//===-------- LegalizeFloatTypes.cpp - Legalization of float types --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements float type expansion and softening for LegalizeTypes. // Softening is the act of turning a computation in an illegal floating point // type into a computation in an integer type of the same size; also known as // "soft float". For example, turning f32 arithmetic into operations using i32. // The resulting integer value is the same as what you would get by performing // the floating point operation and bitcasting the result to the integer type. // Expansion is the act of changing a computation in an illegal type to be a // computation in two identical registers of a smaller type. For example, // implementing ppcf128 arithmetic in two f64 registers. // //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" using namespace llvm; /// GetFPLibCall - Return the right libcall for the given floating point type. static RTLIB::Libcall GetFPLibCall(MVT VT, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_PPCF128) { return VT == MVT::f32 ? Call_F32 : VT == MVT::f64 ? Call_F64 : VT == MVT::f80 ? Call_F80 : VT == MVT::ppcf128 ? Call_PPCF128 : RTLIB::UNKNOWN_LIBCALL; } //===----------------------------------------------------------------------===// // Result Float to Integer Conversion. //===----------------------------------------------------------------------===// void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) { DEBUG(cerr << "Soften float result " << ResNo << ": "; N->dump(&DAG); cerr << "\n"); SDOperand R = SDOperand(); switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "SoftenFloatResult #" << ResNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to soften the result of this operator!"); abort(); case ISD::BIT_CONVERT: R = SoftenFloatRes_BIT_CONVERT(N); break; case ISD::BUILD_PAIR: R = SoftenFloatRes_BUILD_PAIR(N); break; case ISD::ConstantFP: R = SoftenFloatRes_ConstantFP(cast(N)); break; case ISD::FADD: R = SoftenFloatRes_FADD(N); break; case ISD::FCOPYSIGN: R = SoftenFloatRes_FCOPYSIGN(N); break; case ISD::FMUL: R = SoftenFloatRes_FMUL(N); break; case ISD::FP_EXTEND: R = SoftenFloatRes_FP_EXTEND(N); break; case ISD::FP_ROUND: R = SoftenFloatRes_FP_ROUND(N); break; case ISD::FPOWI: R = SoftenFloatRes_FPOWI(N); break; case ISD::FSUB: R = SoftenFloatRes_FSUB(N); break; case ISD::LOAD: R = SoftenFloatRes_LOAD(N); break; case ISD::SELECT: R = SoftenFloatRes_SELECT(N); break; case ISD::SELECT_CC: R = SoftenFloatRes_SELECT_CC(N); break; case ISD::SINT_TO_FP: R = SoftenFloatRes_SINT_TO_FP(N); break; case ISD::UINT_TO_FP: R = SoftenFloatRes_UINT_TO_FP(N); break; } // If R is null, the sub-method took care of registering the result. if (R.Val) SetSoftenedFloat(SDOperand(N, ResNo), R); } SDOperand DAGTypeLegalizer::SoftenFloatRes_BIT_CONVERT(SDNode *N) { return BitConvertToInteger(N->getOperand(0)); } SDOperand DAGTypeLegalizer::SoftenFloatRes_BUILD_PAIR(SDNode *N) { // Convert the inputs to integers, and build a new pair out of them. return DAG.getNode(ISD::BUILD_PAIR, TLI.getTypeToTransformTo(N->getValueType(0)), BitConvertToInteger(N->getOperand(0)), BitConvertToInteger(N->getOperand(1))); } SDOperand DAGTypeLegalizer::SoftenFloatRes_ConstantFP(ConstantFPSDNode *N) { return DAG.getConstant(N->getValueAPF().convertToAPInt(), TLI.getTypeToTransformTo(N->getValueType(0))); } SDOperand DAGTypeLegalizer::SoftenFloatRes_FADD(SDNode *N) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand Ops[2] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::ADD_F32, RTLIB::ADD_F64, RTLIB::ADD_F80, RTLIB::ADD_PPCF128), NVT, Ops, 2, false); } SDOperand DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN(SDNode *N) { SDOperand LHS = GetSoftenedFloat(N->getOperand(0)); SDOperand RHS = BitConvertToInteger(N->getOperand(1)); MVT LVT = LHS.getValueType(); MVT RVT = RHS.getValueType(); unsigned LSize = LVT.getSizeInBits(); unsigned RSize = RVT.getSizeInBits(); // First get the sign bit of second operand. SDOperand SignBit = DAG.getNode(ISD::SHL, RVT, DAG.getConstant(1, RVT), DAG.getConstant(RSize - 1, TLI.getShiftAmountTy())); SignBit = DAG.getNode(ISD::AND, RVT, RHS, SignBit); // Shift right or sign-extend it if the two operands have different types. int SizeDiff = RVT.getSizeInBits() - LVT.getSizeInBits(); if (SizeDiff > 0) { SignBit = DAG.getNode(ISD::SRL, RVT, SignBit, DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); SignBit = DAG.getNode(ISD::TRUNCATE, LVT, SignBit); } else if (SizeDiff < 0) { SignBit = DAG.getNode(ISD::ANY_EXTEND, LVT, SignBit); SignBit = DAG.getNode(ISD::SHL, LVT, SignBit, DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy())); } // Clear the sign bit of the first operand. SDOperand Mask = DAG.getNode(ISD::SHL, LVT, DAG.getConstant(1, LVT), DAG.getConstant(LSize - 1, TLI.getShiftAmountTy())); Mask = DAG.getNode(ISD::SUB, LVT, Mask, DAG.getConstant(1, LVT)); LHS = DAG.getNode(ISD::AND, LVT, LHS, Mask); // Or the value with the sign bit. return DAG.getNode(ISD::OR, LVT, LHS, SignBit); } SDOperand DAGTypeLegalizer::SoftenFloatRes_FMUL(SDNode *N) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand Ops[2] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::MUL_F32, RTLIB::MUL_F64, RTLIB::MUL_F80, RTLIB::MUL_PPCF128), NVT, Ops, 2, false); } SDOperand DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::getFPEXT(Op.getValueType(), N->getValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); return MakeLibCall(LC, NVT, &Op, 1, false); } SDOperand DAGTypeLegalizer::SoftenFloatRes_FP_ROUND(SDNode *N) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), N->getValueType(0)); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); return MakeLibCall(LC, NVT, &Op, 1, false); } SDOperand DAGTypeLegalizer::SoftenFloatRes_FPOWI(SDNode *N) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand Ops[2] = { GetSoftenedFloat(N->getOperand(0)), N->getOperand(1) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, RTLIB::POWI_PPCF128), NVT, Ops, 2, false); } SDOperand DAGTypeLegalizer::SoftenFloatRes_FSUB(SDNode *N) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand Ops[2] = { GetSoftenedFloat(N->getOperand(0)), GetSoftenedFloat(N->getOperand(1)) }; return MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_PPCF128), NVT, Ops, 2, false); } SDOperand DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) { LoadSDNode *L = cast(N); MVT VT = N->getValueType(0); MVT NVT = TLI.getTypeToTransformTo(VT); SDOperand NewL; if (L->getExtensionType() == ISD::NON_EXTLOAD) { NewL = DAG.getLoad(L->getAddressingMode(), L->getExtensionType(), NVT, L->getChain(), L->getBasePtr(), L->getOffset(), L->getSrcValue(), L->getSrcValueOffset(), NVT, L->isVolatile(), L->getAlignment()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDOperand(N, 1), NewL.getValue(1)); return NewL; } // Do a non-extending load followed by FP_EXTEND. NewL = DAG.getLoad(L->getAddressingMode(), ISD::NON_EXTLOAD, L->getMemoryVT(), L->getChain(), L->getBasePtr(), L->getOffset(), L->getSrcValue(), L->getSrcValueOffset(), L->getMemoryVT(), L->isVolatile(), L->getAlignment()); // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDOperand(N, 1), NewL.getValue(1)); return BitConvertToInteger(DAG.getNode(ISD::FP_EXTEND, VT, NewL)); } SDOperand DAGTypeLegalizer::SoftenFloatRes_SELECT(SDNode *N) { SDOperand LHS = GetSoftenedFloat(N->getOperand(1)); SDOperand RHS = GetSoftenedFloat(N->getOperand(2)); return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0),LHS,RHS); } SDOperand DAGTypeLegalizer::SoftenFloatRes_SELECT_CC(SDNode *N) { SDOperand LHS = GetSoftenedFloat(N->getOperand(2)); SDOperand RHS = GetSoftenedFloat(N->getOperand(3)); return DAG.getNode(ISD::SELECT_CC, LHS.getValueType(), N->getOperand(0), N->getOperand(1), LHS, RHS, N->getOperand(4)); } SDOperand DAGTypeLegalizer::SoftenFloatRes_SINT_TO_FP(SDNode *N) { SDOperand Op = N->getOperand(0); MVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SINT_TO_FP!"); return MakeLibCall(LC, TLI.getTypeToTransformTo(RVT), &Op, 1, false); } SDOperand DAGTypeLegalizer::SoftenFloatRes_UINT_TO_FP(SDNode *N) { SDOperand Op = N->getOperand(0); MVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getUINTTOFP(Op.getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UINT_TO_FP!"); return MakeLibCall(LC, TLI.getTypeToTransformTo(RVT), &Op, 1, false); } //===----------------------------------------------------------------------===// // Operand Float to Integer Conversion.. //===----------------------------------------------------------------------===// bool DAGTypeLegalizer::SoftenFloatOperand(SDNode *N, unsigned OpNo) { DEBUG(cerr << "Soften float operand " << OpNo << ": "; N->dump(&DAG); cerr << "\n"); SDOperand Res = SDOperand(); switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "SoftenFloatOperand Op #" << OpNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to soften this operator's operand!"); abort(); case ISD::BIT_CONVERT: Res = SoftenFloatOp_BIT_CONVERT(N); break; case ISD::BR_CC: Res = SoftenFloatOp_BR_CC(N); break; case ISD::FP_TO_SINT: Res = SoftenFloatOp_FP_TO_SINT(N); break; case ISD::FP_TO_UINT: Res = SoftenFloatOp_FP_TO_UINT(N); break; case ISD::SELECT_CC: Res = SoftenFloatOp_SELECT_CC(N); break; case ISD::SETCC: Res = SoftenFloatOp_SETCC(N); break; case ISD::STORE: Res = SoftenFloatOp_STORE(N, OpNo); break; } // If the result is null, the sub-method took care of registering results etc. if (!Res.Val) return false; // If the result is N, the sub-method updated N in place. Check to see if any // operands are new, and if so, mark them. if (Res.Val == N) { // Mark N as new and remark N and its operands. This allows us to correctly // revisit N if it needs another step of promotion and allows us to visit // any new operands to N. ReanalyzeNode(N); return true; } assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDOperand(N, 0), Res); return false; } /// SoftenSetCCOperands - Soften the operands of a comparison. This code is /// shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::SoftenSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS, ISD::CondCode &CCCode) { SDOperand LHSInt = GetSoftenedFloat(NewLHS); SDOperand RHSInt = GetSoftenedFloat(NewRHS); MVT VT = NewLHS.getValueType(); assert((VT == MVT::f32 || VT == MVT::f64) && "Unsupported setcc type!"); // Expand into one or more soft-fp libcall(s). RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; switch (CCCode) { case ISD::SETEQ: case ISD::SETOEQ: LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; break; case ISD::SETNE: case ISD::SETUNE: LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; break; case ISD::SETGE: case ISD::SETOGE: LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; break; case ISD::SETLT: case ISD::SETOLT: LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; break; case ISD::SETLE: case ISD::SETOLE: LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; break; case ISD::SETGT: case ISD::SETOGT: LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; break; case ISD::SETUO: LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; break; case ISD::SETO: LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; break; default: LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; switch (CCCode) { case ISD::SETONE: // SETONE = SETOLT | SETOGT LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; // Fallthrough case ISD::SETUGT: LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; break; case ISD::SETUGE: LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; break; case ISD::SETULT: LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; break; case ISD::SETULE: LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; break; case ISD::SETUEQ: LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; break; default: assert(false && "Do not know how to soften this setcc!"); } } MVT RetVT = MVT::i32; // FIXME: is this the correct return type? SDOperand Ops[2] = { LHSInt, RHSInt }; NewLHS = MakeLibCall(LC1, RetVT, Ops, 2, false/*sign irrelevant*/); NewRHS = DAG.getConstant(0, RetVT); CCCode = TLI.getCmpLibcallCC(LC1); if (LC2 != RTLIB::UNKNOWN_LIBCALL) { SDOperand Tmp = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(NewLHS), NewLHS, NewRHS, DAG.getCondCode(CCCode)); NewLHS = MakeLibCall(LC2, RetVT, Ops, 2, false/*sign irrelevant*/); NewLHS = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(NewLHS), NewLHS, NewRHS, DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); NewLHS = DAG.getNode(ISD::OR, Tmp.getValueType(), Tmp, NewLHS); NewRHS = SDOperand(); } } SDOperand DAGTypeLegalizer::SoftenFloatOp_BIT_CONVERT(SDNode *N) { return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), GetSoftenedFloat(N->getOperand(0))); } SDOperand DAGTypeLegalizer::SoftenFloatOp_BR_CC(SDNode *N) { SDOperand NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); ISD::CondCode CCCode = cast(N->getOperand(1))->get(); SoftenSetCCOperands(NewLHS, NewRHS, CCCode); // If SoftenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.Val == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), DAG.getCondCode(CCCode), NewLHS, NewRHS, N->getOperand(4)); } SDOperand DAGTypeLegalizer::SoftenFloatOp_FP_TO_SINT(SDNode *N) { MVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getFPTOSINT(N->getOperand(0).getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_SINT!"); SDOperand Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(LC, RVT, &Op, 1, false); } SDOperand DAGTypeLegalizer::SoftenFloatOp_FP_TO_UINT(SDNode *N) { MVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getFPTOUINT(N->getOperand(0).getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_UINT!"); SDOperand Op = GetSoftenedFloat(N->getOperand(0)); return MakeLibCall(LC, RVT, &Op, 1, false); } SDOperand DAGTypeLegalizer::SoftenFloatOp_SELECT_CC(SDNode *N) { SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(4))->get(); SoftenSetCCOperands(NewLHS, NewRHS, CCCode); // If SoftenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.Val == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS, N->getOperand(2), N->getOperand(3), DAG.getCondCode(CCCode)); } SDOperand DAGTypeLegalizer::SoftenFloatOp_SETCC(SDNode *N) { SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(2))->get(); SoftenSetCCOperands(NewLHS, NewRHS, CCCode); // If SoftenSetCCOperands returned a scalar, use it. if (NewRHS.Val == 0) { assert(NewLHS.getValueType() == N->getValueType(0) && "Unexpected setcc expansion!"); return NewLHS; } // Otherwise, update N to have the operands specified. return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS, DAG.getCondCode(CCCode)); } SDOperand DAGTypeLegalizer::SoftenFloatOp_STORE(SDNode *N, unsigned OpNo) { assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); assert(OpNo == 1 && "Can only soften the stored value!"); StoreSDNode *ST = cast(N); SDOperand Val = ST->getValue(); if (ST->isTruncatingStore()) // Do an FP_ROUND followed by a non-truncating store. Val = BitConvertToInteger(DAG.getNode(ISD::FP_ROUND, ST->getMemoryVT(), Val, DAG.getIntPtrConstant(0))); else Val = GetSoftenedFloat(Val); return DAG.getStore(ST->getChain(), Val, ST->getBasePtr(), ST->getSrcValue(), ST->getSrcValueOffset(), ST->isVolatile(), ST->getAlignment()); } //===----------------------------------------------------------------------===// // Float Result Expansion //===----------------------------------------------------------------------===// /// ExpandFloatResult - This method is called when the specified result of the /// specified node is found to need expansion. At this point, the node may also /// have invalid operands or may have other results that need promotion, we just /// know that (at least) one result needs expansion. void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) { DEBUG(cerr << "Expand float result: "; N->dump(&DAG); cerr << "\n"); SDOperand Lo, Hi; Lo = Hi = SDOperand(); // See if the target wants to custom expand this node. if (TLI.getOperationAction(N->getOpcode(), N->getValueType(ResNo)) == TargetLowering::Custom) { // If the target wants to, allow it to lower this itself. if (SDNode *P = TLI.ReplaceNodeResults(N, DAG)) { // Everything that once used N now uses P. We are guaranteed that the // result value types of N and the result value types of P match. ReplaceNodeWith(N, P); return; } } switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "ExpandFloatResult #" << ResNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to expand the result of this operator!"); abort(); case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break; case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break; case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break; case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break; case ISD::BIT_CONVERT: ExpandRes_BIT_CONVERT(N, Lo, Hi); break; case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break; case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break; case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break; case ISD::ConstantFP: ExpandFloatRes_ConstantFP(N, Lo, Hi); break; case ISD::FABS: ExpandFloatRes_FABS(N, Lo, Hi); break; case ISD::FADD: ExpandFloatRes_FADD(N, Lo, Hi); break; case ISD::FDIV: ExpandFloatRes_FDIV(N, Lo, Hi); break; case ISD::FMUL: ExpandFloatRes_FMUL(N, Lo, Hi); break; case ISD::FNEG: ExpandFloatRes_FNEG(N, Lo, Hi); break; case ISD::FP_EXTEND: ExpandFloatRes_FP_EXTEND(N, Lo, Hi); break; case ISD::FSUB: ExpandFloatRes_FSUB(N, Lo, Hi); break; case ISD::LOAD: ExpandFloatRes_LOAD(N, Lo, Hi); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: ExpandFloatRes_XINT_TO_FP(N, Lo, Hi); break; } // If Lo/Hi is null, the sub-method took care of registering results etc. if (Lo.Val) SetExpandedFloat(SDOperand(N, ResNo), Lo, Hi); } void DAGTypeLegalizer::ExpandFloatRes_ConstantFP(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); assert(NVT.getSizeInBits() == integerPartWidth && "Do not know how to expand this float constant!"); APInt C = cast(N)->getValueAPF().convertToAPInt(); Lo = DAG.getConstantFP(APFloat(APInt(integerPartWidth, 1, &C.getRawData()[1])), NVT); Hi = DAG.getConstantFP(APFloat(APInt(integerPartWidth, 1, &C.getRawData()[0])), NVT); } void DAGTypeLegalizer::ExpandFloatRes_FADD(SDNode *N, SDOperand &Lo, SDOperand &Hi) { SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SDOperand Call = MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::ADD_F32, RTLIB::ADD_F64, RTLIB::ADD_F80, RTLIB::ADD_PPCF128), N->getValueType(0), Ops, 2, false); assert(Call.Val->getOpcode() == ISD::BUILD_PAIR && "Call lowered wrongly!"); Lo = Call.getOperand(0); Hi = Call.getOperand(1); } void DAGTypeLegalizer::ExpandFloatRes_FABS(SDNode *N, SDOperand &Lo, SDOperand &Hi) { assert(N->getValueType(0) == MVT::ppcf128 && "Logic only correct for ppcf128!"); SDOperand Tmp; GetExpandedFloat(N->getOperand(0), Lo, Tmp); Hi = DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp); // Lo = Hi==fabs(Hi) ? Lo : -Lo; Lo = DAG.getNode(ISD::SELECT_CC, Lo.getValueType(), Tmp, Hi, Lo, DAG.getNode(ISD::FNEG, Lo.getValueType(), Lo), DAG.getCondCode(ISD::SETEQ)); } void DAGTypeLegalizer::ExpandFloatRes_FDIV(SDNode *N, SDOperand &Lo, SDOperand &Hi) { SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SDOperand Call = MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, RTLIB::DIV_PPCF128), N->getValueType(0), Ops, 2, false); assert(Call.Val->getOpcode() == ISD::BUILD_PAIR && "Call lowered wrongly!"); Lo = Call.getOperand(0); Hi = Call.getOperand(1); } void DAGTypeLegalizer::ExpandFloatRes_FMUL(SDNode *N, SDOperand &Lo, SDOperand &Hi) { SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SDOperand Call = MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::MUL_F32, RTLIB::MUL_F64, RTLIB::MUL_F80, RTLIB::MUL_PPCF128), N->getValueType(0), Ops, 2, false); assert(Call.Val->getOpcode() == ISD::BUILD_PAIR && "Call lowered wrongly!"); Lo = Call.getOperand(0); Hi = Call.getOperand(1); } void DAGTypeLegalizer::ExpandFloatRes_FNEG(SDNode *N, SDOperand &Lo, SDOperand &Hi) { GetExpandedFloat(N->getOperand(0), Lo, Hi); Lo = DAG.getNode(ISD::FNEG, Lo.getValueType(), Lo); Hi = DAG.getNode(ISD::FNEG, Hi.getValueType(), Hi); } void DAGTypeLegalizer::ExpandFloatRes_FP_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); Hi = DAG.getNode(ISD::FP_EXTEND, NVT, N->getOperand(0)); Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT); } void DAGTypeLegalizer::ExpandFloatRes_FSUB(SDNode *N, SDOperand &Lo, SDOperand &Hi) { SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SDOperand Call = MakeLibCall(GetFPLibCall(N->getValueType(0), RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_PPCF128), N->getValueType(0), Ops, 2, false); assert(Call.Val->getOpcode() == ISD::BUILD_PAIR && "Call lowered wrongly!"); Lo = Call.getOperand(0); Hi = Call.getOperand(1); } void DAGTypeLegalizer::ExpandFloatRes_LOAD(SDNode *N, SDOperand &Lo, SDOperand &Hi) { if (ISD::isNormalLoad(N)) { ExpandRes_NormalLoad(N, Lo, Hi); return; } assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!"); LoadSDNode *LD = cast(N); SDOperand Chain = LD->getChain(); SDOperand Ptr = LD->getBasePtr(); MVT NVT = TLI.getTypeToTransformTo(LD->getValueType(0)); assert(NVT.isByteSized() && "Expanded type not byte sized!"); assert(LD->getMemoryVT().bitsLE(NVT) && "Float type not round?"); Lo = DAG.getExtLoad(LD->getExtensionType(), NVT, Chain, Ptr, LD->getSrcValue(), LD->getSrcValueOffset(), LD->getMemoryVT(), LD->isVolatile(), LD->getAlignment()); // Remember the chain. Chain = Lo.getValue(1); // The high part is undefined. Hi = DAG.getNode(ISD::UNDEF, NVT); // Modified the chain - switch anything that used the old chain to use the // new one. ReplaceValueWith(SDOperand(LD, 1), Chain); } void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDOperand &Lo, SDOperand &Hi) { assert(N->getValueType(0) == MVT::ppcf128 && "Unsupported XINT_TO_FP!"); MVT VT = N->getValueType(0); MVT NVT = TLI.getTypeToTransformTo(VT); SDOperand Src = N->getOperand(0); MVT SrcVT = Src.getValueType(); // First do an SINT_TO_FP, whether the original was signed or unsigned. if (SrcVT.bitsLE(MVT::i32)) { // The integer can be represented exactly in an f64. Src = DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Src); Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT); Hi = DAG.getNode(ISD::SINT_TO_FP, NVT, Src); } else { RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (SrcVT.bitsLE(MVT::i64)) { Src = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64, Src); LC = RTLIB::SINTTOFP_I64_PPCF128; } else if (SrcVT.bitsLE(MVT::i128)) { Src = DAG.getNode(ISD::SIGN_EXTEND, MVT::i128, Src); LC = RTLIB::SINTTOFP_I128_PPCF128; } assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XINT_TO_FP!"); Hi = MakeLibCall(LC, VT, &Src, 1, true); assert(Hi.Val->getOpcode() == ISD::BUILD_PAIR && "Call lowered wrongly!"); Lo = Hi.getOperand(0); Hi = Hi.getOperand(1); } if (N->getOpcode() == ISD::SINT_TO_FP) return; // Unsigned - fix up the SINT_TO_FP value just calculated. Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); SrcVT = Src.getValueType(); // x>=0 ? (ppcf128)(iN)x : (ppcf128)(iN)x + 2^N; N=32,64,128. static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; static const uint64_t TwoE128[] = { 0x47f0000000000000LL, 0 }; const uint64_t *Parts = 0; switch (SrcVT.getSimpleVT()) { default: assert(false && "Unsupported UINT_TO_FP!"); case MVT::i32: Parts = TwoE32; case MVT::i64: Parts = TwoE64; case MVT::i128: Parts = TwoE128; } Lo = DAG.getNode(ISD::FADD, VT, Hi, DAG.getConstantFP(APFloat(APInt(128, 2, Parts)), MVT::ppcf128)); Lo = DAG.getNode(ISD::SELECT_CC, VT, Src, DAG.getConstant(0, SrcVT), Lo, Hi, DAG.getCondCode(ISD::SETLT)); Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Lo, DAG.getConstant(1, TLI.getPointerTy())); Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Lo, DAG.getConstant(0, TLI.getPointerTy())); } //===----------------------------------------------------------------------===// // Float Operand Expansion //===----------------------------------------------------------------------===// /// ExpandFloatOperand - This method is called when the specified operand of the /// specified node is found to need expansion. At this point, all of the result /// types of the node are known to be legal, but other operands of the node may /// need promotion or expansion as well as the specified one. bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) { DEBUG(cerr << "Expand float operand: "; N->dump(&DAG); cerr << "\n"); SDOperand Res = SDOperand(); if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType()) == TargetLowering::Custom) Res = TLI.LowerOperation(SDOperand(N, OpNo), DAG); if (Res.Val == 0) { switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "ExpandFloatOperand Op #" << OpNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to expand this operator's operand!"); abort(); case ISD::BIT_CONVERT: Res = ExpandOp_BIT_CONVERT(N); break; case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break; case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break; case ISD::BR_CC: Res = ExpandFloatOp_BR_CC(N); break; case ISD::FP_ROUND: Res = ExpandFloatOp_FP_ROUND(N); break; case ISD::FP_TO_SINT: Res = ExpandFloatOp_FP_TO_SINT(N); break; case ISD::FP_TO_UINT: Res = ExpandFloatOp_FP_TO_UINT(N); break; case ISD::SELECT_CC: Res = ExpandFloatOp_SELECT_CC(N); break; case ISD::SETCC: Res = ExpandFloatOp_SETCC(N); break; case ISD::STORE: Res = ExpandFloatOp_STORE(cast(N), OpNo); break; } } // If the result is null, the sub-method took care of registering results etc. if (!Res.Val) return false; // If the result is N, the sub-method updated N in place. Check to see if any // operands are new, and if so, mark them. if (Res.Val == N) { // Mark N as new and remark N and its operands. This allows us to correctly // revisit N if it needs another step of expansion and allows us to visit // any new operands to N. ReanalyzeNode(N); return true; } assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDOperand(N, 0), Res); return false; } /// FloatExpandSetCCOperands - Expand the operands of a comparison. This code /// is shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::FloatExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS, ISD::CondCode &CCCode) { SDOperand LHSLo, LHSHi, RHSLo, RHSHi; GetExpandedFloat(NewLHS, LHSLo, LHSHi); GetExpandedFloat(NewRHS, RHSLo, RHSHi); MVT VT = NewLHS.getValueType(); assert(VT == MVT::ppcf128 && "Unsupported setcc type!"); // FIXME: This generated code sucks. We want to generate // FCMP crN, hi1, hi2 // BNE crN, L: // FCMP crN, lo1, lo2 // The following can be improved, but not that much. SDOperand Tmp1, Tmp2, Tmp3; Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETEQ); Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, CCCode); Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETNE); Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, CCCode); Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); NewLHS = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); NewRHS = SDOperand(); // LHS is the result, not a compare. } SDOperand DAGTypeLegalizer::ExpandFloatOp_BR_CC(SDNode *N) { SDOperand NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); ISD::CondCode CCCode = cast(N->getOperand(1))->get(); FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.Val == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), DAG.getCondCode(CCCode), NewLHS, NewRHS, N->getOperand(4)); } SDOperand DAGTypeLegalizer::ExpandFloatOp_FP_ROUND(SDNode *N) { assert(N->getOperand(0).getValueType() == MVT::ppcf128 && "Logic only correct for ppcf128!"); SDOperand Lo, Hi; GetExpandedFloat(N->getOperand(0), Lo, Hi); // Round it the rest of the way (e.g. to f32) if needed. return DAG.getNode(ISD::FP_ROUND, N->getValueType(0), Hi, N->getOperand(1)); } SDOperand DAGTypeLegalizer::ExpandFloatOp_FP_TO_SINT(SDNode *N) { MVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getFPTOSINT(N->getOperand(0).getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_SINT!"); return MakeLibCall(LC, RVT, &N->getOperand(0), 1, false); } SDOperand DAGTypeLegalizer::ExpandFloatOp_FP_TO_UINT(SDNode *N) { MVT RVT = N->getValueType(0); RTLIB::Libcall LC = RTLIB::getFPTOUINT(N->getOperand(0).getValueType(), RVT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_UINT!"); return MakeLibCall(LC, N->getValueType(0), &N->getOperand(0), 1, false); } SDOperand DAGTypeLegalizer::ExpandFloatOp_SELECT_CC(SDNode *N) { SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(4))->get(); FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.Val == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS, N->getOperand(2), N->getOperand(3), DAG.getCondCode(CCCode)); } SDOperand DAGTypeLegalizer::ExpandFloatOp_SETCC(SDNode *N) { SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(2))->get(); FloatExpandSetCCOperands(NewLHS, NewRHS, CCCode); // If ExpandSetCCOperands returned a scalar, use it. if (NewRHS.Val == 0) { assert(NewLHS.getValueType() == N->getValueType(0) && "Unexpected setcc expansion!"); return NewLHS; } // Otherwise, update N to have the operands specified. return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS, DAG.getCondCode(CCCode)); } SDOperand DAGTypeLegalizer::ExpandFloatOp_STORE(SDNode *N, unsigned OpNo) { if (ISD::isNormalStore(N)) return ExpandOp_NormalStore(N, OpNo); assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); assert(OpNo == 1 && "Can only expand the stored value so far"); StoreSDNode *ST = cast(N); SDOperand Chain = ST->getChain(); SDOperand Ptr = ST->getBasePtr(); MVT NVT = TLI.getTypeToTransformTo(ST->getValue().getValueType()); assert(NVT.isByteSized() && "Expanded type not byte sized!"); assert(ST->getMemoryVT().bitsLE(NVT) && "Float type not round?"); SDOperand Lo, Hi; GetExpandedOp(ST->getValue(), Lo, Hi); return DAG.getTruncStore(Chain, Lo, Ptr, ST->getSrcValue(), ST->getSrcValueOffset(), ST->getMemoryVT(), ST->isVolatile(), ST->getAlignment()); }