//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ValueEnumerator class. // //===----------------------------------------------------------------------===// #include "ValueEnumerator.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/TypeSymbolTable.h" #include "llvm/ValueSymbolTable.h" #include using namespace llvm; static bool isFirstClassType(const std::pair &P) { return P.first->isFirstClassType(); } static bool isIntegerValue(const std::pair &V) { return isa(V.first->getType()); } static bool CompareByFrequency(const std::pair &P1, const std::pair &P2) { return P1.second > P2.second; } /// ValueEnumerator - Enumerate module-level information. ValueEnumerator::ValueEnumerator(const Module *M) { // Enumerate the global variables. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) EnumerateValue(I); // Enumerate the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) EnumerateValue(I); // Enumerate the aliases. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I); // Remember what is the cutoff between globalvalue's and other constants. unsigned FirstConstant = Values.size(); // Enumerate the global variable initializers. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (I->hasInitializer()) EnumerateValue(I->getInitializer()); // Enumerate the aliasees. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Enumerate types used by the type symbol table. EnumerateTypeSymbolTable(M->getTypeSymbolTable()); // Insert constants that are named at module level into the slot pool so that // the module symbol table can refer to them... EnumerateValueSymbolTable(M->getValueSymbolTable()); // Enumerate types used by function bodies and argument lists. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) EnumerateType(I->getType()); for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) EnumerateType((*OI)->getType()); EnumerateType(I->getType()); } } // Optimize constant ordering. OptimizeConstants(FirstConstant, Values.size()); // Sort the type table by frequency so that most commonly used types are early // in the table (have low bit-width). std::stable_sort(Types.begin(), Types.end(), CompareByFrequency); // Partition the Type ID's so that the first-class types occur before the // aggregate types. This allows the aggregate types to be dropped from the // type table after parsing the global variable initializers. std::partition(Types.begin(), Types.end(), isFirstClassType); // Now that we rearranged the type table, rebuild TypeMap. for (unsigned i = 0, e = Types.size(); i != e; ++i) TypeMap[Types[i].first] = i+1; } // Optimize constant ordering. struct CstSortPredicate { ValueEnumerator &VE; CstSortPredicate(ValueEnumerator &ve) : VE(ve) {} bool operator()(const std::pair &LHS, const std::pair &RHS) { // Sort by plane. if (LHS.first->getType() != RHS.first->getType()) return VE.getTypeID(LHS.first->getType()) < VE.getTypeID(RHS.first->getType()); // Then by frequency. return LHS.second > RHS.second; } }; /// OptimizeConstants - Reorder constant pool for denser encoding. void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { if (CstStart == CstEnd || CstStart+1 == CstEnd) return; CstSortPredicate P(*this); std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P); // Ensure that integer constants are at the start of the constant pool. This // is important so that GEP structure indices come before gep constant exprs. std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, isIntegerValue); // Rebuild the modified portion of ValueMap. for (; CstStart != CstEnd; ++CstStart) ValueMap[Values[CstStart].first] = CstStart+1; } /// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol /// table. void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) { for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); TI != TE; ++TI) EnumerateType(TI->second); } /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol /// table into the values table. void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); VI != VE; ++VI) EnumerateValue(VI->getValue()); } void ValueEnumerator::EnumerateValue(const Value *V) { assert(V->getType() != Type::VoidTy && "Can't insert void values!"); // Check to see if it's already in! unsigned &ValueID = ValueMap[V]; if (ValueID) { // Increment use count. Values[ValueID-1].second++; return; } // Enumerate the type of this value. EnumerateType(V->getType()); if (const Constant *C = dyn_cast(V)) { if (isa(C)) { // Initializers for globals are handled explicitly elsewhere. } else if (isa(C) && cast(C)->isString()) { // Do not enumerate the initializers for an array of simple characters. // The initializers just polute the value table, and we emit the strings // specially. } else if (C->getNumOperands()) { // If a constant has operands, enumerate them. This makes sure that if a // constant has uses (for example an array of const ints), that they are // inserted also. // We prefer to enumerate them with values before we enumerate the user // itself. This makes it more likely that we can avoid forward references // in the reader. We know that there can be no cycles in the constants // graph that don't go through a global variable. for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) EnumerateValue(*I); // Finally, add the value. Doing this could make the ValueID reference be // dangling, don't reuse it. Values.push_back(std::make_pair(V, 1U)); ValueMap[V] = Values.size(); return; } } // Add the value. Values.push_back(std::make_pair(V, 1U)); ValueID = Values.size(); } void ValueEnumerator::EnumerateType(const Type *Ty) { unsigned &TypeID = TypeMap[Ty]; if (TypeID) { // If we've already seen this type, just increase its occurrence count. Types[TypeID-1].second++; return; } // First time we saw this type, add it. Types.push_back(std::make_pair(Ty, 1U)); TypeID = Types.size(); // Enumerate subtypes. for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) EnumerateType(*I); // If this is a function type, enumerate the param attrs. if (const FunctionType *FTy = dyn_cast(Ty)) EnumerateParamAttrs(FTy->getParamAttrs()); } void ValueEnumerator::EnumerateParamAttrs(const ParamAttrsList *PAL) { if (PAL == 0) return; // null is always 0. // Do a lookup. unsigned &Entry = ParamAttrMap[PAL]; if (Entry == 0) { // Never saw this before, add it. ParamAttrs.push_back(PAL); Entry = ParamAttrs.size(); } } /// PurgeAggregateValues - If there are any aggregate values at the end of the /// value list, remove them and return the count of the remaining values. If /// there are none, return -1. int ValueEnumerator::PurgeAggregateValues() { // If there are no aggregate values at the end of the list, return -1. if (Values.empty() || Values.back().first->getType()->isFirstClassType()) return -1; // Otherwise, remove aggregate values... while (!Values.empty() && !Values.back().first->getType()->isFirstClassType()) Values.pop_back(); // ... and return the new size. return Values.size(); } void ValueEnumerator::incorporateFunction(const Function &F) { NumModuleValues = Values.size(); // Adding function arguments to the value table. for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) EnumerateValue(I); FirstFuncConstantID = Values.size(); // Add all function-level constants to the value table. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if ((isa(*OI) && !isa(*OI)) || isa(*OI)) EnumerateValue(*OI); } BasicBlocks.push_back(BB); ValueMap[BB] = BasicBlocks.size(); } // Optimize the constant layout. OptimizeConstants(FirstFuncConstantID, Values.size()); FirstInstID = Values.size(); // Add all of the instructions. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { if (I->getType() != Type::VoidTy) EnumerateValue(I); } } } void ValueEnumerator::purgeFunction() { /// Remove purged values from the ValueMap. for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) ValueMap.erase(Values[i].first); for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) ValueMap.erase(BasicBlocks[i]); Values.resize(NumModuleValues); BasicBlocks.clear(); }