//===-- IA64AsmPrinter.cpp - Print out IA64 LLVM as assembly --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Duraid Madina and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to assembly accepted by the GNU binutils 'gas'
// assembler. The Intel 'ias' and HP-UX 'as' assemblers *may* choke on this
// output, but if so that's a bug I'd like to hear about: please file a bug
// report in bugzilla. FYI, the not too bad 'ias' assembler is bundled with
// the Intel C/C++ compiler for Itanium Linux.
//
//===----------------------------------------------------------------------===//

#include "IA64.h"
#include "IA64TargetMachine.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "llvm/ADT/Statistic.h"
#include <iostream>
using namespace llvm;

namespace {
  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
  
  struct IA64AsmPrinter : public AsmPrinter {
    std::set<std::string> ExternalFunctionNames, ExternalObjectNames;

    IA64AsmPrinter(std::ostream &O, TargetMachine &TM, const TargetAsmInfo *T)
      : AsmPrinter(O, TM, T) {
    }

    virtual const char *getPassName() const {
      return "IA64 Assembly Printer";
    }

    /// printInstruction - This method is automatically generated by tablegen
    /// from the instruction set description.  This method returns true if the
    /// machine instruction was sufficiently described to print it, otherwise it
    /// returns false.
    bool printInstruction(const MachineInstr *MI);

    // This method is used by the tablegen'erated instruction printer.
    void printOperand(const MachineInstr *MI, unsigned OpNo){
      const MachineOperand &MO = MI->getOperand(OpNo);
      if (MO.getType() == MachineOperand::MO_Register) {
        assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physref??");
        //XXX Bug Workaround: See note in Printer::doInitialization about %.
        O << TM.getRegisterInfo()->get(MO.getReg()).Name;
      } else {
        printOp(MO);
      }
    }

    void printS8ImmOperand(const MachineInstr *MI, unsigned OpNo) {
      int val=(unsigned int)MI->getOperand(OpNo).getImmedValue();
      if(val>=128) val=val-256; // if negative, flip sign
      O << val;
    }
    void printS14ImmOperand(const MachineInstr *MI, unsigned OpNo) {
      int val=(unsigned int)MI->getOperand(OpNo).getImmedValue();
      if(val>=8192) val=val-16384; // if negative, flip sign
      O << val;
    }
    void printS22ImmOperand(const MachineInstr *MI, unsigned OpNo) {
      int val=(unsigned int)MI->getOperand(OpNo).getImmedValue();
      if(val>=2097152) val=val-4194304; // if negative, flip sign
      O << val;
    }
    void printU64ImmOperand(const MachineInstr *MI, unsigned OpNo) {
      O << (uint64_t)MI->getOperand(OpNo).getImmedValue();
    }
    void printS64ImmOperand(const MachineInstr *MI, unsigned OpNo) {
// XXX : nasty hack to avoid GPREL22 "relocation truncated to fit" linker
// errors - instead of add rX = @gprel(CPI<whatever>), r1;; we now
// emit movl rX = @gprel(CPI<whatever);;
//      add  rX = rX, r1; 
// this gives us 64 bits instead of 22 (for the add long imm) to play
// with, which shuts up the linker. The problem is that the constant
// pool entries aren't immediates at this stage, so we check here. 
// If it's an immediate, print it the old fashioned way. If it's
// not, we print it as a constant pool index. 
      if(MI->getOperand(OpNo).isImmediate()) {
        O << (int64_t)MI->getOperand(OpNo).getImmedValue();
      } else { // this is a constant pool reference: FIXME: assert this
        printOp(MI->getOperand(OpNo));
      }
    }

    void printGlobalOperand(const MachineInstr *MI, unsigned OpNo) {
      printOp(MI->getOperand(OpNo), false); // this is NOT a br.call instruction
    }

    void printCallOperand(const MachineInstr *MI, unsigned OpNo) {
      printOp(MI->getOperand(OpNo), true); // this is a br.call instruction
    }

    std::string getSectionForFunction(const Function &F) const;

    void printMachineInstruction(const MachineInstr *MI);
    void printOp(const MachineOperand &MO, bool isBRCALLinsn= false);
    bool runOnMachineFunction(MachineFunction &F);
    bool doInitialization(Module &M);
    bool doFinalization(Module &M);
  };
} // end of anonymous namespace


// Include the auto-generated portion of the assembly writer.
#include "IA64GenAsmWriter.inc"


std::string IA64AsmPrinter::getSectionForFunction(const Function &F) const {
  // This means "Allocated instruXions in mem, initialized".
  return "\n\t.section .text, \"ax\", \"progbits\"\n";
}

/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool IA64AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
  SetupMachineFunction(MF);
  O << "\n\n";

  // Print out constants referenced by the function
  EmitConstantPool(MF.getConstantPool());

  const Function *F = MF.getFunction();
  SwitchToTextSection(getSectionForFunction(*F).c_str(), F);

  // Print out labels for the function.
  EmitAlignment(5);
  O << "\t.global\t" << CurrentFnName << "\n";
  O << "\t.type\t" << CurrentFnName << ", @function\n";
  O << CurrentFnName << ":\n";

  // Print out code for the function.
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
       I != E; ++I) {
    // Print a label for the basic block if there are any predecessors.
    if (I->pred_begin() != I->pred_end()) {
      printBasicBlockLabel(I, true);
      O << '\n';
    }
    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
         II != E; ++II) {
      // Print the assembly for the instruction.
      O << "\t";
      printMachineInstruction(II);
    }
  }

  // We didn't modify anything.
  return false;
}

void IA64AsmPrinter::printOp(const MachineOperand &MO,
                             bool isBRCALLinsn /* = false */) {
  const MRegisterInfo &RI = *TM.getRegisterInfo();
  switch (MO.getType()) {
  case MachineOperand::MO_Register:
    O << RI.get(MO.getReg()).Name;
    return;

  case MachineOperand::MO_Immediate:
    O << MO.getImmedValue();
    return;
  case MachineOperand::MO_MachineBasicBlock:
    printBasicBlockLabel(MO.getMachineBasicBlock());
    return;
  case MachineOperand::MO_ConstantPoolIndex: {
    O << "@gprel(" << TAI->getPrivateGlobalPrefix()
      << "CPI" << getFunctionNumber() << "_"
      << MO.getConstantPoolIndex() << ")";
    return;
  }

  case MachineOperand::MO_GlobalAddress: {

    // functions need @ltoff(@fptr(fn_name)) form
    GlobalValue *GV = MO.getGlobal();
    Function *F = dyn_cast<Function>(GV);

    bool Needfptr=false; // if we're computing an address @ltoff(X), do
                         // we need to decorate it so it becomes
                         // @ltoff(@fptr(X)) ?
    if (F && !isBRCALLinsn /*&& F->isExternal()*/)
      Needfptr=true;

    // if this is the target of a call instruction, we should define
    // the function somewhere (GNU gas has no problem without this, but
    // Intel ias rightly complains of an 'undefined symbol')

    if (F /*&& isBRCALLinsn*/ && F->isExternal())
      ExternalFunctionNames.insert(Mang->getValueName(MO.getGlobal()));
    else
      if (GV->isExternal()) // e.g. stuff like 'stdin'
        ExternalObjectNames.insert(Mang->getValueName(MO.getGlobal()));

    if (!isBRCALLinsn)
      O << "@ltoff(";
    if (Needfptr)
      O << "@fptr(";
    O << Mang->getValueName(MO.getGlobal());
    
    if (Needfptr && !isBRCALLinsn)
      O << "#))"; // close both fptr( and ltoff(
    else {
      if (Needfptr)
        O << "#)"; // close only fptr(
      if (!isBRCALLinsn)
        O << "#)"; // close only ltoff(
    }
    
    int Offset = MO.getOffset();
    if (Offset > 0)
      O << " + " << Offset;
    else if (Offset < 0)
      O << " - " << -Offset;
    return;
  }
  case MachineOperand::MO_ExternalSymbol:
    O << MO.getSymbolName();
    ExternalFunctionNames.insert(MO.getSymbolName());
    return;
  default:
    O << "<AsmPrinter: unknown operand type: " << MO.getType() << " >"; return;
  }
}

/// printMachineInstruction -- Print out a single IA64 LLVM instruction
/// MI to the current output stream.
///
void IA64AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
  ++EmittedInsts;

  // Call the autogenerated instruction printer routines.
  printInstruction(MI);
}

bool IA64AsmPrinter::doInitialization(Module &M) {
  AsmPrinter::doInitialization(M);

  O << "\n.ident \"LLVM-ia64\"\n\n"
    << "\t.psr    lsb\n"  // should be "msb" on HP-UX, for starters
    << "\t.radix  C\n"
    << "\t.psr    abi64\n"; // we only support 64 bits for now
  return false;
}

bool IA64AsmPrinter::doFinalization(Module &M) {
  const TargetData *TD = TM.getTargetData();
  
  // Print out module-level global variables here.
  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I)
    if (I->hasInitializer()) {   // External global require no code
      // Check to see if this is a special global used by LLVM, if so, emit it.
      if (EmitSpecialLLVMGlobal(I))
        continue;
      
      O << "\n\n";
      std::string name = Mang->getValueName(I);
      Constant *C = I->getInitializer();
      unsigned Size = TD->getTypeSize(C->getType());
      unsigned Align = TD->getTypeAlignmentShift(C->getType());
      
      if (C->isNullValue() &&
          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
        SwitchToDataSection(".data", I);
        if (I->hasInternalLinkage()) {
          O << "\t.lcomm " << name << "#," << TD->getTypeSize(C->getType())
          << "," << (1 << Align);
          O << "\t\t// ";
        } else {
          O << "\t.common " << name << "#," << TD->getTypeSize(C->getType())
          << "," << (1 << Align);
          O << "\t\t// ";
        }
        WriteAsOperand(O, I, true, true, &M);
        O << "\n";
      } else {
        switch (I->getLinkage()) {
          case GlobalValue::LinkOnceLinkage:
          case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
                                           // Nonnull linkonce -> weak
            O << "\t.weak " << name << "\n";
            O << "\t.section\t.llvm.linkonce.d." << name
              << ", \"aw\", \"progbits\"\n";
            SwitchToDataSection("", I);
            break;
          case GlobalValue::AppendingLinkage:
            // FIXME: appending linkage variables should go into a section of
            // their name or something.  For now, just emit them as external.
          case GlobalValue::ExternalLinkage:
            // If external or appending, declare as a global symbol
            O << "\t.global " << name << "\n";
            // FALL THROUGH
          case GlobalValue::InternalLinkage:
            SwitchToDataSection(C->isNullValue() ? ".bss" : ".data", I);
            break;
          case GlobalValue::GhostLinkage:
            std::cerr << "GhostLinkage cannot appear in IA64AsmPrinter!\n";
            abort();
          case GlobalValue::DLLImportLinkage:
            std::cerr << "DLLImport linkage is not supported by this target!\n";
            abort();
          case GlobalValue::DLLExportLinkage:
            std::cerr << "DLLExport linkage is not supported by this target!\n";
            abort();
          default:
            assert(0 && "Unknown linkage type!");            
        }
        
        EmitAlignment(Align);
        O << "\t.type " << name << ",@object\n";
        O << "\t.size " << name << "," << Size << "\n";
        O << name << ":\t\t\t\t// ";
        WriteAsOperand(O, I, true, true, &M);
        O << " = ";
        WriteAsOperand(O, C, false, false, &M);
        O << "\n";
        EmitGlobalConstant(C);
      }
    }
      
      // we print out ".global X \n .type X, @function" for each external function
      O << "\n\n// br.call targets referenced (and not defined) above: \n";
  for (std::set<std::string>::iterator i = ExternalFunctionNames.begin(),
       e = ExternalFunctionNames.end(); i!=e; ++i) {
    O << "\t.global " << *i << "\n\t.type " << *i << ", @function\n";
  }
  O << "\n\n";
  
  // we print out ".global X \n .type X, @object" for each external object
  O << "\n\n// (external) symbols referenced (and not defined) above: \n";
  for (std::set<std::string>::iterator i = ExternalObjectNames.begin(),
       e = ExternalObjectNames.end(); i!=e; ++i) {
    O << "\t.global " << *i << "\n\t.type " << *i << ", @object\n";
  }
  O << "\n\n";
  
  AsmPrinter::doFinalization(M);
  return false; // success
}

/// createIA64CodePrinterPass - Returns a pass that prints the IA64
/// assembly code for a MachineFunction to the given output stream, using
/// the given target machine description.
///
FunctionPass *llvm::createIA64CodePrinterPass(std::ostream &o,
                                              IA64TargetMachine &tm) {
  return new IA64AsmPrinter(o, tm, tm.getTargetAsmInfo());
}