//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAGISel class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineDebugInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Debug.h" #include #include #include using namespace llvm; #ifndef NDEBUG static cl::opt ViewISelDAGs("view-isel-dags", cl::Hidden, cl::desc("Pop up a window to show isel dags as they are selected")); static cl::opt ViewSchedDAGs("view-sched-dags", cl::Hidden, cl::desc("Pop up a window to show sched dags as they are processed")); #else static const bool ViewISelDAGs = 0; static const bool ViewSchedDAGs = 0; #endif namespace { cl::opt ISHeuristic( "sched", cl::desc("Choose scheduling style"), cl::init(defaultScheduling), cl::values( clEnumValN(defaultScheduling, "default", "Target preferred scheduling style"), clEnumValN(noScheduling, "none", "No scheduling: breadth first sequencing"), clEnumValN(simpleScheduling, "simple", "Simple two pass scheduling: minimize critical path " "and maximize processor utilization"), clEnumValN(simpleNoItinScheduling, "simple-noitin", "Simple two pass scheduling: Same as simple " "except using generic latency"), clEnumValN(listSchedulingBURR, "list-burr", "Bottom up register reduction list scheduling"), clEnumValEnd)); } // namespace namespace llvm { //===--------------------------------------------------------------------===// /// FunctionLoweringInfo - This contains information that is global to a /// function that is used when lowering a region of the function. class FunctionLoweringInfo { public: TargetLowering &TLI; Function &Fn; MachineFunction &MF; SSARegMap *RegMap; FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. std::map MBBMap; /// ValueMap - Since we emit code for the function a basic block at a time, /// we must remember which virtual registers hold the values for /// cross-basic-block values. std::map ValueMap; /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in /// the entry block. This allows the allocas to be efficiently referenced /// anywhere in the function. std::map StaticAllocaMap; unsigned MakeReg(MVT::ValueType VT) { return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); } unsigned CreateRegForValue(const Value *V) { MVT::ValueType VT = TLI.getValueType(V->getType()); // The common case is that we will only create one register for this // value. If we have that case, create and return the virtual register. unsigned NV = TLI.getNumElements(VT); if (NV == 1) { // If we are promoting this value, pick the next largest supported type. return MakeReg(TLI.getTypeToTransformTo(VT)); } // If this value is represented with multiple target registers, make sure // to create enough consequtive registers of the right (smaller) type. unsigned NT = VT-1; // Find the type to use. while (TLI.getNumElements((MVT::ValueType)NT) != 1) --NT; unsigned R = MakeReg((MVT::ValueType)NT); for (unsigned i = 1; i != NV; ++i) MakeReg((MVT::ValueType)NT); return R; } unsigned InitializeRegForValue(const Value *V) { unsigned &R = ValueMap[V]; assert(R == 0 && "Already initialized this value register!"); return R = CreateRegForValue(V); } }; } /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it. static bool isUsedOutsideOfDefiningBlock(Instruction *I) { if (isa(I)) return true; BasicBlock *BB = I->getParent(); for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != BB || isa(*UI)) return true; return false; } /// isOnlyUsedInEntryBlock - If the specified argument is only used in the /// entry block, return true. static bool isOnlyUsedInEntryBlock(Argument *A) { BasicBlock *Entry = A->getParent()->begin(); for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != Entry) return false; // Use not in entry block. return true; } FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, Function &fn, MachineFunction &mf) : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) { // Create a vreg for each argument register that is not dead and is used // outside of the entry block for the function. for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); AI != E; ++AI) if (!isOnlyUsedInEntryBlock(AI)) InitializeRegForValue(AI); // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. Function::iterator BB = Fn.begin(), EB = Fn.end(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) if (ConstantUInt *CUI = dyn_cast(AI->getArraySize())) { const Type *Ty = AI->getAllocatedType(); uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty), AI->getAlignment()); // If the alignment of the value is smaller than the size of the value, // and if the size of the value is particularly small (<= 8 bytes), // round up to the size of the value for potentially better performance. // // FIXME: This could be made better with a preferred alignment hook in // TargetData. It serves primarily to 8-byte align doubles for X86. if (Align < TySize && TySize <= 8) Align = TySize; TySize *= CUI->getValue(); // Get total allocated size. if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. StaticAllocaMap[AI] = MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align); } for (; BB != EB; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) if (!isa(I) || !StaticAllocaMap.count(cast(I))) InitializeRegForValue(I); // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) { MachineBasicBlock *MBB = new MachineBasicBlock(BB); MBBMap[BB] = MBB; MF.getBasicBlockList().push_back(MBB); // Create Machine PHI nodes for LLVM PHI nodes, lowering them as // appropriate. PHINode *PN; for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast(I)); ++I) if (!PN->use_empty()) { unsigned NumElements = TLI.getNumElements(TLI.getValueType(PN->getType())); unsigned PHIReg = ValueMap[PN]; assert(PHIReg &&"PHI node does not have an assigned virtual register!"); for (unsigned i = 0; i != NumElements; ++i) BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i); } } } //===----------------------------------------------------------------------===// /// SelectionDAGLowering - This is the common target-independent lowering /// implementation that is parameterized by a TargetLowering object. /// Also, targets can overload any lowering method. /// namespace llvm { class SelectionDAGLowering { MachineBasicBlock *CurMBB; std::map NodeMap; /// PendingLoads - Loads are not emitted to the program immediately. We bunch /// them up and then emit token factor nodes when possible. This allows us to /// get simple disambiguation between loads without worrying about alias /// analysis. std::vector PendingLoads; public: // TLI - This is information that describes the available target features we // need for lowering. This indicates when operations are unavailable, // implemented with a libcall, etc. TargetLowering &TLI; SelectionDAG &DAG; const TargetData &TD; /// FuncInfo - Information about the function as a whole. /// FunctionLoweringInfo &FuncInfo; SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, FunctionLoweringInfo &funcinfo) : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), FuncInfo(funcinfo) { } /// getRoot - Return the current virtual root of the Selection DAG. /// SDOperand getRoot() { if (PendingLoads.empty()) return DAG.getRoot(); if (PendingLoads.size() == 1) { SDOperand Root = PendingLoads[0]; DAG.setRoot(Root); PendingLoads.clear(); return Root; } // Otherwise, we have to make a token factor node. SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads); PendingLoads.clear(); DAG.setRoot(Root); return Root; } void visit(Instruction &I) { visit(I.getOpcode(), I); } void visit(unsigned Opcode, User &I) { switch (Opcode) { default: assert(0 && "Unknown instruction type encountered!"); abort(); // Build the switch statement using the Instruction.def file. #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); #include "llvm/Instruction.def" } } void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } SDOperand getIntPtrConstant(uint64_t Val) { return DAG.getConstant(Val, TLI.getPointerTy()); } SDOperand getValue(const Value *V) { SDOperand &N = NodeMap[V]; if (N.Val) return N; const Type *VTy = V->getType(); MVT::ValueType VT = TLI.getValueType(VTy); if (Constant *C = const_cast(dyn_cast(V))) if (ConstantExpr *CE = dyn_cast(C)) { visit(CE->getOpcode(), *CE); assert(N.Val && "visit didn't populate the ValueMap!"); return N; } else if (GlobalValue *GV = dyn_cast(C)) { return N = DAG.getGlobalAddress(GV, VT); } else if (isa(C)) { return N = DAG.getConstant(0, TLI.getPointerTy()); } else if (isa(C)) { return N = DAG.getNode(ISD::UNDEF, VT); } else if (ConstantFP *CFP = dyn_cast(C)) { return N = DAG.getConstantFP(CFP->getValue(), VT); } else if (const PackedType *PTy = dyn_cast(VTy)) { unsigned NumElements = PTy->getNumElements(); MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements); // Now that we know the number and type of the elements, push a // Constant or ConstantFP node onto the ops list for each element of // the packed constant. std::vector Ops; if (ConstantPacked *CP = dyn_cast(C)) { if (MVT::isFloatingPoint(PVT)) { for (unsigned i = 0; i != NumElements; ++i) { const ConstantFP *El = cast(CP->getOperand(i)); Ops.push_back(DAG.getConstantFP(El->getValue(), PVT)); } } else { for (unsigned i = 0; i != NumElements; ++i) { const ConstantIntegral *El = cast(CP->getOperand(i)); Ops.push_back(DAG.getConstant(El->getRawValue(), PVT)); } } } else { assert(isa(C) && "Unknown packed constant!"); SDOperand Op; if (MVT::isFloatingPoint(PVT)) Op = DAG.getConstantFP(0, PVT); else Op = DAG.getConstant(0, PVT); Ops.assign(NumElements, Op); } // Handle the case where we have a 1-element vector, in which // case we want to immediately turn it into a scalar constant. if (Ops.size() == 1) { return N = Ops[0]; } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) { return N = DAG.getNode(ISD::ConstantVec, TVT, Ops); } else { // If the packed type isn't legal, then create a ConstantVec node with // generic Vector type instead. return N = DAG.getNode(ISD::ConstantVec, MVT::Vector, Ops); } } else { // Canonicalize all constant ints to be unsigned. return N = DAG.getConstant(cast(C)->getRawValue(),VT); } if (const AllocaInst *AI = dyn_cast(V)) { std::map::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); } std::map::const_iterator VMI = FuncInfo.ValueMap.find(V); assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!"); unsigned InReg = VMI->second; // If this type is not legal, make it so now. MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT); N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT); if (DestVT < VT) { // Source must be expanded. This input value is actually coming from the // register pair VMI->second and VMI->second+1. N = DAG.getNode(ISD::BUILD_PAIR, VT, N, DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT)); } else { if (DestVT > VT) { // Promotion case if (MVT::isFloatingPoint(VT)) N = DAG.getNode(ISD::FP_ROUND, VT, N); else N = DAG.getNode(ISD::TRUNCATE, VT, N); } } return N; } const SDOperand &setValue(const Value *V, SDOperand NewN) { SDOperand &N = NodeMap[V]; assert(N.Val == 0 && "Already set a value for this node!"); return N = NewN; } unsigned GetAvailableRegister(bool OutReg, bool InReg, const std::vector &RegChoices, std::set &OutputRegs, std::set &InputRegs); // Terminator instructions. void visitRet(ReturnInst &I); void visitBr(BranchInst &I); void visitUnreachable(UnreachableInst &I) { /* noop */ } // These all get lowered before this pass. void visitExtractElement(ExtractElementInst &I) { assert(0 && "TODO"); } void visitInsertElement(InsertElementInst &I) { assert(0 && "TODO"); } void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); } void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); } void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); } // void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp); void visitShift(User &I, unsigned Opcode); void visitAdd(User &I) { visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD); } void visitSub(User &I); void visitMul(User &I) { visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL); } void visitDiv(User &I) { const Type *Ty = I.getType(); visitBinary(I, Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV, 0); } void visitRem(User &I) { const Type *Ty = I.getType(); visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0); } void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, 0); } void visitOr (User &I) { visitBinary(I, ISD::OR, 0, 0); } void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, 0); } void visitShl(User &I) { visitShift(I, ISD::SHL); } void visitShr(User &I) { visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA); } void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc); void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); } void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); } void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); } void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); } void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); } void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); } void visitGetElementPtr(User &I); void visitCast(User &I); void visitSelect(User &I); // void visitMalloc(MallocInst &I); void visitFree(FreeInst &I); void visitAlloca(AllocaInst &I); void visitLoad(LoadInst &I); void visitStore(StoreInst &I); void visitPHI(PHINode &I) { } // PHI nodes are handled specially. void visitCall(CallInst &I); void visitInlineAsm(CallInst &I); const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic); void visitVAStart(CallInst &I); void visitVAArg(VAArgInst &I); void visitVAEnd(CallInst &I); void visitVACopy(CallInst &I); void visitFrameReturnAddress(CallInst &I, bool isFrameAddress); void visitMemIntrinsic(CallInst &I, unsigned Op); void visitUserOp1(Instruction &I) { assert(0 && "UserOp1 should not exist at instruction selection time!"); abort(); } void visitUserOp2(Instruction &I) { assert(0 && "UserOp2 should not exist at instruction selection time!"); abort(); } }; } // end namespace llvm void SelectionDAGLowering::visitRet(ReturnInst &I) { if (I.getNumOperands() == 0) { DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot())); return; } std::vector NewValues; NewValues.push_back(getRoot()); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { SDOperand RetOp = getValue(I.getOperand(i)); // If this is an integer return value, we need to promote it ourselves to // the full width of a register, since LegalizeOp will use ANY_EXTEND rather // than sign/zero. if (MVT::isInteger(RetOp.getValueType()) && RetOp.getValueType() < MVT::i64) { MVT::ValueType TmpVT; if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote) TmpVT = TLI.getTypeToTransformTo(MVT::i32); else TmpVT = MVT::i32; if (I.getOperand(i)->getType()->isSigned()) RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp); else RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp); } NewValues.push_back(RetOp); } DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues)); } void SelectionDAGLowering::visitBr(BranchInst &I) { // Update machine-CFG edges. MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; if (I.isUnconditional()) { // If this is not a fall-through branch, emit the branch. if (Succ0MBB != NextBlock) DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), DAG.getBasicBlock(Succ0MBB))); } else { MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; SDOperand Cond = getValue(I.getCondition()); if (Succ1MBB == NextBlock) { // If the condition is false, fall through. This means we should branch // if the condition is true to Succ #0. DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, DAG.getBasicBlock(Succ0MBB))); } else if (Succ0MBB == NextBlock) { // If the condition is true, fall through. This means we should branch if // the condition is false to Succ #1. Invert the condition first. SDOperand True = DAG.getConstant(1, Cond.getValueType()); Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond, DAG.getBasicBlock(Succ1MBB))); } else { std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(Cond); Ops.push_back(DAG.getBasicBlock(Succ0MBB)); Ops.push_back(DAG.getBasicBlock(Succ1MBB)); DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops)); } } } void SelectionDAGLowering::visitSub(User &I) { // -0.0 - X --> fneg if (I.getType()->isFloatingPoint()) { if (ConstantFP *CFP = dyn_cast(I.getOperand(0))) if (CFP->isExactlyValue(-0.0)) { SDOperand Op2 = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2)); return; } } visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB); } void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp) { const Type *Ty = I.getType(); SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); if (Ty->isIntegral()) { setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2)); } else if (Ty->isFloatingPoint()) { setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2)); } else { const PackedType *PTy = cast(Ty); unsigned NumElements = PTy->getNumElements(); MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements); // Immediately scalarize packed types containing only one element, so that // the Legalize pass does not have to deal with them. Similarly, if the // abstract vector is going to turn into one that the target natively // supports, generate that type now so that Legalize doesn't have to deal // with that either. These steps ensure that Legalize only has to handle // vector types in its Expand case. unsigned Opc = MVT::isFloatingPoint(PVT) ? FPOp : IntOp; if (NumElements == 1) { setValue(&I, DAG.getNode(Opc, PVT, Op1, Op2)); } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) { setValue(&I, DAG.getNode(Opc, TVT, Op1, Op2)); } else { SDOperand Num = DAG.getConstant(NumElements, MVT::i32); SDOperand Typ = DAG.getValueType(PVT); setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ)); } } } void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2); setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); } void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode, ISD::CondCode UnsignedOpcode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); ISD::CondCode Opcode = SignedOpcode; if (I.getOperand(0)->getType()->isUnsigned()) Opcode = UnsignedOpcode; setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode)); } void SelectionDAGLowering::visitSelect(User &I) { SDOperand Cond = getValue(I.getOperand(0)); SDOperand TrueVal = getValue(I.getOperand(1)); SDOperand FalseVal = getValue(I.getOperand(2)); setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, TrueVal, FalseVal)); } void SelectionDAGLowering::visitCast(User &I) { SDOperand N = getValue(I.getOperand(0)); MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType()); MVT::ValueType DestTy = TLI.getValueType(I.getType()); if (N.getValueType() == DestTy) { setValue(&I, N); // noop cast. } else if (DestTy == MVT::i1) { // Cast to bool is a comparison against zero, not truncation to zero. SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) : DAG.getConstantFP(0.0, N.getValueType()); setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE)); } else if (isInteger(SrcTy)) { if (isInteger(DestTy)) { // Int -> Int cast if (DestTy < SrcTy) // Truncating cast? setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N)); else if (I.getOperand(0)->getType()->isSigned()) setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N)); else setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N)); } else { // Int -> FP cast if (I.getOperand(0)->getType()->isSigned()) setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N)); else setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N)); } } else { assert(isFloatingPoint(SrcTy) && "Unknown value type!"); if (isFloatingPoint(DestTy)) { // FP -> FP cast if (DestTy < SrcTy) // Rounding cast? setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N)); else setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N)); } else { // FP -> Int cast. if (I.getType()->isSigned()) setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N)); else setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N)); } } } void SelectionDAGLowering::visitGetElementPtr(User &I) { SDOperand N = getValue(I.getOperand(0)); const Type *Ty = I.getOperand(0)->getType(); const Type *UIntPtrTy = TD.getIntPtrType(); for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getValue(); if (Field) { // N = N + Offset uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field]; N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offset)); } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // If this is a constant subscript, handle it quickly. if (ConstantInt *CI = dyn_cast(Idx)) { if (CI->getRawValue() == 0) continue; uint64_t Offs; if (ConstantSInt *CSI = dyn_cast(CI)) Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue(); else Offs = TD.getTypeSize(Ty)*cast(CI)->getValue(); N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs)); continue; } // N = N + Idx * ElementSize; uint64_t ElementSize = TD.getTypeSize(Ty); SDOperand IdxN = getValue(Idx); // If the index is smaller or larger than intptr_t, truncate or extend // it. if (IdxN.getValueType() < N.getValueType()) { if (Idx->getType()->isSigned()) IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN); else IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN); } else if (IdxN.getValueType() > N.getValueType()) IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN); // If this is a multiply by a power of two, turn it into a shl // immediately. This is a very common case. if (isPowerOf2_64(ElementSize)) { unsigned Amt = Log2_64(ElementSize); IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN, DAG.getConstant(Amt, TLI.getShiftAmountTy())); N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); continue; } SDOperand Scale = getIntPtrConstant(ElementSize); IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); } } setValue(&I, N); } void SelectionDAGLowering::visitAlloca(AllocaInst &I) { // If this is a fixed sized alloca in the entry block of the function, // allocate it statically on the stack. if (FuncInfo.StaticAllocaMap.count(&I)) return; // getValue will auto-populate this. const Type *Ty = I.getAllocatedType(); uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty), I.getAlignment()); SDOperand AllocSize = getValue(I.getArraySize()); MVT::ValueType IntPtr = TLI.getPointerTy(); if (IntPtr < AllocSize.getValueType()) AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize); else if (IntPtr > AllocSize.getValueType()) AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize); AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize, getIntPtrConstant(TySize)); // Handle alignment. If the requested alignment is less than or equal to the // stack alignment, ignore it and round the size of the allocation up to the // stack alignment size. If the size is greater than the stack alignment, we // note this in the DYNAMIC_STACKALLOC node. unsigned StackAlign = TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); if (Align <= StackAlign) { Align = 0; // Add SA-1 to the size. AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, getIntPtrConstant(StackAlign-1)); // Mask out the low bits for alignment purposes. AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, getIntPtrConstant(~(uint64_t)(StackAlign-1))); } std::vector VTs; VTs.push_back(AllocSize.getValueType()); VTs.push_back(MVT::Other); std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(AllocSize); Ops.push_back(getIntPtrConstant(Align)); SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops); DAG.setRoot(setValue(&I, DSA).getValue(1)); // Inform the Frame Information that we have just allocated a variable-sized // object. CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); } /// getStringValue - Turn an LLVM constant pointer that eventually points to a /// global into a string value. Return an empty string if we can't do it. /// static std::string getStringValue(Value *V, unsigned Offset = 0) { if (GlobalVariable *GV = dyn_cast(V)) { if (GV->hasInitializer() && isa(GV->getInitializer())) { ConstantArray *Init = cast(GV->getInitializer()); if (Init->isString()) { std::string Result = Init->getAsString(); if (Offset < Result.size()) { // If we are pointing INTO The string, erase the beginning... Result.erase(Result.begin(), Result.begin()+Offset); // Take off the null terminator, and any string fragments after it. std::string::size_type NullPos = Result.find_first_of((char)0); if (NullPos != std::string::npos) Result.erase(Result.begin()+NullPos, Result.end()); return Result; } } } } else if (Constant *C = dyn_cast(V)) { if (GlobalValue *GV = dyn_cast(C)) return getStringValue(GV, Offset); else if (ConstantExpr *CE = dyn_cast(C)) { if (CE->getOpcode() == Instruction::GetElementPtr) { // Turn a gep into the specified offset. if (CE->getNumOperands() == 3 && cast(CE->getOperand(1))->isNullValue() && isa(CE->getOperand(2))) { return getStringValue(CE->getOperand(0), Offset+cast(CE->getOperand(2))->getRawValue()); } } } } return ""; } void SelectionDAGLowering::visitLoad(LoadInst &I) { SDOperand Ptr = getValue(I.getOperand(0)); SDOperand Root; if (I.isVolatile()) Root = getRoot(); else { // Do not serialize non-volatile loads against each other. Root = DAG.getRoot(); } const Type *Ty = I.getType(); SDOperand L; if (const PackedType *PTy = dyn_cast(Ty)) { unsigned NumElements = PTy->getNumElements(); MVT::ValueType PVT = TLI.getValueType(PTy->getElementType()); MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements); // Immediately scalarize packed types containing only one element, so that // the Legalize pass does not have to deal with them. if (NumElements == 1) { L = DAG.getLoad(PVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0))); } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) { L = DAG.getLoad(TVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0))); } else { L = DAG.getVecLoad(NumElements, PVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0))); } } else { L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, DAG.getSrcValue(I.getOperand(0))); } setValue(&I, L); if (I.isVolatile()) DAG.setRoot(L.getValue(1)); else PendingLoads.push_back(L.getValue(1)); } void SelectionDAGLowering::visitStore(StoreInst &I) { Value *SrcV = I.getOperand(0); SDOperand Src = getValue(SrcV); SDOperand Ptr = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr, DAG.getSrcValue(I.getOperand(1)))); } /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If /// we want to emit this as a call to a named external function, return the name /// otherwise lower it and return null. const char * SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { switch (Intrinsic) { case Intrinsic::vastart: visitVAStart(I); return 0; case Intrinsic::vaend: visitVAEnd(I); return 0; case Intrinsic::vacopy: visitVACopy(I); return 0; case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0; case Intrinsic::frameaddress: visitFrameReturnAddress(I, true); return 0; case Intrinsic::setjmp: return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp(); break; case Intrinsic::longjmp: return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp(); break; case Intrinsic::memcpy: visitMemIntrinsic(I, ISD::MEMCPY); return 0; case Intrinsic::memset: visitMemIntrinsic(I, ISD::MEMSET); return 0; case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return 0; case Intrinsic::readport: case Intrinsic::readio: { std::vector VTs; VTs.push_back(TLI.getValueType(I.getType())); VTs.push_back(MVT::Other); std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(getValue(I.getOperand(1))); SDOperand Tmp = DAG.getNode(Intrinsic == Intrinsic::readport ? ISD::READPORT : ISD::READIO, VTs, Ops); setValue(&I, Tmp); DAG.setRoot(Tmp.getValue(1)); return 0; } case Intrinsic::writeport: case Intrinsic::writeio: DAG.setRoot(DAG.getNode(Intrinsic == Intrinsic::writeport ? ISD::WRITEPORT : ISD::WRITEIO, MVT::Other, getRoot(), getValue(I.getOperand(1)), getValue(I.getOperand(2)))); return 0; case Intrinsic::dbg_stoppoint: { if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions()) return "llvm_debugger_stop"; std::string fname = ""; std::vector Ops; // Input Chain Ops.push_back(getRoot()); // line number Ops.push_back(getValue(I.getOperand(2))); // column Ops.push_back(getValue(I.getOperand(3))); // filename/working dir // Pull the filename out of the the compilation unit. const GlobalVariable *cunit = dyn_cast(I.getOperand(4)); if (cunit && cunit->hasInitializer()) { if (ConstantStruct *CS = dyn_cast(cunit->getInitializer())) { if (CS->getNumOperands() > 0) { Ops.push_back(DAG.getString(getStringValue(CS->getOperand(3)))); Ops.push_back(DAG.getString(getStringValue(CS->getOperand(4)))); } } } if (Ops.size() == 5) // Found filename/workingdir. DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops)); setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); return 0; } case Intrinsic::dbg_region_start: if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions()) return "llvm_dbg_region_start"; if (I.getType() != Type::VoidTy) setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); return 0; case Intrinsic::dbg_region_end: if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions()) return "llvm_dbg_region_end"; if (I.getType() != Type::VoidTy) setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); return 0; case Intrinsic::dbg_func_start: if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions()) return "llvm_dbg_subprogram"; if (I.getType() != Type::VoidTy) setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); return 0; case Intrinsic::dbg_declare: if (I.getType() != Type::VoidTy) setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()))); return 0; case Intrinsic::isunordered_f32: case Intrinsic::isunordered_f64: setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)), getValue(I.getOperand(2)), ISD::SETUO)); return 0; case Intrinsic::sqrt_f32: case Intrinsic::sqrt_f64: setValue(&I, DAG.getNode(ISD::FSQRT, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::pcmarker: { SDOperand Tmp = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp)); return 0; } case Intrinsic::readcyclecounter: { std::vector VTs; VTs.push_back(MVT::i64); VTs.push_back(MVT::Other); std::vector Ops; Ops.push_back(getRoot()); SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops); setValue(&I, Tmp); DAG.setRoot(Tmp.getValue(1)); return 0; } case Intrinsic::bswap_i16: case Intrinsic::bswap_i32: case Intrinsic::bswap_i64: setValue(&I, DAG.getNode(ISD::BSWAP, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::cttz_i8: case Intrinsic::cttz_i16: case Intrinsic::cttz_i32: case Intrinsic::cttz_i64: setValue(&I, DAG.getNode(ISD::CTTZ, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::ctlz_i8: case Intrinsic::ctlz_i16: case Intrinsic::ctlz_i32: case Intrinsic::ctlz_i64: setValue(&I, DAG.getNode(ISD::CTLZ, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::ctpop_i8: case Intrinsic::ctpop_i16: case Intrinsic::ctpop_i32: case Intrinsic::ctpop_i64: setValue(&I, DAG.getNode(ISD::CTPOP, getValue(I.getOperand(1)).getValueType(), getValue(I.getOperand(1)))); return 0; case Intrinsic::stacksave: { std::vector VTs; VTs.push_back(TLI.getPointerTy()); VTs.push_back(MVT::Other); std::vector Ops; Ops.push_back(getRoot()); SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops); setValue(&I, Tmp); DAG.setRoot(Tmp.getValue(1)); return 0; } case Intrinsic::stackrestore: { SDOperand Tmp = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp)); return 0; } case Intrinsic::prefetch: // FIXME: Currently discarding prefetches. return 0; default: std::cerr << I; assert(0 && "This intrinsic is not implemented yet!"); return 0; } } void SelectionDAGLowering::visitCall(CallInst &I) { const char *RenameFn = 0; if (Function *F = I.getCalledFunction()) { if (F->isExternal()) if (unsigned IID = F->getIntrinsicID()) { RenameFn = visitIntrinsicCall(I, IID); if (!RenameFn) return; } else { // Not an LLVM intrinsic. const std::string &Name = F->getName(); if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType()) { SDOperand Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp)); return; } } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType() && TLI.isOperationLegal(ISD::FSIN, TLI.getValueType(I.getOperand(1)->getType()))) { SDOperand Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp)); return; } } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) { if (I.getNumOperands() == 2 && // Basic sanity checks. I.getOperand(1)->getType()->isFloatingPoint() && I.getType() == I.getOperand(1)->getType() && TLI.isOperationLegal(ISD::FCOS, TLI.getValueType(I.getOperand(1)->getType()))) { SDOperand Tmp = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp)); return; } } } } else if (isa(I.getOperand(0))) { visitInlineAsm(I); return; } SDOperand Callee; if (!RenameFn) Callee = getValue(I.getOperand(0)); else Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); std::vector > Args; Args.reserve(I.getNumOperands()); for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { Value *Arg = I.getOperand(i); SDOperand ArgNode = getValue(Arg); Args.push_back(std::make_pair(ArgNode, Arg->getType())); } const PointerType *PT = cast(I.getCalledValue()->getType()); const FunctionType *FTy = cast(PT->getElementType()); std::pair Result = TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(), I.isTailCall(), Callee, Args, DAG); if (I.getType() != Type::VoidTy) setValue(&I, Result.first); DAG.setRoot(Result.second); } /// GetAvailableRegister - Pick a register from RegChoices that is available /// for input and/or output as specified by isOutReg/isInReg. If an allocatable /// register is found, it is returned and added to the specified set of used /// registers. If not, zero is returned. unsigned SelectionDAGLowering:: GetAvailableRegister(bool isOutReg, bool isInReg, const std::vector &RegChoices, std::set &OutputRegs, std::set &InputRegs) { const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo(); MachineFunction &MF = *CurMBB->getParent(); for (unsigned i = 0, e = RegChoices.size(); i != e; ++i) { unsigned Reg = RegChoices[i]; // See if this register is available. if (isOutReg && OutputRegs.count(Reg)) continue; // Already used. if (isInReg && InputRegs.count(Reg)) continue; // Already used. // Check to see if this register is allocatable (i.e. don't give out the // stack pointer). bool Found = false; for (MRegisterInfo::regclass_iterator RC = MRI->regclass_begin(), E = MRI->regclass_end(); !Found && RC != E; ++RC) { // NOTE: This isn't ideal. In particular, this might allocate the // frame pointer in functions that need it (due to them not being taken // out of allocation, because a variable sized allocation hasn't been seen // yet). This is a slight code pessimization, but should still work. for (TargetRegisterClass::iterator I = (*RC)->allocation_order_begin(MF), E = (*RC)->allocation_order_end(MF); I != E; ++I) if (*I == Reg) { Found = true; break; } } if (!Found) continue; // Okay, this register is good, return it. if (isOutReg) OutputRegs.insert(Reg); // Mark used. if (isInReg) InputRegs.insert(Reg); // Mark used. return Reg; } return 0; } /// visitInlineAsm - Handle a call to an InlineAsm object. /// void SelectionDAGLowering::visitInlineAsm(CallInst &I) { InlineAsm *IA = cast(I.getOperand(0)); SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other); // Note, we treat inline asms both with and without side-effects as the same. // If an inline asm doesn't have side effects and doesn't access memory, we // could not choose to not chain it. bool hasSideEffects = IA->hasSideEffects(); std::vector Constraints = IA->ParseConstraints(); /// AsmNodeOperands - A list of pairs. The first element is a register, the /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set /// if it is a def of that register. std::vector AsmNodeOperands; AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain AsmNodeOperands.push_back(AsmStr); SDOperand Chain = getRoot(); SDOperand Flag; // Loop over all of the inputs, copying the operand values into the // appropriate registers and processing the output regs. unsigned RetValReg = 0; std::vector > IndirectStoresToEmit; unsigned OpNum = 1; bool FoundOutputConstraint = false; // We fully assign registers here at isel time. This is not optimal, but // should work. For register classes that correspond to LLVM classes, we // could let the LLVM RA do its thing, but we currently don't. Do a prepass // over the constraints, collecting fixed registers that we know we can't use. std::set OutputRegs, InputRegs; for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!"); std::string &ConstraintCode = Constraints[i].Codes[0]; std::vector Regs = TLI.getRegForInlineAsmConstraint(ConstraintCode); if (Regs.size() != 1) continue; // Not assigned a fixed reg. unsigned TheReg = Regs[0]; switch (Constraints[i].Type) { case InlineAsm::isOutput: // We can't assign any other output to this register. OutputRegs.insert(TheReg); // If this is an early-clobber output, it cannot be assigned to the same // value as the input reg. if (Constraints[i].isEarlyClobber) InputRegs.insert(TheReg); break; case InlineAsm::isClobber: // Clobbered regs cannot be used as inputs or outputs. InputRegs.insert(TheReg); OutputRegs.insert(TheReg); break; case InlineAsm::isInput: // We can't assign any other input to this register. InputRegs.insert(TheReg); break; } } for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!"); std::string &ConstraintCode = Constraints[i].Codes[0]; switch (Constraints[i].Type) { case InlineAsm::isOutput: { // Copy the output from the appropriate register. std::vector Regs = TLI.getRegForInlineAsmConstraint(ConstraintCode); // Find a regsister that we can use. unsigned DestReg; if (Regs.size() == 1) DestReg = Regs[0]; else DestReg = GetAvailableRegister(true, Constraints[i].isEarlyClobber, Regs, OutputRegs, InputRegs); assert(DestReg && "Couldn't allocate output reg!"); const Type *OpTy; if (!Constraints[i].isIndirectOutput) { assert(!FoundOutputConstraint && "Cannot have multiple output constraints yet!"); FoundOutputConstraint = true; assert(I.getType() != Type::VoidTy && "Bad inline asm!"); RetValReg = DestReg; OpTy = I.getType(); } else { IndirectStoresToEmit.push_back(std::make_pair(DestReg, I.getOperand(OpNum))); OpTy = I.getOperand(OpNum)->getType(); OpTy = cast(OpTy)->getElementType(); OpNum++; // Consumes a call operand. } // Add information to the INLINEASM node to know that this register is // set. AsmNodeOperands.push_back(DAG.getRegister(DestReg, TLI.getValueType(OpTy))); AsmNodeOperands.push_back(DAG.getConstant(2, MVT::i32)); // ISDEF break; } case InlineAsm::isInput: { Value *Operand = I.getOperand(OpNum); const Type *OpTy = Operand->getType(); OpNum++; // Consumes a call operand. // Copy the input into the appropriate register. std::vector Regs = TLI.getRegForInlineAsmConstraint(ConstraintCode); unsigned SrcReg; if (Regs.size() == 1) SrcReg = Regs[0]; else SrcReg = GetAvailableRegister(false, true, Regs, OutputRegs, InputRegs); assert(SrcReg && "Couldn't allocate input reg!"); Chain = DAG.getCopyToReg(Chain, SrcReg, getValue(Operand), Flag); Flag = Chain.getValue(1); // Add information to the INLINEASM node to know that this register is // read. AsmNodeOperands.push_back(DAG.getRegister(SrcReg,TLI.getValueType(OpTy))); AsmNodeOperands.push_back(DAG.getConstant(1, MVT::i32)); // ISUSE break; } case InlineAsm::isClobber: // Nothing to do. break; } } // Finish up input operands. AsmNodeOperands[0] = Chain; if (Flag.Val) AsmNodeOperands.push_back(Flag); std::vector VTs; VTs.push_back(MVT::Other); VTs.push_back(MVT::Flag); Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands); Flag = Chain.getValue(1); // If this asm returns a register value, copy the result from that register // and set it as the value of the call. if (RetValReg) { SDOperand Val = DAG.getCopyFromReg(Chain, RetValReg, TLI.getValueType(I.getType()), Flag); Chain = Val.getValue(1); Flag = Val.getValue(2); setValue(&I, Val); } std::vector > StoresToEmit; // Process indirect outputs, first output all of the flagged copies out of // physregs. for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { Value *Ptr = IndirectStoresToEmit[i].second; const Type *Ty = cast(Ptr->getType())->getElementType(); SDOperand Val = DAG.getCopyFromReg(Chain, IndirectStoresToEmit[i].first, TLI.getValueType(Ty), Flag); Chain = Val.getValue(1); Flag = Val.getValue(2); StoresToEmit.push_back(std::make_pair(Val, Ptr)); } // Emit the non-flagged stores from the physregs. std::vector OutChains; for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, StoresToEmit[i].first, getValue(StoresToEmit[i].second), DAG.getSrcValue(StoresToEmit[i].second))); if (!OutChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains); DAG.setRoot(Chain); } void SelectionDAGLowering::visitMalloc(MallocInst &I) { SDOperand Src = getValue(I.getOperand(0)); MVT::ValueType IntPtr = TLI.getPointerTy(); if (IntPtr < Src.getValueType()) Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src); else if (IntPtr > Src.getValueType()) Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src); // Scale the source by the type size. uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType()); Src = DAG.getNode(ISD::MUL, Src.getValueType(), Src, getIntPtrConstant(ElementSize)); std::vector > Args; Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType())); std::pair Result = TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG); setValue(&I, Result.first); // Pointers always fit in registers DAG.setRoot(Result.second); } void SelectionDAGLowering::visitFree(FreeInst &I) { std::vector > Args; Args.push_back(std::make_pair(getValue(I.getOperand(0)), TLI.getTargetData().getIntPtrType())); MVT::ValueType IntPtr = TLI.getPointerTy(); std::pair Result = TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true, DAG.getExternalSymbol("free", IntPtr), Args, DAG); DAG.setRoot(Result.second); } // InsertAtEndOfBasicBlock - This method should be implemented by targets that // mark instructions with the 'usesCustomDAGSchedInserter' flag. These // instructions are special in various ways, which require special support to // insert. The specified MachineInstr is created but not inserted into any // basic blocks, and the scheduler passes ownership of it to this method. MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *MBB) { std::cerr << "If a target marks an instruction with " "'usesCustomDAGSchedInserter', it must implement " "TargetLowering::InsertAtEndOfBasicBlock!\n"; abort(); return 0; } void SelectionDAGLowering::visitVAStart(CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), getValue(I.getOperand(1)), DAG.getSrcValue(I.getOperand(1)))); } void SelectionDAGLowering::visitVAArg(VAArgInst &I) { SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0))); setValue(&I, V); DAG.setRoot(V.getValue(1)); } void SelectionDAGLowering::visitVAEnd(CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(), getValue(I.getOperand(1)), DAG.getSrcValue(I.getOperand(1)))); } void SelectionDAGLowering::visitVACopy(CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), getValue(I.getOperand(1)), getValue(I.getOperand(2)), DAG.getSrcValue(I.getOperand(1)), DAG.getSrcValue(I.getOperand(2)))); } // It is always conservatively correct for llvm.returnaddress and // llvm.frameaddress to return 0. std::pair TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain); } SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { assert(0 && "LowerOperation not implemented for this target!"); abort(); return SDOperand(); } SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG) { assert(0 && "CustomPromoteOperation not implemented for this target!"); abort(); return SDOperand(); } void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) { unsigned Depth = (unsigned)cast(I.getOperand(1))->getValue(); std::pair Result = TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) { #if 0 // If the size of the cpy/move/set is constant (known) if (ConstantUInt* op3 = dyn_cast(I.getOperand(3))) { uint64_t size = op3->getValue(); switch (Op) { case ISD::MEMSET: if (size <= TLI.getMaxStoresPerMemSet()) { if (ConstantUInt* op4 = dyn_cast(I.getOperand(4))) { uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); uint64_t align = op4.getValue(); while (size > align) { size -=align; } Value *SrcV = I.getOperand(0); SDOperand Src = getValue(SrcV); SDOperand Ptr = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr, DAG.getSrcValue(I.getOperand(1)))); } break; } break; // don't do this optimization, use a normal memset case ISD::MEMMOVE: case ISD::MEMCPY: break; // FIXME: not implemented yet } } #endif // Non-optimized version std::vector Ops; Ops.push_back(getRoot()); Ops.push_back(getValue(I.getOperand(1))); Ops.push_back(getValue(I.getOperand(2))); Ops.push_back(getValue(I.getOperand(3))); Ops.push_back(getValue(I.getOperand(4))); DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops)); } //===----------------------------------------------------------------------===// // SelectionDAGISel code //===----------------------------------------------------------------------===// unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) { return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); } void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { // FIXME: we only modify the CFG to split critical edges. This // updates dom and loop info. } /// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset, /// casting to the type of GEPI. static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI, Value *Ptr, Value *PtrOffset) { if (V) return V; // Already computed. BasicBlock::iterator InsertPt; if (BB == GEPI->getParent()) { // If insert into the GEP's block, insert right after the GEP. InsertPt = GEPI; ++InsertPt; } else { // Otherwise, insert at the top of BB, after any PHI nodes InsertPt = BB->begin(); while (isa(InsertPt)) ++InsertPt; } // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into // BB so that there is only one value live across basic blocks (the cast // operand). if (CastInst *CI = dyn_cast(Ptr)) if (CI->getParent() != BB && isa(CI->getOperand(0)->getType())) Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt); // Add the offset, cast it to the right type. Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt); Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt); return V = Ptr; } /// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction /// selection, we want to be a bit careful about some things. In particular, if /// we have a GEP instruction that is used in a different block than it is /// defined, the addressing expression of the GEP cannot be folded into loads or /// stores that use it. In this case, decompose the GEP and move constant /// indices into blocks that use it. static void OptimizeGEPExpression(GetElementPtrInst *GEPI, const TargetData &TD) { // If this GEP is only used inside the block it is defined in, there is no // need to rewrite it. bool isUsedOutsideDefBB = false; BasicBlock *DefBB = GEPI->getParent(); for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end(); UI != E; ++UI) { if (cast(*UI)->getParent() != DefBB) { isUsedOutsideDefBB = true; break; } } if (!isUsedOutsideDefBB) return; // If this GEP has no non-zero constant indices, there is nothing we can do, // ignore it. bool hasConstantIndex = false; for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1, E = GEPI->op_end(); OI != E; ++OI) { if (ConstantInt *CI = dyn_cast(*OI)) if (CI->getRawValue()) { hasConstantIndex = true; break; } } // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses. if (!hasConstantIndex && !isa(GEPI->getOperand(0))) return; // Otherwise, decompose the GEP instruction into multiplies and adds. Sum the // constant offset (which we now know is non-zero) and deal with it later. uint64_t ConstantOffset = 0; const Type *UIntPtrTy = TD.getIntPtrType(); Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI); const Type *Ty = GEPI->getOperand(0)->getType(); for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1, E = GEPI->op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getValue(); if (Field) ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field]; Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // Handle constant subscripts. if (ConstantInt *CI = dyn_cast(Idx)) { if (CI->getRawValue() == 0) continue; if (ConstantSInt *CSI = dyn_cast(CI)) ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue(); else ConstantOffset+=TD.getTypeSize(Ty)*cast(CI)->getValue(); continue; } // Ptr = Ptr + Idx * ElementSize; // Cast Idx to UIntPtrTy if needed. Idx = new CastInst(Idx, UIntPtrTy, "", GEPI); uint64_t ElementSize = TD.getTypeSize(Ty); // Mask off bits that should not be set. ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits()); Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize); // Multiply by the element size and add to the base. Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI); Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI); } } // Make sure that the offset fits in uintptr_t. ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits()); Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset); // Okay, we have now emitted all of the variable index parts to the BB that // the GEP is defined in. Loop over all of the using instructions, inserting // an "add Ptr, ConstantOffset" into each block that uses it and update the // instruction to use the newly computed value, making GEPI dead. When the // user is a load or store instruction address, we emit the add into the user // block, otherwise we use a canonical version right next to the gep (these // won't be foldable as addresses, so we might as well share the computation). std::map InsertedExprs; while (!GEPI->use_empty()) { Instruction *User = cast(GEPI->use_back()); // If this use is not foldable into the addressing mode, use a version // emitted in the GEP block. Value *NewVal; if (!isa(User) && (!isa(User) || User->getOperand(0) == GEPI)) { NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI, Ptr, PtrOffset); } else { // Otherwise, insert the code in the User's block so it can be folded into // any users in that block. NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()], User->getParent(), GEPI, Ptr, PtrOffset); } User->replaceUsesOfWith(GEPI, NewVal); } // Finally, the GEP is dead, remove it. GEPI->eraseFromParent(); } bool SelectionDAGISel::runOnFunction(Function &Fn) { MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); RegMap = MF.getSSARegMap(); DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n"); // First, split all critical edges for PHI nodes with incoming values that are // constants, this way the load of the constant into a vreg will not be placed // into MBBs that are used some other way. // // In this pass we also look for GEP instructions that are used across basic // blocks and rewrites them to improve basic-block-at-a-time selection. // for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { PHINode *PN; BasicBlock::iterator BBI; for (BBI = BB->begin(); (PN = dyn_cast(BBI)); ++BBI) for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (isa(PN->getIncomingValue(i))) SplitCriticalEdge(PN->getIncomingBlock(i), BB); for (BasicBlock::iterator E = BB->end(); BBI != E; ) if (GetElementPtrInst *GEPI = dyn_cast(BBI++)) OptimizeGEPExpression(GEPI, TLI.getTargetData()); } FunctionLoweringInfo FuncInfo(TLI, Fn, MF); for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) SelectBasicBlock(I, MF, FuncInfo); return true; } SDOperand SelectionDAGISel:: CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) { SDOperand Op = SDL.getValue(V); assert((Op.getOpcode() != ISD::CopyFromReg || cast(Op.getOperand(1))->getReg() != Reg) && "Copy from a reg to the same reg!"); // If this type is not legal, we must make sure to not create an invalid // register use. MVT::ValueType SrcVT = Op.getValueType(); MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT); SelectionDAG &DAG = SDL.DAG; if (SrcVT == DestVT) { return DAG.getCopyToReg(SDL.getRoot(), Reg, Op); } else if (SrcVT < DestVT) { // The src value is promoted to the register. if (MVT::isFloatingPoint(SrcVT)) Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op); else Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op); return DAG.getCopyToReg(SDL.getRoot(), Reg, Op); } else { // The src value is expanded into multiple registers. SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, Op, DAG.getConstant(0, MVT::i32)); SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT, Op, DAG.getConstant(1, MVT::i32)); Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo); return DAG.getCopyToReg(Op, Reg+1, Hi); } } void SelectionDAGISel:: LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL, std::vector &UnorderedChains) { // If this is the entry block, emit arguments. Function &F = *BB->getParent(); FunctionLoweringInfo &FuncInfo = SDL.FuncInfo; SDOperand OldRoot = SDL.DAG.getRoot(); std::vector Args = TLI.LowerArguments(F, SDL.DAG); unsigned a = 0; for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI, ++a) if (!AI->use_empty()) { SDL.setValue(AI, Args[a]); // If this argument is live outside of the entry block, insert a copy from // whereever we got it to the vreg that other BB's will reference it as. if (FuncInfo.ValueMap.count(AI)) { SDOperand Copy = CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]); UnorderedChains.push_back(Copy); } } // Next, if the function has live ins that need to be copied into vregs, // emit the copies now, into the top of the block. MachineFunction &MF = SDL.DAG.getMachineFunction(); if (MF.livein_begin() != MF.livein_end()) { SSARegMap *RegMap = MF.getSSARegMap(); const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo(); for (MachineFunction::livein_iterator LI = MF.livein_begin(), E = MF.livein_end(); LI != E; ++LI) if (LI->second) MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second, LI->first, RegMap->getRegClass(LI->second)); } // Finally, if the target has anything special to do, allow it to do so. EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction()); } void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, std::vector > &PHINodesToUpdate, FunctionLoweringInfo &FuncInfo) { SelectionDAGLowering SDL(DAG, TLI, FuncInfo); std::vector UnorderedChains; // Lower any arguments needed in this block if this is the entry block. if (LLVMBB == &LLVMBB->getParent()->front()) LowerArguments(LLVMBB, SDL, UnorderedChains); BB = FuncInfo.MBBMap[LLVMBB]; SDL.setCurrentBasicBlock(BB); // Lower all of the non-terminator instructions. for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) SDL.visit(*I); // Ensure that all instructions which are used outside of their defining // blocks are available as virtual registers. for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I) if (!I->use_empty() && !isa(I)) { std::map::iterator VMI =FuncInfo.ValueMap.find(I); if (VMI != FuncInfo.ValueMap.end()) UnorderedChains.push_back( CopyValueToVirtualRegister(SDL, I, VMI->second)); } // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to // ensure constants are generated when needed. Remember the virtual registers // that need to be added to the Machine PHI nodes as input. We cannot just // directly add them, because expansion might result in multiple MBB's for one // BB. As such, the start of the BB might correspond to a different MBB than // the end. // // Emit constants only once even if used by multiple PHI nodes. std::map ConstantsOut; // Check successor nodes PHI nodes that expect a constant to be available from // this block. TerminatorInst *TI = LLVMBB->getTerminator(); for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { BasicBlock *SuccBB = TI->getSuccessor(succ); MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin(); PHINode *PN; // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (BasicBlock::iterator I = SuccBB->begin(); (PN = dyn_cast(I)); ++I) if (!PN->use_empty()) { unsigned Reg; Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); if (Constant *C = dyn_cast(PHIOp)) { unsigned &RegOut = ConstantsOut[C]; if (RegOut == 0) { RegOut = FuncInfo.CreateRegForValue(C); UnorderedChains.push_back( CopyValueToVirtualRegister(SDL, C, RegOut)); } Reg = RegOut; } else { Reg = FuncInfo.ValueMap[PHIOp]; if (Reg == 0) { assert(isa(PHIOp) && FuncInfo.StaticAllocaMap.count(cast(PHIOp)) && "Didn't codegen value into a register!??"); Reg = FuncInfo.CreateRegForValue(PHIOp); UnorderedChains.push_back( CopyValueToVirtualRegister(SDL, PHIOp, Reg)); } } // Remember that this register needs to added to the machine PHI node as // the input for this MBB. unsigned NumElements = TLI.getNumElements(TLI.getValueType(PN->getType())); for (unsigned i = 0, e = NumElements; i != e; ++i) PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); } } ConstantsOut.clear(); // Turn all of the unordered chains into one factored node. if (!UnorderedChains.empty()) { SDOperand Root = SDL.getRoot(); if (Root.getOpcode() != ISD::EntryToken) { unsigned i = 0, e = UnorderedChains.size(); for (; i != e; ++i) { assert(UnorderedChains[i].Val->getNumOperands() > 1); if (UnorderedChains[i].Val->getOperand(0) == Root) break; // Don't add the root if we already indirectly depend on it. } if (i == e) UnorderedChains.push_back(Root); } DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains)); } // Lower the terminator after the copies are emitted. SDL.visit(*LLVMBB->getTerminator()); // Make sure the root of the DAG is up-to-date. DAG.setRoot(SDL.getRoot()); } void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, FunctionLoweringInfo &FuncInfo) { SelectionDAG DAG(TLI, MF, getAnalysisToUpdate()); CurDAG = &DAG; std::vector > PHINodesToUpdate; // First step, lower LLVM code to some DAG. This DAG may use operations and // types that are not supported by the target. BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); // Run the DAG combiner in pre-legalize mode. DAG.Combine(false); DEBUG(std::cerr << "Lowered selection DAG:\n"); DEBUG(DAG.dump()); // Second step, hack on the DAG until it only uses operations and types that // the target supports. DAG.Legalize(); DEBUG(std::cerr << "Legalized selection DAG:\n"); DEBUG(DAG.dump()); // Run the DAG combiner in post-legalize mode. DAG.Combine(true); if (ViewISelDAGs) DAG.viewGraph(); // Third, instruction select all of the operations to machine code, adding the // code to the MachineBasicBlock. InstructionSelectBasicBlock(DAG); DEBUG(std::cerr << "Selected machine code:\n"); DEBUG(BB->dump()); // Next, now that we know what the last MBB the LLVM BB expanded is, update // PHI nodes in successors. for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { MachineInstr *PHI = PHINodesToUpdate[i].first; assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); PHI->addRegOperand(PHINodesToUpdate[i].second); PHI->addMachineBasicBlockOperand(BB); } // Finally, add the CFG edges from the last selected MBB to the successor // MBBs. TerminatorInst *TI = LLVMBB->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)]; BB->addSuccessor(Succ0MBB); } } //===----------------------------------------------------------------------===// /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each /// target node in the graph. void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) { if (ViewSchedDAGs) DAG.viewGraph(); ScheduleDAG *SL = NULL; switch (ISHeuristic) { default: assert(0 && "Unrecognized scheduling heuristic"); case defaultScheduling: if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) SL = createSimpleDAGScheduler(noScheduling, DAG, BB); else /* TargetLowering::SchedulingForRegPressure */ SL = createBURRListDAGScheduler(DAG, BB); break; case noScheduling: case simpleScheduling: case simpleNoItinScheduling: SL = createSimpleDAGScheduler(ISHeuristic, DAG, BB); break; case listSchedulingBURR: SL = createBURRListDAGScheduler(DAG, BB); } BB = SL->Run(); }