//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the interfaces that Sparc uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "SparcISelLowering.h" #include "SparcTargetMachine.h" #include "SparcMachineFunctionInfo.h" #include "llvm/Function.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/ADT/VectorExtras.h" #include "llvm/Support/ErrorHandling.h" using namespace llvm; //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// #include "SparcGenCallingConv.inc" SDValue SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, DebugLoc dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to locations. SmallVector RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, isVarArg, DAG.getTarget(), RVLocs, *DAG.getContext()); // Analize return values. CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); // If this is the first return lowered for this function, add the regs to the // liveout set for the function. if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { for (unsigned i = 0; i != RVLocs.size(); ++i) if (RVLocs[i].isRegLoc()) DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); } SDValue Flag; // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); // Guarantee that all emitted copies are stuck together with flags. Flag = Chain.getValue(1); } if (Flag.getNode()) return DAG.getNode(SPISD::RET_FLAG, dl, MVT::Other, Chain, Flag); return DAG.getNode(SPISD::RET_FLAG, dl, MVT::Other, Chain); } /// LowerFormalArguments - V8 uses a very simple ABI, where all values are /// passed in either one or two GPRs, including FP values. TODO: we should /// pass FP values in FP registers for fastcc functions. SDValue SparcTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); SparcMachineFunctionInfo *FuncInfo = MF.getInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); static const unsigned ArgRegs[] = { SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 }; const unsigned *CurArgReg = ArgRegs, *ArgRegEnd = ArgRegs+6; unsigned ArgOffset = 68; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { SDValue ArgValue; CCValAssign &VA = ArgLocs[i]; // FIXME: We ignore the register assignments of AnalyzeFormalArguments // because it doesn't know how to split a double into two i32 registers. EVT ObjectVT = VA.getValVT(); switch (ObjectVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (!Ins[i].Used) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; InVals.push_back(DAG.getUNDEF(ObjectVT)); } else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VReg); SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); if (ObjectVT != MVT::i32) { unsigned AssertOp = ISD::AssertSext; Arg = DAG.getNode(AssertOp, dl, MVT::i32, Arg, DAG.getValueType(ObjectVT)); Arg = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Arg); } InVals.push_back(Arg); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue Load; if (ObjectVT == MVT::i32) { Load = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo(), false, false, 0); } else { ISD::LoadExtType LoadOp = ISD::SEXTLOAD; // Sparc is big endian, so add an offset based on the ObjectVT. unsigned Offset = 4-std::max(1U, ObjectVT.getSizeInBits()/8); FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr, DAG.getConstant(Offset, MVT::i32)); Load = DAG.getExtLoad(LoadOp, MVT::i32, dl, Chain, FIPtr, MachinePointerInfo(), ObjectVT, false, false,0); Load = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Load); } InVals.push_back(Load); } ArgOffset += 4; break; case MVT::f32: if (!Ins[i].Used) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; InVals.push_back(DAG.getUNDEF(ObjectVT)); } else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR // FP value is passed in an integer register. unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VReg); SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Arg); InVals.push_back(Arg); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDValue Load = DAG.getLoad(MVT::f32, dl, Chain, FIPtr, MachinePointerInfo(), false, false, 0); InVals.push_back(Load); } ArgOffset += 4; break; case MVT::i64: case MVT::f64: if (!Ins[i].Used) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; if (CurArgReg < ArgRegEnd) ++CurArgReg; InVals.push_back(DAG.getUNDEF(ObjectVT)); } else { SDValue HiVal; if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VRegHi); HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo(), false, false, 0); } SDValue LoVal; if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VRegLo = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg++, VRegLo); LoVal = DAG.getCopyFromReg(Chain, dl, VRegLo, MVT::i32); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset+4, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo(), false, false, 0); } // Compose the two halves together into an i64 unit. SDValue WholeValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); // If we want a double, do a bit convert. if (ObjectVT == MVT::f64) WholeValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, WholeValue); InVals.push_back(WholeValue); } ArgOffset += 8; break; } } // Store remaining ArgRegs to the stack if this is a varargs function. if (isVarArg) { // Remember the vararg offset for the va_start implementation. FuncInfo->setVarArgsFrameOffset(ArgOffset); std::vector OutChains; for (; CurArgReg != ArgRegEnd; ++CurArgReg) { unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); MF.getRegInfo().addLiveIn(*CurArgReg, VReg); SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true); SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo(), false, false, 0)); ArgOffset += 4; } if (!OutChains.empty()) { OutChains.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size()); } } return Chain; } SDValue SparcTargetLowering::LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // Sparc target does not yet support tail call optimization. isTailCall = false; #if 0 // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getTarget(), ArgLocs); CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); // Get the size of the outgoing arguments stack space requirement. unsigned ArgsSize = CCInfo.getNextStackOffset(); // FIXME: We can't use this until f64 is known to take two GPRs. #else (void)CC_Sparc32; // Count the size of the outgoing arguments. unsigned ArgsSize = 0; for (unsigned i = 0, e = Outs.size(); i != e; ++i) { switch (Outs[i].VT.SimpleTy) { default: llvm_unreachable("Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::f32: ArgsSize += 4; break; case MVT::i64: case MVT::f64: ArgsSize += 8; break; } } if (ArgsSize > 4*6) ArgsSize -= 4*6; // Space for first 6 arguments is prereserved. else ArgsSize = 0; #endif // Keep stack frames 8-byte aligned. ArgsSize = (ArgsSize+7) & ~7; Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true)); SmallVector, 8> RegsToPass; SmallVector MemOpChains; #if 0 // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); break; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } assert(VA.isMemLoc()); // Create a store off the stack pointer for this argument. SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); // FIXME: VERIFY THAT 68 IS RIGHT. SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()+68); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, MachinePointerInfo(), false, false, 0)); } #else static const unsigned ArgRegs[] = { SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 }; unsigned ArgOffset = 68; for (unsigned i = 0, e = Outs.size(); i != e; ++i) { SDValue Val = OutVals[i]; EVT ObjectVT = Outs[i].VT; SDValue ValToStore(0, 0); unsigned ObjSize; switch (ObjectVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled argument type!"); case MVT::i32: ObjSize = 4; if (RegsToPass.size() >= 6) { ValToStore = Val; } else { RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Val)); } break; case MVT::f32: ObjSize = 4; if (RegsToPass.size() >= 6) { ValToStore = Val; } else { // Convert this to a FP value in an int reg. Val = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Val); RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Val)); } break; case MVT::f64: { ObjSize = 8; if (RegsToPass.size() >= 6) { ValToStore = Val; // Whole thing is passed in memory. break; } // Break into top and bottom parts by storing to the stack and loading // out the parts as integers. Top part goes in a reg. SDValue StackPtr = DAG.CreateStackTemporary(MVT::f64, MVT::i32); SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Val, StackPtr, MachinePointerInfo(), false, false, 0); // Sparc is big-endian, so the high part comes first. SDValue Hi = DAG.getLoad(MVT::i32, dl, Store, StackPtr, MachinePointerInfo(), false, false, 0); // Increment the pointer to the other half. StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, DAG.getIntPtrConstant(4)); // Load the low part. SDValue Lo = DAG.getLoad(MVT::i32, dl, Store, StackPtr, MachinePointerInfo(), false, false, 0); RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Hi)); if (RegsToPass.size() >= 6) { ValToStore = Lo; ArgOffset += 4; ObjSize = 4; } else { RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Lo)); } break; } case MVT::i64: { ObjSize = 8; if (RegsToPass.size() >= 6) { ValToStore = Val; // Whole thing is passed in memory. break; } // Split the value into top and bottom part. Top part goes in a reg. SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Val, DAG.getConstant(1, MVT::i32)); SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Val, DAG.getConstant(0, MVT::i32)); RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Hi)); if (RegsToPass.size() >= 6) { ValToStore = Lo; ArgOffset += 4; ObjSize = 4; } else { RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Lo)); } break; } } if (ValToStore.getNode()) { SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); SDValue PtrOff = DAG.getConstant(ArgOffset, MVT::i32); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, dl, ValToStore, PtrOff, MachinePointerInfo(), false, false, 0)); } ArgOffset += ObjSize; } #endif // Emit all stores, make sure the occur before any copies into physregs. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emited instructions must be // stuck together. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { unsigned Reg = RegsToPass[i].first; // Remap I0->I7 -> O0->O7. if (Reg >= SP::I0 && Reg <= SP::I7) Reg = Reg-SP::I0+SP::O0; Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. SDValue Ops[] = { Chain, Callee, InFlag }; Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops, InFlag.getNode() ? 3 : 2); InFlag = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true), DAG.getIntPtrConstant(0, true), InFlag); InFlag = Chain.getValue(1); // Assign locations to each value returned by this call. SmallVector RVLocs; CCState RVInfo(CallConv, isVarArg, DAG.getTarget(), RVLocs, *DAG.getContext()); RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { unsigned Reg = RVLocs[i].getLocReg(); // Remap I0->I7 -> O0->O7. if (Reg >= SP::I0 && Reg <= SP::I7) Reg = Reg-SP::I0+SP::O0; Chain = DAG.getCopyFromReg(Chain, dl, Reg, RVLocs[i].getValVT(), InFlag).getValue(1); InFlag = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } return Chain; } //===----------------------------------------------------------------------===// // TargetLowering Implementation //===----------------------------------------------------------------------===// /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC /// condition. static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown integer condition code!"); case ISD::SETEQ: return SPCC::ICC_E; case ISD::SETNE: return SPCC::ICC_NE; case ISD::SETLT: return SPCC::ICC_L; case ISD::SETGT: return SPCC::ICC_G; case ISD::SETLE: return SPCC::ICC_LE; case ISD::SETGE: return SPCC::ICC_GE; case ISD::SETULT: return SPCC::ICC_CS; case ISD::SETULE: return SPCC::ICC_LEU; case ISD::SETUGT: return SPCC::ICC_GU; case ISD::SETUGE: return SPCC::ICC_CC; } } /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC /// FCC condition. static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown fp condition code!"); case ISD::SETEQ: case ISD::SETOEQ: return SPCC::FCC_E; case ISD::SETNE: case ISD::SETUNE: return SPCC::FCC_NE; case ISD::SETLT: case ISD::SETOLT: return SPCC::FCC_L; case ISD::SETGT: case ISD::SETOGT: return SPCC::FCC_G; case ISD::SETLE: case ISD::SETOLE: return SPCC::FCC_LE; case ISD::SETGE: case ISD::SETOGE: return SPCC::FCC_GE; case ISD::SETULT: return SPCC::FCC_UL; case ISD::SETULE: return SPCC::FCC_ULE; case ISD::SETUGT: return SPCC::FCC_UG; case ISD::SETUGE: return SPCC::FCC_UGE; case ISD::SETUO: return SPCC::FCC_U; case ISD::SETO: return SPCC::FCC_O; case ISD::SETONE: return SPCC::FCC_LG; case ISD::SETUEQ: return SPCC::FCC_UE; } } SparcTargetLowering::SparcTargetLowering(TargetMachine &TM) : TargetLowering(TM, new TargetLoweringObjectFileELF()) { // Set up the register classes. addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); // Turn FP extload into load/fextend setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); // Sparc doesn't have i1 sign extending load setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); // Turn FP truncstore into trunc + store. setTruncStoreAction(MVT::f64, MVT::f32, Expand); // Custom legalize GlobalAddress nodes into LO/HI parts. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool , MVT::i32, Custom); // Sparc doesn't have sext_inreg, replace them with shl/sra setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); // Sparc has no REM or DIVREM operations. setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); // Custom expand fp<->sint setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); // Expand fp<->uint setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); // Sparc has no select or setcc: expand to SELECT_CC. setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); setOperationAction(ISD::SETCC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Expand); setOperationAction(ISD::SETCC, MVT::f64, Expand); // Sparc doesn't have BRCOND either, it has BR_CC. setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BRIND, MVT::Other, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); // SPARC has no intrinsics for these particular operations. setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Expand); setOperationAction(ISD::CTTZ , MVT::i32, Expand); setOperationAction(ISD::CTLZ , MVT::i32, Expand); setOperationAction(ISD::ROTL , MVT::i32, Expand); setOperationAction(ISD::ROTR , MVT::i32, Expand); setOperationAction(ISD::BSWAP, MVT::i32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); setOperationAction(ISD::FPOW , MVT::f64, Expand); setOperationAction(ISD::FPOW , MVT::f32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); // FIXME: Sparc provides these multiplies, but we don't have them yet. setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); // VASTART needs to be custom lowered to use the VarArgsFrameIndex. setOperationAction(ISD::VASTART , MVT::Other, Custom); // VAARG needs to be lowered to not do unaligned accesses for doubles. setOperationAction(ISD::VAARG , MVT::Other, Custom); // Use the default implementation. setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); // No debug info support yet. setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); setStackPointerRegisterToSaveRestore(SP::O6); if (TM.getSubtarget().isV9()) setOperationAction(ISD::CTPOP, MVT::i32, Legal); computeRegisterProperties(); } const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case SPISD::CMPICC: return "SPISD::CMPICC"; case SPISD::CMPFCC: return "SPISD::CMPFCC"; case SPISD::BRICC: return "SPISD::BRICC"; case SPISD::BRFCC: return "SPISD::BRFCC"; case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; case SPISD::Hi: return "SPISD::Hi"; case SPISD::Lo: return "SPISD::Lo"; case SPISD::FTOI: return "SPISD::FTOI"; case SPISD::ITOF: return "SPISD::ITOF"; case SPISD::CALL: return "SPISD::CALL"; case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; } } /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to /// be zero. Op is expected to be a target specific node. Used by DAG /// combiner. void SparcTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { APInt KnownZero2, KnownOne2; KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. switch (Op.getOpcode()) { default: break; case SPISD::SELECT_ICC: case SPISD::SELECT_FCC: DAG.ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; break; } } // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode CC, unsigned &SPCC) { if (isa(RHS) && cast(RHS)->isNullValue() && CC == ISD::SETNE && ((LHS.getOpcode() == SPISD::SELECT_ICC && LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || (LHS.getOpcode() == SPISD::SELECT_FCC && LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && isa(LHS.getOperand(0)) && isa(LHS.getOperand(1)) && cast(LHS.getOperand(0))->isOne() && cast(LHS.getOperand(1))->isNullValue()) { SDValue CMPCC = LHS.getOperand(3); SPCC = cast(LHS.getOperand(2))->getZExtValue(); LHS = CMPCC.getOperand(0); RHS = CMPCC.getOperand(1); } } SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { const GlobalValue *GV = cast(Op)->getGlobal(); // FIXME there isn't really any debug info here DebugLoc dl = Op.getDebugLoc(); SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32); SDValue Hi = DAG.getNode(SPISD::Hi, dl, MVT::i32, GA); SDValue Lo = DAG.getNode(SPISD::Lo, dl, MVT::i32, GA); if (getTargetMachine().getRelocationModel() != Reloc::PIC_) return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi); SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, dl, getPointerTy()); SDValue RelAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi); SDValue AbsAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, GlobalBase, RelAddr); return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), AbsAddr, MachinePointerInfo(), false, false, 0); } SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { ConstantPoolSDNode *N = cast(Op); // FIXME there isn't really any debug info here DebugLoc dl = Op.getDebugLoc(); const Constant *C = N->getConstVal(); SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment()); SDValue Hi = DAG.getNode(SPISD::Hi, dl, MVT::i32, CP); SDValue Lo = DAG.getNode(SPISD::Lo, dl, MVT::i32, CP); if (getTargetMachine().getRelocationModel() != Reloc::PIC_) return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi); SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, dl, getPointerTy()); SDValue RelAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi); SDValue AbsAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, GlobalBase, RelAddr); return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), AbsAddr, MachinePointerInfo(), false, false, 0); } static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); // Convert the fp value to integer in an FP register. assert(Op.getValueType() == MVT::i32); Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); } static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); assert(Op.getOperand(0).getValueType() == MVT::i32); SDValue Tmp = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0)); // Convert the int value to FP in an FP register. return DAG.getNode(SPISD::ITOF, dl, Op.getValueType(), Tmp); } static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); DebugLoc dl = Op.getDebugLoc(); unsigned Opc, SPCC = ~0U; // If this is a br_cc of a "setcc", and if the setcc got lowered into // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. LookThroughSetCC(LHS, RHS, CC, SPCC); // Get the condition flag. SDValue CompareFlag; if (LHS.getValueType() == MVT::i32) { std::vector VTs; VTs.push_back(MVT::i32); VTs.push_back(MVT::Flag); SDValue Ops[2] = { LHS, RHS }; CompareFlag = DAG.getNode(SPISD::CMPICC, dl, VTs, Ops, 2).getValue(1); if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); Opc = SPISD::BRICC; } else { CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Flag, LHS, RHS); if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); Opc = SPISD::BRFCC; } return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, DAG.getConstant(SPCC, MVT::i32), CompareFlag); } static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDValue TrueVal = Op.getOperand(2); SDValue FalseVal = Op.getOperand(3); DebugLoc dl = Op.getDebugLoc(); unsigned Opc, SPCC = ~0U; // If this is a select_cc of a "setcc", and if the setcc got lowered into // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. LookThroughSetCC(LHS, RHS, CC, SPCC); SDValue CompareFlag; if (LHS.getValueType() == MVT::i32) { std::vector VTs; VTs.push_back(LHS.getValueType()); // subcc returns a value VTs.push_back(MVT::Flag); SDValue Ops[2] = { LHS, RHS }; CompareFlag = DAG.getNode(SPISD::CMPICC, dl, VTs, Ops, 2).getValue(1); Opc = SPISD::SELECT_ICC; if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); } else { CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Flag, LHS, RHS); Opc = SPISD::SELECT_FCC; if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); } return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, DAG.getConstant(SPCC, MVT::i32), CompareFlag); } static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, const SparcTargetLowering &TLI) { MachineFunction &MF = DAG.getMachineFunction(); SparcMachineFunctionInfo *FuncInfo = MF.getInfo(); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. DebugLoc dl = Op.getDebugLoc(); SDValue Offset = DAG.getNode(ISD::ADD, dl, MVT::i32, DAG.getRegister(SP::I6, MVT::i32), DAG.getConstant(FuncInfo->getVarArgsFrameOffset(), MVT::i32)); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, Offset, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { SDNode *Node = Op.getNode(); EVT VT = Node->getValueType(0); SDValue InChain = Node->getOperand(0); SDValue VAListPtr = Node->getOperand(1); const Value *SV = cast(Node->getOperand(2))->getValue(); DebugLoc dl = Node->getDebugLoc(); SDValue VAList = DAG.getLoad(MVT::i32, dl, InChain, VAListPtr, MachinePointerInfo(SV), false, false, 0); // Increment the pointer, VAList, to the next vaarg SDValue NextPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, VAList, DAG.getConstant(VT.getSizeInBits()/8, MVT::i32)); // Store the incremented VAList to the legalized pointer InChain = DAG.getStore(VAList.getValue(1), dl, NextPtr, VAListPtr, MachinePointerInfo(SV), false, false, 0); // Load the actual argument out of the pointer VAList, unless this is an // f64 load. if (VT != MVT::f64) return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), false, false, 0); // Otherwise, load it as i64, then do a bitconvert. SDValue V = DAG.getLoad(MVT::i64, dl, InChain, VAList, MachinePointerInfo(), false, false, 0); // Bit-Convert the value to f64. SDValue Ops[2] = { DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, V), V.getValue(1) }; return DAG.getMergeValues(Ops, 2, dl); } static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) { SDValue Chain = Op.getOperand(0); // Legalize the chain. SDValue Size = Op.getOperand(1); // Legalize the size. DebugLoc dl = Op.getDebugLoc(); unsigned SPReg = SP::O6; SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32); SDValue NewSP = DAG.getNode(ISD::SUB, dl, MVT::i32, SP, Size); // Value Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain // The resultant pointer is actually 16 words from the bottom of the stack, // to provide a register spill area. SDValue NewVal = DAG.getNode(ISD::ADD, dl, MVT::i32, NewSP, DAG.getConstant(96, MVT::i32)); SDValue Ops[2] = { NewVal, Chain }; return DAG.getMergeValues(Ops, 2, dl); } SDValue SparcTargetLowering:: LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Should not custom lower this!"); // Frame & Return address. Currently unimplemented case ISD::RETURNADDR: return SDValue(); case ISD::FRAMEADDR: return SDValue(); case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for Sparc."); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG, *this); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); } } MachineBasicBlock * SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo(); unsigned BROpcode; unsigned CC; DebugLoc dl = MI->getDebugLoc(); // Figure out the conditional branch opcode to use for this select_cc. switch (MI->getOpcode()) { default: llvm_unreachable("Unknown SELECT_CC!"); case SP::SELECT_CC_Int_ICC: case SP::SELECT_CC_FP_ICC: case SP::SELECT_CC_DFP_ICC: BROpcode = SP::BCOND; break; case SP::SELECT_CC_Int_FCC: case SP::SELECT_CC_FP_FCC: case SP::SELECT_CC_DFP_FCC: BROpcode = SP::FBCOND; break; } CC = (SPCC::CondCodes)MI->getOperand(3).getImm(); // To "insert" a SELECT_CC instruction, we actually have to insert the diamond // control-flow pattern. The incoming instruction knows the destination vreg // to set, the condition code register to branch on, the true/false values to // select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // [f]bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); BuildMI(BB, dl, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), dl, TII.get(SP::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } //===----------------------------------------------------------------------===// // Sparc Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. SparcTargetLowering::ConstraintType SparcTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'r': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); } std::pair SparcTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': return std::make_pair(0U, SP::IntRegsRegisterClass); } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } std::vector SparcTargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { if (Constraint.size() != 1) return std::vector(); switch (Constraint[0]) { default: break; case 'r': return make_vector(SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5, SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3, SP::O4, SP::O5, SP::O7, 0); } return std::vector(); } bool SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The Sparc target isn't yet aware of offsets. return false; } /// getFunctionAlignment - Return the Log2 alignment of this function. unsigned SparcTargetLowering::getFunctionAlignment(const Function *) const { return 2; }