp(SUnit*, unsigned, unsigned&); SUnit *CopyAndMoveSuccessors(SUnit*); void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned, const TargetRegisterClass*, const TargetRegisterClass*, SmallVector&); bool DelayForLiveRegsBottomUp(SUnit*, SmallVector&); void ListScheduleTopDown(); void ListScheduleBottomUp(); void CommuteNodesToReducePressure(); /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it. /// Updates the topological ordering if required. SUnit *CreateNewSUnit(SDNode *N) { SUnit *NewNode = NewSUnit(N); // Update the topological ordering. if (NewNode->NodeNum >= Node2Index.size()) InitDAGTopologicalSorting(); return NewNode; } /// CreateClone - Creates a new SUnit from an existing one. /// Updates the topological ordering if required. SUnit *CreateClone(SUnit *N) { SUnit *NewNode = Clone(N); // Update the topological ordering. if (NewNode->NodeNum >= Node2Index.size()) InitDAGTopologicalSorting(); return NewNode; } /// Functions for preserving the topological ordering /// even after dynamic insertions of new edges. /// This allows a very fast implementation of IsReachable. /** The idea of the algorithm is taken from "Online algorithms for managing the topological order of a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly This is the MNR algorithm, which was first introduced by A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in "Maintaining a topological order under edge insertions". Short description of the algorithm: Topological ordering, ord, of a DAG maps each node to a topological index so that for all edges X->Y it is the case that ord(X) < ord(Y). This means that if there is a path from the node X to the node Z, then ord(X) < ord(Z). This property can be used to check for reachability of nodes: if Z is reachable from X, then an insertion of the edge Z->X would create a cycle. The algorithm first computes a topological ordering for the DAG by initializing the Index2Node and Node2Index arrays and then tries to keep the ordering up-to-date after edge insertions by reordering the DAG. On insertion of the edge X->Y, the algorithm first marks by calling DFS the nodes reachable from Y, and then shifts them using Shift to lie immediately after X in Index2Node. */ /// InitDAGTopologicalSorting - create the initial topological /// ordering from the DAG to be scheduled. void InitDAGTopologicalSorting(); /// DFS - make a DFS traversal and mark all nodes affected by the /// edge insertion. These nodes will later get new topological indexes /// by means of the Shift method. void DFS(SUnit *SU, int UpperBound, bool& HasLoop); /// Shift - reassign topological indexes for the nodes in the DAG /// to preserve the topological ordering. void Shift(BitVector& Visited, int LowerBound, int UpperBound); /// Allocate - assign the topological index to the node n. void Allocate(int n, int index); /// Index2Node - Maps topological index to the node number. std::vector Index2Node; /// Node2Index - Maps the node number to its topological index. std::vector Node2Index; /// Visited - a set of nodes visited during a DFS traversal. BitVector Visited; }; } // end anonymous namespace /// Schedule - Schedule the DAG using list scheduling. void ScheduleDAGRRList::Schedule() { DOUT << "********** List Scheduling **********\n"; LiveRegDefs.resize(TRI->getNumRegs(), NULL); LiveRegCycles.resize(TRI->getNumRegs(), 0); // Build scheduling units. BuildSchedUnits(); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(&DAG)); CalculateDepths(); CalculateHeights(); InitDAGTopologicalSorting(); AvailableQueue->initNodes(SUnitMap, SUnits); // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate. if (isBottomUp) ListScheduleBottomUp(); else ListScheduleTopDown(); AvailableQueue->releaseState(); CommuteNodesToReducePressure(); DOUT << "*** Final schedule ***\n"; DEBUG(dumpSchedule()); DOUT << "\n"; // Emit in scheduled order EmitSchedule(); } /// CommuteNodesToReducePressure - If a node is two-address and commutable, and /// it is not the last use of its first operand, add it to the CommuteSet if /// possible. It will be commuted when it is translated to a MI. void ScheduleDAGRRList::CommuteNodesToReducePressure() { SmallPtrSet OperandSeen; for (unsigned i = Sequence.size()-1; i != 0; --i) { // Ignore first node. SUnit *SU = Sequence[i]; if (!SU || !SU->Node) continue; if (SU->isCommutable) { unsigned Opc = SU->Node->getTargetOpcode(); const TargetInstrDesc &TID = TII->get(Opc); unsigned NumRes = TID.getNumDefs(); unsigned NumOps = TID.getNumOperands() - NumRes; for (unsigned j = 0; j != NumOps; ++j) { if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1) continue; SDNode *OpN = SU->Node->getOperand(j).Val; SUnit *OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo]; if (OpSU && OperandSeen.count(OpSU) == 1) { // Ok, so SU is not the last use of OpSU, but SU is two-address so // it will clobber OpSU. Try to commute SU if no other source operands // are live below. bool DoCommute = true; for (unsigned k = 0; k < NumOps; ++k) { if (k != j) { OpN = SU->Node->getOperand(k).Val; OpSU = isPassiveNode(OpN) ? NULL : SUnitMap[OpN][SU->InstanceNo]; if (OpSU && OperandSeen.count(OpSU) == 1) { DoCommute = false; break; } } } if (DoCommute) CommuteSet.insert(SU->Node); } // Only look at the first use&def node for now. break; } } for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (!I->isCtrl) OperandSeen.insert(I->Dep); } } } //===----------------------------------------------------------------------===// // Bottom-Up Scheduling //===----------------------------------------------------------------------===// /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to /// the AvailableQueue if the count reaches zero. Also update its cycle bound. void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle) { // FIXME: the distance between two nodes is not always == the predecessor's // latency. For example, the reader can very well read the register written // by the predecessor later than the issue cycle. It also depends on the // interrupt model (drain vs. freeze). PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency); --PredSU->NumSuccsLeft; #ifndef NDEBUG if (PredSU->NumSuccsLeft < 0) { cerr << "*** List scheduling failed! ***\n"; PredSU->dump(&DAG); cerr << " has been released too many times!\n"; assert(0); } #endif if (PredSU->NumSuccsLeft == 0) { // EntryToken has to go last! Special case it here. if (!PredSU->Node || PredSU->Node->getOpcode() != ISD::EntryToken) { PredSU->isAvailable = true; AvailableQueue->push(PredSU); } } } /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending /// count of its predecessors. If a predecessor pending count is zero, add it to /// the Available queue. void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(&DAG)); SU->Cycle = CurCycle; AvailableQueue->ScheduledNode(SU); // Bottom up: release predecessors for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { ReleasePred(I->Dep, I->isCtrl, CurCycle); if (I->Cost < 0) { // This is a physical register dependency and it's impossible or // expensive to copy the register. Make sure nothing that can // clobber the register is scheduled between the predecessor and // this node. if (LiveRegs.insert(I->Reg)) { LiveRegDefs[I->Reg] = I->Dep; LiveRegCycles[I->Reg] = CurCycle; } } } // Release all the implicit physical register defs that are live. for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->Cost < 0) { if (LiveRegCycles[I->Reg] == I->Dep->Cycle) { LiveRegs.erase(I->Reg); assert(LiveRegDefs[I->Reg] == SU && "Physical register dependency violated?"); LiveRegDefs[I->Reg] = NULL; LiveRegCycles[I->Reg] = 0; } } } SU->isScheduled = true; } /// CapturePred - This does the opposite of ReleasePred. Since SU is being /// unscheduled, incrcease the succ left count of its predecessors. Remove /// them from AvailableQueue if necessary. void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) { PredSU->CycleBound = 0; for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end(); I != E; ++I) { if (I->Dep == SU) continue; PredSU->CycleBound = std::max(PredSU->CycleBound, I->Dep->Cycle + PredSU->Latency); } if (PredSU->isAvailable) { PredSU->isAvailable = false; if (!PredSU->isPending) AvailableQueue->remove(PredSU); } ++PredSU->NumSuccsLeft; } /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and /// its predecessor states to reflect the change. void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) { DOUT << "*** Unscheduling [" << SU->Cycle << "]: "; DEBUG(SU->dump(&DAG)); AvailableQueue->UnscheduledNode(SU); for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { CapturePred(I->Dep, SU, I->isCtrl); if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg]) { LiveRegs.erase(I->Reg); assert(LiveRegDefs[I->Reg] == I->Dep && "Physical register dependency violated?"); LiveRegDefs[I->Reg] = NULL; LiveRegCycles[I->Reg] = 0; } } for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->Cost < 0) { if (LiveRegs.insert(I->Reg)) { assert(!LiveRegDefs[I->Reg] && "Physical register dependency violated?"); LiveRegDefs[I->Reg] = SU; } if (I->Dep->Cycle < LiveRegCycles[I->Reg]) LiveRegCycles[I->Reg] = I->Dep->Cycle; } } SU->Cycle = 0; SU->isScheduled = false; SU->isAvailable = true; AvailableQueue->push(SU); } /// IsReachable - Checks if SU is reachable from TargetSU. bool ScheduleDAGRRList::IsReachable(SUnit *SU, SUnit *TargetSU) { // If insertion of the edge SU->TargetSU would create a cycle // then there is a path from TargetSU to SU. int UpperBound, LowerBound; LowerBound = Node2Index[TargetSU->NodeNum]; UpperBound = Node2Index[SU->NodeNum]; bool HasLoop = false; // Is Ord(TargetSU) < Ord(SU) ? if (LowerBound < UpperBound) { Visited.reset(); // There may be a path from TargetSU to SU. Check for it. DFS(TargetSU, UpperBound, HasLoop); } return HasLoop; } /// Allocate - assign the topological index to the node n. inline void ScheduleDAGRRList::Allocate(int n, int index) { Node2Index[n] = index; Index2Node[index] = n; } /// InitDAGTopologicalSorting - create the initial topological /// ordering from the DAG to be scheduled. void ScheduleDAGRRList::InitDAGTopologicalSorting() { unsigned DAGSize = SUnits.size(); std::vector InDegree(DAGSize); std::vector WorkList; WorkList.reserve(DAGSize); std::vector TopOrder; TopOrder.reserve(DAGSize); // Initialize the data structures. for (unsigned i = 0, e = DAGSize; i != e; ++i) { SUnit *SU = &SUnits[i]; int NodeNum = SU->NodeNum; unsigned Degree = SU->Succs.size(); InDegree[NodeNum] = Degree; // Is it a node without dependencies? if (Degree == 0) { assert(SU->Succs.empty() && "SUnit should have no successors"); // Collect leaf nodes. WorkList.push_back(SU); } } while (!WorkList.empty()) { SUnit *SU = WorkList.back(); WorkList.pop_back(); TopOrder.push_back(SU); for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { SUnit *SU = I->Dep; if (!--InDegree[SU->NodeNum]) // If all dependencies of the node are processed already, // then the node can be computed now. WorkList.push_back(SU); } } // Second pass, assign the actual topological order as node ids. int Id = 0; Index2Node.clear(); Node2Index.clear(); Index2Node.resize(DAGSize); Node2Index.resize(DAGSize); Visited.resize(DAGSize); for (std::vector::reverse_iterator TI = TopOrder.rbegin(), TE = TopOrder.rend();TI != TE; ++TI) { Allocate((*TI)->NodeNum, Id); Id++; } #ifndef NDEBUG // Check correctness of the ordering for (unsigned i = 0, e = DAGSize; i != e; ++i) { SUnit *SU = &SUnits[i]; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] && "Wrong topological sorting"); } } #endif } /// AddPred - adds an edge from SUnit X to SUnit Y. /// Updates the topological ordering if required. bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial, unsigned PhyReg, int Cost) { int UpperBound, LowerBound; LowerBound = Node2Index[Y->NodeNum]; UpperBound = Node2Index[X->NodeNum]; bool HasLoop = false; // Is Ord(X) < Ord(Y) ? if (LowerBound < UpperBound) { // Update the topological order. Visited.reset(); DFS(Y, UpperBound, HasLoop); assert(!HasLoop && "Inserted edge creates a loop!"); // Recompute topological indexes. Shift(Visited, LowerBound, UpperBound); } // Now really insert the edge. return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost); } /// RemovePred - This removes the specified node N from the predecessors of /// the current node M. Updates the topological ordering if required. bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial) { // InitDAGTopologicalSorting(); return M->removePred(N, isCtrl, isSpecial); } /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark /// all nodes affected by the edge insertion. These nodes will later get new /// topological indexes by means of the Shift method. void ScheduleDAGRRList::DFS(SUnit *SU, int UpperBound, bool& HasLoop) { std::vector WorkList; WorkList.reserve(SUnits.size()); WorkList.push_back(SU); while (!WorkList.empty()) { SU = WorkList.back(); WorkList.pop_back(); Visited.set(SU->NodeNum); for (int I = SU->Succs.size()-1; I >= 0; --I) { int s = SU->Succs[I].Dep->NodeNum; if (Node2Index[s] == UpperBound) { HasLoop = true; return; } // Visit successors if not already and in affected region. if (!Visited.test(s) && Node2Index[s] < UpperBound) { WorkList.push_back(SU->Succs[I].Dep); } } } } /// Shift - Renumber the nodes so that the topological ordering is /// preserved. void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound, int UpperBound) { std::vector L; int shift = 0; int i; for (i = LowerBound; i <= UpperBound; ++i) { // w is node at topological index i. int w = Index2Node[i]; if (Visited.test(w)) { // Unmark. Visited.reset(w); L.push_back(w); shift = shift + 1; } else { Allocate(w, i - shift); } } for (unsigned j = 0; j < L.size(); ++j) { Allocate(L[j], i - shift); i = i + 1; } } /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will /// create a cycle. bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) { if (IsReachable(TargetSU, SU)) return true; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) if (I->Cost < 0 && IsReachable(TargetSU, I->Dep)) return true; return false; } /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in /// BTCycle in order to schedule a specific node. Returns the last unscheduled /// SUnit. Also returns if a successor is unscheduled in the process. void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle, unsigned &CurCycle) { SUnit *OldSU = NULL; while (CurCycle > BtCycle) { OldSU = Sequence.back(); Sequence.pop_back(); if (SU->isSucc(OldSU)) // Don't try to remove SU from AvailableQueue. SU->isAvailable = false; UnscheduleNodeBottomUp(OldSU); --CurCycle; } if (SU->isSucc(OldSU)) { assert(false && "Something is wrong!"); abort(); } ++NumBacktracks; } /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled /// successors to the newly created node. SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) { if (SU->FlaggedNodes.size()) return NULL; SDNode *N = SU->Node; if (!N) return NULL; SUnit *NewSU; bool TryUnfold = false; for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { MVT::ValueType VT = N->getValueType(i); if (VT == MVT::Flag) return NULL; else if (VT == MVT::Other) TryUnfold = true; } for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { const SDOperand &Op = N->getOperand(i); MVT::ValueType VT = Op.Val->getValueType(Op.ResNo); if (VT == MVT::Flag) return NULL; } if (TryUnfold) { SmallVector NewNodes; if (!TII->unfoldMemoryOperand(DAG, N, NewNodes)) return NULL; DOUT << "Unfolding SU # " << SU->NodeNum << "\n"; assert(NewNodes.size() == 2 && "Expected a load folding node!"); N = NewNodes[1]; SDNode *LoadNode = NewNodes[0]; unsigned NumVals = N->getNumValues(); unsigned OldNumVals = SU->Node->getNumValues(); for (unsigned i = 0; i != NumVals; ++i) DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i)); DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1), SDOperand(LoadNode, 1)); SUnit *NewSU = CreateNewSUnit(N); SUnitMap[N].push_back(NewSU); const TargetInstrDesc &TID = TII->get(N->getTargetOpcode()); for (unsigned i = 0; i != TID.getNumOperands(); ++i) { if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { NewSU->isTwoAddress = true; break; } } if (TID.isCommutable()) NewSU->isCommutable = true; // FIXME: Calculate height / depth and propagate the changes? NewSU->Depth = SU->Depth; NewSU->Height = SU->Height; ComputeLatency(NewSU); // LoadNode may already exist. This can happen when there is another // load from the same location and producing the same type of value // but it has different alignment or volatileness. bool isNewLoad = true; SUnit *LoadSU; DenseMap >::iterator SMI = SUnitMap.find(LoadNode); if (SMI != SUnitMap.end()) { LoadSU = SMI->second.front(); isNewLoad = false; } else { LoadSU = CreateNewSUnit(LoadNode); SUnitMap[LoadNode].push_back(LoadSU); LoadSU->Depth = SU->Depth; LoadSU->Height = SU->Height; ComputeLatency(LoadSU); } SUnit *ChainPred = NULL; SmallVector ChainSuccs; SmallVector LoadPreds; SmallVector NodePreds; SmallVector NodeSuccs; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl) ChainPred = I->Dep; else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode)) LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false)); else NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false)); } for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isCtrl) ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost, I->isCtrl, I->isSpecial)); else NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost, I->isCtrl, I->isSpecial)); } RemovePred(SU, ChainPred, true, false); if (isNewLoad) { AddPred(LoadSU,ChainPred, true, false); } for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) { SDep *Pred = &LoadPreds[i]; RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial); if (isNewLoad) { AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial, Pred->Reg, Pred->Cost); } } for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) { SDep *Pred = &NodePreds[i]; RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial); AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial, Pred->Reg, Pred->Cost); } for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) { SDep *Succ = &NodeSuccs[i]; RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial); AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial, Succ->Reg, Succ->Cost); } for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) { SDep *Succ = &ChainSuccs[i]; RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial); if (isNewLoad) { AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial, Succ->Reg, Succ->Cost); } } if (isNewLoad) { AddPred(NewSU, LoadSU, false, false); } if (isNewLoad) AvailableQueue->addNode(LoadSU); AvailableQueue->addNode(NewSU); ++NumUnfolds; if (NewSU->NumSuccsLeft == 0) { NewSU->isAvailable = true; return NewSU; } SU = NewSU; } DOUT << "Duplicating SU # " << SU->NodeNum << "\n"; NewSU = CreateClone(SU); // New SUnit has the exact same predecessors. for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) if (!I->isSpecial) { AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost); NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1); } // Only copy scheduled successors. Cut them from old node's successor // list and move them over. SmallVector, 4> DelDeps; for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isSpecial) continue; if (I->Dep->isScheduled) { NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1); AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost); DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl)); } } for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) { SUnit *Succ = DelDeps[i].first; bool isCtrl = DelDeps[i].second; RemovePred(Succ, SU, isCtrl, false); } AvailableQueue->updateNode(SU); AvailableQueue->addNode(NewSU); ++NumDups; return NewSU; } /// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies /// and move all scheduled successors of the given SUnit to the last copy. void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC, SmallVector &Copies) { SUnit *CopyFromSU = CreateNewSUnit(NULL); CopyFromSU->CopySrcRC = SrcRC; CopyFromSU->CopyDstRC = DestRC; CopyFromSU->Depth = SU->Depth; CopyFromSU->Height = SU->Height; SUnit *CopyToSU = CreateNewSUnit(NULL); CopyToSU->CopySrcRC = DestRC; CopyToSU->CopyDstRC = SrcRC; // Only copy scheduled successors. Cut them from old node's successor // list and move them over. SmallVector, 4> DelDeps; for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isSpecial) continue; if (I->Dep->isScheduled) { CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1); AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost); DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl)); } } for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) { SUnit *Succ = DelDeps[i].first; bool isCtrl = DelDeps[i].second; RemovePred(Succ, SU, isCtrl, false); } AddPred(CopyFromSU, SU, false, false, Reg, -1); AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1); AvailableQueue->updateNode(SU); AvailableQueue->addNode(CopyFromSU); AvailableQueue->addNode(CopyToSU); Copies.push_back(CopyFromSU); Copies.push_back(CopyToSU); ++NumCCCopies; } /// getPhysicalRegisterVT - Returns the ValueType of the physical register /// definition of the specified node. /// FIXME: Move to SelectionDAG? static MVT::ValueType getPhysicalRegisterVT(SDNode *N, unsigned Reg, const TargetInstrInfo *TII) { const TargetInstrDesc &TID = TII->get(N->getTargetOpcode()); assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!"); unsigned NumRes = TID.getNumDefs(); for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) { if (Reg == *ImpDef) break; ++NumRes; } return N->getValueType(NumRes); } /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay /// scheduling of the given node to satisfy live physical register dependencies. /// If the specific node is the last one that's available to schedule, do /// whatever is necessary (i.e. backtracking or cloning) to make it possible. bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU, SmallVector &LRegs){ if (LiveRegs.empty()) return false; SmallSet RegAdded; // If this node would clobber any "live" register, then it's not ready. for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->Cost < 0) { unsigned Reg = I->Reg; if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) { if (RegAdded.insert(Reg)) LRegs.push_back(Reg); } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) { if (RegAdded.insert(*Alias)) LRegs.push_back(*Alias); } } } for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) { SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1]; if (!Node || !Node->isTargetOpcode()) continue; const TargetInstrDesc &TID = TII->get(Node->getTargetOpcode()); if (!TID.ImplicitDefs) continue; for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) { if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) { if (RegAdded.insert(*Reg)) LRegs.push_back(*Reg); } for (const unsigned *Alias = TRI->getAliasSet(*Reg); *Alias; ++Alias) if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) { if (RegAdded.insert(*Alias)) LRegs.push_back(*Alias); } } } return !LRegs.empty(); } /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up /// schedulers. void ScheduleDAGRRList::ListScheduleBottomUp() { unsigned CurCycle = 0; // Add root to Available queue. SUnit *RootSU = SUnitMap[DAG.getRoot().Val].front(); RootSU->isAvailable = true; AvailableQueue->push(RootSU); // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. SmallVector NotReady; while (!AvailableQueue->empty()) { bool Delayed = false; DenseMap > LRegsMap; SUnit *CurSU = AvailableQueue->pop(); while (CurSU) { if (CurSU->CycleBound <= CurCycle) { SmallVector LRegs; if (!DelayForLiveRegsBottomUp(CurSU, LRegs)) break; Delayed = true; LRegsMap.insert(std::make_pair(CurSU, LRegs)); } CurSU->isPending = true; // This SU is not in AvailableQueue right now. NotReady.push_back(CurSU); CurSU = AvailableQueue->pop(); } // All candidates are delayed due to live physical reg dependencies. // Try backtracking, code duplication, or inserting cross class copies // to resolve it. if (Delayed && !CurSU) { for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { SUnit *TrySU = NotReady[i]; SmallVector &LRegs = LRegsMap[TrySU]; // Try unscheduling up to the point where it's safe to schedule // this node. unsigned LiveCycle = CurCycle; for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) { unsigned Reg = LRegs[j]; unsigned LCycle = LiveRegCycles[Reg]; LiveCycle = std::min(LiveCycle, LCycle); } SUnit *OldSU = Sequence[LiveCycle]; if (!WillCreateCycle(TrySU, OldSU)) { BacktrackBottomUp(TrySU, LiveCycle, CurCycle); // Force the current node to be scheduled before the node that // requires the physical reg dep. if (OldSU->isAvailable) { OldSU->isAvailable = false; AvailableQueue->remove(OldSU); } AddPred(TrySU, OldSU, true, true); // If one or more successors has been unscheduled, then the current // node is no longer avaialable. Schedule a successor that's now // available instead. if (!TrySU->isAvailable) CurSU = AvailableQueue->pop(); else { CurSU = TrySU; TrySU->isPending = false; NotReady.erase(NotReady.begin()+i); } break; } } if (!CurSU) { // Can't backtrack. Try duplicating the nodes that produces these // "expensive to copy" values to break the dependency. In case even // that doesn't work, insert cross class copies. SUnit *TrySU = NotReady[0]; SmallVector &LRegs = LRegsMap[TrySU]; assert(LRegs.size() == 1 && "Can't handle this yet!"); unsigned Reg = LRegs[0]; SUnit *LRDef = LiveRegDefs[Reg]; SUnit *NewDef = CopyAndMoveSuccessors(LRDef); if (!NewDef) { // Issue expensive cross register class copies. MVT::ValueType VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII); const TargetRegisterClass *RC = TRI->getPhysicalRegisterRegClass(Reg, VT); const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); if (!DestRC) { assert(false && "Don't know how to copy this physical register!"); abort(); } SmallVector Copies; InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies); DOUT << "Adding an edge from SU # " << TrySU->NodeNum << " to SU #" << Copies.front()->NodeNum << "\n"; AddPred(TrySU, Copies.front(), true, true); NewDef = Copies.back(); } DOUT << "Adding an edge from SU # " << NewDef->NodeNum << " to SU #" << TrySU->NodeNum << "\n"; LiveRegDefs[Reg] = NewDef; AddPred(NewDef, TrySU, true, true); TrySU->isAvailable = false; CurSU = NewDef; } if (!CurSU) { assert(false && "Unable to resolve live physical register dependencies!"); abort(); } } // Add the nodes that aren't ready back onto the available list. for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { NotReady[i]->isPending = false; // May no longer be available due to backtracking. if (NotReady[i]->isAvailable) AvailableQueue->push(NotReady[i]); } NotReady.clear(); if (!CurSU) Sequence.push_back(0); else { ScheduleNodeBottomUp(CurSU, CurCycle); Sequence.push_back(CurSU); } ++CurCycle; } // Add entry node last if (DAG.getEntryNode().Val != DAG.getRoot().Val) { SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front(); Sequence.push_back(Entry); } // Reverse the order if it is bottom up. std::reverse(Sequence.begin(), Sequence.end()); #ifndef NDEBUG // Verify that all SUnits were scheduled. bool AnyNotSched = false; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { if (SUnits[i].NumSuccsLeft != 0) { if (!AnyNotSched) cerr << "*** List scheduling failed! ***\n"; SUnits[i].dump(&DAG); cerr << "has not been scheduled!\n"; AnyNotSched = true; } } assert(!AnyNotSched); #endif } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the AvailableQueue if the count reaches zero. Also update its cycle bound. void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle) { // FIXME: the distance between two nodes is not always == the predecessor's // latency. For example, the reader can very well read the register written // by the predecessor later than the issue cycle. It also depends on the // interrupt model (drain vs. freeze). SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency); --SuccSU->NumPredsLeft; #ifndef NDEBUG if (SuccSU->NumPredsLeft < 0) { cerr << "*** List scheduling failed! ***\n"; SuccSU->dump(&DAG); cerr << " has been released too many times!\n"; assert(0); } #endif if (SuccSU->NumPredsLeft == 0) { SuccSU->isAvailable = true; AvailableQueue->push(SuccSU); } } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(&DAG)); SU->Cycle = CurCycle; AvailableQueue->ScheduledNode(SU); // Top down: release successors for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) ReleaseSucc(I->Dep, I->isCtrl, CurCycle); SU->isScheduled = true; } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void ScheduleDAGRRList::ListScheduleTopDown() { unsigned CurCycle = 0; SUnit *Entry = SUnitMap[DAG.getEntryNode().Val].front(); // All leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (SUnits[i].Preds.empty() && &SUnits[i] != Entry) { AvailableQueue->push(&SUnits[i]); SUnits[i].isAvailable = true; } } // Emit the entry node first. ScheduleNodeTopDown(Entry, CurCycle); Sequence.push_back(Entry); ++CurCycle; // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. std::vector NotReady; while (!AvailableQueue->empty()) { SUnit *CurSU = AvailableQueue->pop(); while (CurSU && CurSU->CycleBound > CurCycle) { NotReady.push_back(CurSU); CurSU = AvailableQueue->pop(); } // Add the nodes that aren't ready back onto the available list. AvailableQueue->push_all(NotReady); NotReady.clear(); if (!CurSU) Sequence.push_back(0); else { ScheduleNodeTopDown(CurSU, CurCycle); Sequence.push_back(CurSU); } CurCycle++; } #ifndef NDEBUG // Verify that all SUnits were scheduled. bool AnyNotSched = false; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { if (!SUnits[i].isScheduled) { if (!AnyNotSched) cerr << "*** List scheduling failed! ***\n"; SUnits[i].dump(&DAG); cerr << "has not been scheduled!\n"; AnyNotSched = true; } } assert(!AnyNotSched); #endif } //===----------------------------------------------------------------------===// // RegReductionPriorityQueue Implementation //===----------------------------------------------------------------------===// // // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers // to reduce register pressure. // namespace { template class RegReductionPriorityQueue; /// Sorting functions for the Available queue. struct bu_ls_rr_sort : public std::binary_function { RegReductionPriorityQueue *SPQ; bu_ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {} bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} bool operator()(const SUnit* left, const SUnit* right) const; }; struct td_ls_rr_sort : public std::binary_function { RegReductionPriorityQueue *SPQ; td_ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {} td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} bool operator()(const SUnit* left, const SUnit* right) const; }; } // end anonymous namespace static inline bool isCopyFromLiveIn(const SUnit *SU) { SDNode *N = SU->Node; return N && N->getOpcode() == ISD::CopyFromReg && N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag; } namespace { template class VISIBILITY_HIDDEN RegReductionPriorityQueue : public SchedulingPriorityQueue { std::priority_queue, SF> Queue; public: RegReductionPriorityQueue() : Queue(SF(this)) {} virtual void initNodes(DenseMap > &sumap, std::vector &sunits) {} virtual void addNode(const SUnit *SU) {} virtual void updateNode(const SUnit *SU) {} virtual void releaseState() {} virtual unsigned getNodePriority(const SUnit *SU) const { return 0; } unsigned size() const { return Queue.size(); } bool empty() const { return Queue.empty(); } void push(SUnit *U) { Queue.push(U); } void push_all(const std::vector &Nodes) { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) Queue.push(Nodes[i]); } SUnit *pop() { if (empty()) return NULL; SUnit *V = Queue.top(); Queue.pop(); return V; } /// remove - This is a really inefficient way to remove a node from a /// priority queue. We should roll our own heap to make this better or /// something. void remove(SUnit *SU) { std::vector Temp; assert(!Queue.empty() && "Not in queue!"); while (Queue.top() != SU) { Temp.push_back(Queue.top()); Queue.pop(); assert(!Queue.empty() && "Not in queue!"); } // Remove the node from the PQ. Queue.pop(); // Add all the other nodes back. for (unsigned i = 0, e = Temp.size(); i != e; ++i) Queue.push(Temp[i]); } }; template class VISIBILITY_HIDDEN BURegReductionPriorityQueue : public RegReductionPriorityQueue { // SUnitMap SDNode to SUnit mapping (n -> n). DenseMap > *SUnitMap; // SUnits - The SUnits for the current graph. const std::vector *SUnits; // SethiUllmanNumbers - The SethiUllman number for each node. std::vector SethiUllmanNumbers; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; ScheduleDAGRRList *scheduleDAG; public: explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) : TII(tii), TRI(tri), scheduleDAG(NULL) {} void initNodes(DenseMap > &sumap, std::vector &sunits) { SUnitMap = &sumap; SUnits = &sunits; // Add pseudo dependency edges for two-address nodes. AddPseudoTwoAddrDeps(); // Calculate node priorities. CalculateSethiUllmanNumbers(); } void addNode(const SUnit *SU) { SethiUllmanNumbers.resize(SUnits->size(), 0); CalcNodeSethiUllmanNumber(SU); } void updateNode(const SUnit *SU) { SethiUllmanNumbers[SU->NodeNum] = 0; CalcNodeSethiUllmanNumber(SU); } void releaseState() { SUnits = 0; SethiUllmanNumbers.clear(); } unsigned getNodePriority(const SUnit *SU) const { assert(SU->NodeNum < SethiUllmanNumbers.size()); unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0; if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU)) // CopyFromReg should be close to its def because it restricts // allocation choices. But if it is a livein then perhaps we want it // closer to its uses so it can be coalesced. return 0xffff; else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) // CopyToReg should be close to its uses to facilitate coalescing and // avoid spilling. return 0; else if (Opc == TargetInstrInfo::EXTRACT_SUBREG || Opc == TargetInstrInfo::INSERT_SUBREG) // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to // facilitate coalescing. return 0; else if (SU->NumSuccs == 0) // If SU does not have a use, i.e. it doesn't produce a value that would // be consumed (e.g. store), then it terminates a chain of computation. // Give it a large SethiUllman number so it will be scheduled right // before its predecessors that it doesn't lengthen their live ranges. return 0xffff; else if (SU->NumPreds == 0) // If SU does not have a def, schedule it close to its uses because it // does not lengthen any live ranges. return 0; else return SethiUllmanNumbers[SU->NodeNum]; } void setScheduleDAG(ScheduleDAGRRList *scheduleDag) { scheduleDAG = scheduleDag; } private: bool canClobber(const SUnit *SU, const SUnit *Op); void AddPseudoTwoAddrDeps(); void CalculateSethiUllmanNumbers(); unsigned CalcNodeSethiUllmanNumber(const SUnit *SU); }; template class VISIBILITY_HIDDEN TDRegReductionPriorityQueue : public RegReductionPriorityQueue { // SUnitMap SDNode to SUnit mapping (n -> n). DenseMap > *SUnitMap; // SUnits - The SUnits for the current graph. const std::vector *SUnits; // SethiUllmanNumbers - The SethiUllman number for each node. std::vector SethiUllmanNumbers; public: TDRegReductionPriorityQueue() {} void initNodes(DenseMap > &sumap, std::vector &sunits) { SUnitMap = &sumap; SUnits = &sunits; // Calculate node priorities. CalculateSethiUllmanNumbers(); } void addNode(const SUnit *SU) { SethiUllmanNumbers.resize(SUnits->size(), 0); CalcNodeSethiUllmanNumber(SU); } void updateNode(const SUnit *SU) { SethiUllmanNumbers[SU->NodeNum] = 0; CalcNodeSethiUllmanNumber(SU); } void releaseState() { SUnits = 0; SethiUllmanNumbers.clear(); } unsigned getNodePriority(const SUnit *SU) const { assert(SU->NodeNum < SethiUllmanNumbers.size()); return SethiUllmanNumbers[SU->NodeNum]; } private: void CalculateSethiUllmanNumbers(); unsigned CalcNodeSethiUllmanNumber(const SUnit *SU); }; } /// closestSucc - Returns the scheduled cycle of the successor which is /// closet to the current cycle. static unsigned closestSucc(const SUnit *SU) { unsigned MaxCycle = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { unsigned Cycle = I->Dep->Cycle; // If there are bunch of CopyToRegs stacked up, they should be considered // to be at the same position. if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg) Cycle = closestSucc(I->Dep)+1; if (Cycle > MaxCycle) MaxCycle = Cycle; } return MaxCycle; } /// calcMaxScratches - Returns an cost estimate of the worse case requirement /// for scratch registers. Live-in operands and live-out results don't count /// since they are "fixed". static unsigned calcMaxScratches(const SUnit *SU) { unsigned Scratches = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl) continue; // ignore chain preds if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg) Scratches++; } for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isCtrl) continue; // ignore chain succs if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg) Scratches += 10; } return Scratches; } // Bottom up bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { // There used to be a special tie breaker here that looked for // two-address instructions and preferred the instruction with a // def&use operand. The special case triggered diagnostics when // _GLIBCXX_DEBUG was enabled because it broke the strict weak // ordering that priority_queue requires. It didn't help much anyway // because AddPseudoTwoAddrDeps already covers many of the cases // where it would have applied. In addition, it's counter-intuitive // that a tie breaker would be the first thing attempted. There's a // "real" tie breaker below that is the operation of last resort. // The fact that the "special tie breaker" would trigger when there // wasn't otherwise a tie is what broke the strict weak ordering // constraint. unsigned LPriority = SPQ->getNodePriority(left); unsigned RPriority = SPQ->getNodePriority(right); if (LPriority != RPriority) return LPriority > RPriority; // Try schedule def + use closer when Sethi-Ullman numbers are the same. // e.g. // t1 = op t2, c1 // t3 = op t4, c2 // // and the following instructions are both ready. // t2 = op c3 // t4 = op c4 // // Then schedule t2 = op first. // i.e. // t4 = op c4 // t2 = op c3 // t1 = op t2, c1 // t3 = op t4, c2 // // This creates more short live intervals. unsigned LDist = closestSucc(left); unsigned RDist = closestSucc(right); if (LDist != RDist) return LDist < RDist; // Intuitively, it's good to push down instructions whose results are // liveout so their long live ranges won't conflict with other values // which are needed inside the BB. Further prioritize liveout instructions // by the number of operands which are calculated within the BB. unsigned LScratch = calcMaxScratches(left); unsigned RScratch = calcMaxScratches(right); if (LScratch != RScratch) return LScratch > RScratch; if (left->Height != right->Height) return left->Height > right->Height; if (left->Depth != right->Depth) return left->Depth < right->Depth; if (left->CycleBound != right->CycleBound) return left->CycleBound > right->CycleBound; // FIXME: No strict ordering. return false; } template bool BURegReductionPriorityQueue::canClobber(const SUnit *SU, const SUnit *Op) { if (SU->isTwoAddress) { unsigned Opc = SU->Node->getTargetOpcode(); const TargetInstrDesc &TID = TII->get(Opc); unsigned NumRes = TID.getNumDefs(); unsigned NumOps = TID.getNumOperands() - NumRes; for (unsigned i = 0; i != NumOps; ++i) { if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) { SDNode *DU = SU->Node->getOperand(i).Val; if ((*SUnitMap).find(DU) != (*SUnitMap).end() && Op == (*SUnitMap)[DU][SU->InstanceNo]) return true; } } } return false; } /// hasCopyToRegUse - Return true if SU has a value successor that is a /// CopyToReg node. static bool hasCopyToRegUse(SUnit *SU) { for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isCtrl) continue; SUnit *SuccSU = I->Dep; if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg) return true; } return false; } /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's /// physical register def. static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) { SDNode *N = SuccSU->Node; unsigned NumDefs = TII->get(N->getTargetOpcode()).getNumDefs(); const unsigned *ImpDefs = TII->get(N->getTargetOpcode()).getImplicitDefs(); if (!ImpDefs) return false; const unsigned *SUImpDefs = TII->get(SU->Node->getTargetOpcode()).getImplicitDefs(); if (!SUImpDefs) return false; for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) { MVT::ValueType VT = N->getValueType(i); if (VT == MVT::Flag || VT == MVT::Other) continue; unsigned Reg = ImpDefs[i - NumDefs]; for (;*SUImpDefs; ++SUImpDefs) { unsigned SUReg = *SUImpDefs; if (TRI->regsOverlap(Reg, SUReg)) return true; } } return false; } /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses /// it as a def&use operand. Add a pseudo control edge from it to the other /// node (if it won't create a cycle) so the two-address one will be scheduled /// first (lower in the schedule). If both nodes are two-address, favor the /// one that has a CopyToReg use (more likely to be a loop induction update). /// If both are two-address, but one is commutable while the other is not /// commutable, favor the one that's not commutable. template void BURegReductionPriorityQueue::AddPseudoTwoAddrDeps() { for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { SUnit *SU = (SUnit *)&((*SUnits)[i]); if (!SU->isTwoAddress) continue; SDNode *Node = SU->Node; if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0) continue; unsigned Opc = Node->getTargetOpcode(); const TargetInstrDesc &TID = TII->get(Opc); unsigned NumRes = TID.getNumDefs(); unsigned NumOps = TID.getNumOperands() - NumRes; for (unsigned j = 0; j != NumOps; ++j) { if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) { SDNode *DU = SU->Node->getOperand(j).Val; if ((*SUnitMap).find(DU) == (*SUnitMap).end()) continue; SUnit *DUSU = (*SUnitMap)[DU][SU->InstanceNo]; if (!DUSU) continue; for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end(); I != E; ++I) { if (I->isCtrl) continue; SUnit *SuccSU = I->Dep; if (SuccSU == SU) continue; // Be conservative. Ignore if nodes aren't at roughly the same // depth and height. if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1) continue; if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode()) continue; // Don't constrain nodes with physical register defs if the // predecessor can clobber them. if (SuccSU->hasPhysRegDefs) { if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI)) continue; } // Don't constraint extract_subreg / insert_subreg these may be // coalesced away. We don't them close to their uses. unsigned SuccOpc = SuccSU->Node->getTargetOpcode(); if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG || SuccOpc == TargetInstrInfo::INSERT_SUBREG) continue; if ((!canClobber(SuccSU, DUSU) || (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) || (!SU->isCommutable && SuccSU->isCommutable)) && !scheduleDAG->IsReachable(SuccSU, SU)) { DOUT << "Adding an edge from SU # " << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n"; scheduleDAG->AddPred(SU, SuccSU, true, true); } } } } } } /// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. /// Smaller number is the higher priority. template unsigned BURegReductionPriorityQueue:: CalcNodeSethiUllmanNumber(const SUnit *SU) { unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; if (SethiUllmanNumber != 0) return SethiUllmanNumber; unsigned Extra = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl) continue; // ignore chain preds SUnit *PredSU = I->Dep; unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU); if (PredSethiUllman > SethiUllmanNumber) { SethiUllmanNumber = PredSethiUllman; Extra = 0; } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl) ++Extra; } SethiUllmanNumber += Extra; if (SethiUllmanNumber == 0) SethiUllmanNumber = 1; return SethiUllmanNumber; } /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all /// scheduling units. template void BURegReductionPriorityQueue::CalculateSethiUllmanNumbers() { SethiUllmanNumbers.assign(SUnits->size(), 0); for (unsigned i = 0, e = SUnits->size(); i != e; ++i) CalcNodeSethiUllmanNumber(&(*SUnits)[i]); } /// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled /// predecessors of the successors of the SUnit SU. Stop when the provided /// limit is exceeded. static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU, unsigned Limit) { unsigned Sum = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { SUnit *SuccSU = I->Dep; for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) { SUnit *PredSU = II->Dep; if (!PredSU->isScheduled) if (++Sum > Limit) return Sum; } } return Sum; } // Top down bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { unsigned LPriority = SPQ->getNodePriority(left); unsigned RPriority = SPQ->getNodePriority(right); bool LIsTarget = left->Node && left->Node->isTargetOpcode(); bool RIsTarget = right->Node && right->Node->isTargetOpcode(); bool LIsFloater = LIsTarget && left->NumPreds == 0; bool RIsFloater = RIsTarget && right->NumPreds == 0; unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0; unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0; if (left->NumSuccs == 0 && right->NumSuccs != 0) return false; else if (left->NumSuccs != 0 && right->NumSuccs == 0) return true; if (LIsFloater) LBonus -= 2; if (RIsFloater) RBonus -= 2; if (left->NumSuccs == 1) LBonus += 2; if (right->NumSuccs == 1) RBonus += 2; if (LPriority+LBonus != RPriority+RBonus) return LPriority+LBonus < RPriority+RBonus; if (left->Depth != right->Depth) return left->Depth < right->Depth; if (left->NumSuccsLeft != right->NumSuccsLeft) return left->NumSuccsLeft > right->NumSuccsLeft; if (left->CycleBound != right->CycleBound) return left->CycleBound > right->CycleBound; // FIXME: No strict ordering. return false; } /// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. /// Smaller number is the higher priority. template unsigned TDRegReductionPriorityQueue:: CalcNodeSethiUllmanNumber(const SUnit *SU) { unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; if (SethiUllmanNumber != 0) return SethiUllmanNumber; unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0; if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) SethiUllmanNumber = 0xffff; else if (SU->NumSuccsLeft == 0) // If SU does not have a use, i.e. it doesn't produce a value that would // be consumed (e.g. store), then it terminates a chain of computation. // Give it a small SethiUllman number so it will be scheduled right before // its predecessors that it doesn't lengthen their live ranges. SethiUllmanNumber = 0; else if (SU->NumPredsLeft == 0 && (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU))) SethiUllmanNumber = 0xffff; else { int Extra = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl) continue; // ignore chain preds SUnit *PredSU = I->Dep; unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU); if (PredSethiUllman > SethiUllmanNumber) { SethiUllmanNumber = PredSethiUllman; Extra = 0; } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl) ++Extra; } SethiUllmanNumber += Extra; } return SethiUllmanNumber; } /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all /// scheduling units. template void TDRegReductionPriorityQueue::CalculateSethiUllmanNumbers() { SethiUllmanNumbers.assign(SUnits->size(), 0); for (unsigned i = 0, e = SUnits->size(); i != e; ++i) CalcNodeSethiUllmanNumber(&(*SUnits)[i]); } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB) { const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo(); const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo(); BURegReductionPriorityQueue *priorityQueue = new BURegReductionPriorityQueue(TII, TRI); ScheduleDAGRRList * scheduleDAG = new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, priorityQueue); priorityQueue->setScheduleDAG(scheduleDAG); return scheduleDAG; } llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB) { return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false, new TDRegReductionPriorityQueue()); }