//===-- InstrForest.cpp - Build instruction forest for inst selection -----===// // // The key goal is to group instructions into a single // tree if one or more of them might be potentially combined into a single // complex instruction in the target machine. // Since this grouping is completely machine-independent, we do it as // aggressive as possible to exploit any possible taret instructions. // In particular, we group two instructions O and I if: // (1) Instruction O computes an operand used by instruction I, // and (2) O and I are part of the same basic block, // and (3) O has only a single use, viz., I. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/InstrForest.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/Function.h" #include "llvm/iTerminators.h" #include "llvm/iMemory.h" #include "llvm/Constant.h" #include "llvm/Type.h" #include "llvm/CodeGen/MachineInstr.h" #include "Support/STLExtras.h" #include "Config/alloca.h" //------------------------------------------------------------------------ // class InstrTreeNode //------------------------------------------------------------------------ void InstrTreeNode::dump(int dumpChildren, int indent) const { dumpNode(indent); if (dumpChildren) { if (LeftChild) LeftChild->dump(dumpChildren, indent+1); if (RightChild) RightChild->dump(dumpChildren, indent+1); } } InstructionNode::InstructionNode(Instruction* I) : InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false) { opLabel = I->getOpcode(); // Distinguish special cases of some instructions such as Ret and Br // if (opLabel == Instruction::Ret && cast(I)->getReturnValue()) { opLabel = RetValueOp; // ret(value) operation } else if (opLabel ==Instruction::Br && !cast(I)->isUnconditional()) { opLabel = BrCondOp; // br(cond) operation } else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) { opLabel = SetCCOp; // common label for all SetCC ops } else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) { opLabel = AllocaN; // Alloca(ptr, N) operation } else if (opLabel == Instruction::GetElementPtr && cast(I)->hasIndices()) { opLabel = opLabel + 100; // getElem with index vector } else if (opLabel == Instruction::Xor && BinaryOperator::isNot(I)) { opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator : BNotOp; // bitwise Not operator } else if (opLabel == Instruction::And || opLabel == Instruction::Or || opLabel == Instruction::Xor) { // Distinguish bitwise operators from logical operators! if (I->getType() != Type::BoolTy) opLabel = opLabel + 100; // bitwise operator } else if (opLabel == Instruction::Cast) { const Type *ITy = I->getType(); switch(ITy->getPrimitiveID()) { case Type::BoolTyID: opLabel = ToBoolTy; break; case Type::UByteTyID: opLabel = ToUByteTy; break; case Type::SByteTyID: opLabel = ToSByteTy; break; case Type::UShortTyID: opLabel = ToUShortTy; break; case Type::ShortTyID: opLabel = ToShortTy; break; case Type::UIntTyID: opLabel = ToUIntTy; break; case Type::IntTyID: opLabel = ToIntTy; break; case Type::ULongTyID: opLabel = ToULongTy; break; case Type::LongTyID: opLabel = ToLongTy; break; case Type::FloatTyID: opLabel = ToFloatTy; break; case Type::DoubleTyID: opLabel = ToDoubleTy; break; case Type::ArrayTyID: opLabel = ToArrayTy; break; case Type::PointerTyID: opLabel = ToPointerTy; break; default: // Just use `Cast' opcode otherwise. It's probably ignored. break; } } } void InstructionNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << getInstruction()->getOpcodeName() << " [label " << getOpLabel() << "]" << "\n"; } void VRegListNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << "List" << "\n"; } void VRegNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << "VReg " << getValue() << "\t(type " << (int) getValue()->getValueType() << ")" << "\n"; } void ConstantNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << "Constant " << getValue() << "\t(type " << (int) getValue()->getValueType() << ")" << "\n"; } void LabelNode::dumpNode(int indent) const { for (int i=0; i < indent; i++) std::cerr << " "; std::cerr << "Label " << getValue() << "\n"; } //------------------------------------------------------------------------ // class InstrForest // // A forest of instruction trees, usually for a single method. //------------------------------------------------------------------------ InstrForest::InstrForest(Function *F) { for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) { for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) buildTreeForInstruction(I); } } InstrForest::~InstrForest() { for_each(treeRoots.begin(), treeRoots.end(), deleter); } void InstrForest::dump() const { for (const_root_iterator I = roots_begin(); I != roots_end(); ++I) (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0); } inline void InstrForest::eraseRoot(InstructionNode* node) { for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend(); RI != RE; ++RI) if (*RI == node) treeRoots.erase(RI.base()-1); } inline void InstrForest::noteTreeNodeForInstr(Instruction *instr, InstructionNode *treeNode) { (*this)[instr] = treeNode; treeRoots.push_back(treeNode); // mark node as root of a new tree } inline void InstrForest::setLeftChild(InstrTreeNode *parent, InstrTreeNode *child) { parent->LeftChild = child; child->Parent = parent; if (InstructionNode* instrNode = dyn_cast(child)) eraseRoot(instrNode); // no longer a tree root } inline void InstrForest::setRightChild(InstrTreeNode *parent, InstrTreeNode *child) { parent->RightChild = child; child->Parent = parent; if (InstructionNode* instrNode = dyn_cast(child)) eraseRoot(instrNode); // no longer a tree root } InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) { InstructionNode *treeNode = getTreeNodeForInstr(instr); if (treeNode) { // treeNode has already been constructed for this instruction assert(treeNode->getInstruction() == instr); return treeNode; } // Otherwise, create a new tree node for this instruction. // treeNode = new InstructionNode(instr); noteTreeNodeForInstr(instr, treeNode); if (instr->getOpcode() == Instruction::Call) { // Operands of call instruction return treeNode; } // If the instruction has more than 2 instruction operands, // then we need to create artificial list nodes to hold them. // (Note that we only count operands that get tree nodes, and not // others such as branch labels for a branch or switch instruction.) // // To do this efficiently, we'll walk all operands, build treeNodes // for all appropriate operands and save them in an array. We then // insert children at the end, creating list nodes where needed. // As a performance optimization, allocate a child array only // if a fixed array is too small. // int numChildren = 0; InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()]; // // Walk the operands of the instruction // for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O) { Value* operand = *O; // Check if the operand is a data value, not an branch label, type, // method or module. If the operand is an address type (i.e., label // or method) that is used in an non-branching operation, e.g., `add'. // that should be considered a data value. // Check latter condition here just to simplify the next IF. bool includeAddressOperand = (isa(operand) || isa(operand)) && !instr->isTerminator(); if (includeAddressOperand || isa(operand) || isa(operand) || isa(operand) || isa(operand)) { // This operand is a data value // An instruction that computes the incoming value is added as a // child of the current instruction if: // the value has only a single use // AND both instructions are in the same basic block. // AND the current instruction is not a PHI (because the incoming // value is conceptually in a predecessor block, // even though it may be in the same static block) // // (Note that if the value has only a single use (viz., `instr'), // the def of the value can be safely moved just before instr // and therefore it is safe to combine these two instructions.) // // In all other cases, the virtual register holding the value // is used directly, i.e., made a child of the instruction node. // InstrTreeNode* opTreeNode; if (isa(operand) && operand->use_size() == 1 && cast(operand)->getParent() == instr->getParent() && instr->getOpcode() != Instruction::PHINode && instr->getOpcode() != Instruction::Call) { // Recursively create a treeNode for it. opTreeNode = buildTreeForInstruction((Instruction*)operand); } else if (Constant *CPV = dyn_cast(operand)) { // Create a leaf node for a constant opTreeNode = new ConstantNode(CPV); } else { // Create a leaf node for the virtual register opTreeNode = new VRegNode(operand); } childArray[numChildren++] = opTreeNode; } } //-------------------------------------------------------------------- // Add any selected operands as children in the tree. // Certain instructions can have more than 2 in some instances (viz., // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an // array or struct). Make the operands of every such instruction into // a right-leaning binary tree with the operand nodes at the leaves // and VRegList nodes as internal nodes. //-------------------------------------------------------------------- InstrTreeNode *parent = treeNode; if (numChildren > 2) { unsigned instrOpcode = treeNode->getInstruction()->getOpcode(); assert(instrOpcode == Instruction::PHINode || instrOpcode == Instruction::Call || instrOpcode == Instruction::Load || instrOpcode == Instruction::Store || instrOpcode == Instruction::GetElementPtr); } // Insert the first child as a direct child if (numChildren >= 1) setLeftChild(parent, childArray[0]); int n; // Create a list node for children 2 .. N-1, if any for (n = numChildren-1; n >= 2; n--) { // We have more than two children InstrTreeNode *listNode = new VRegListNode(); setRightChild(parent, listNode); setLeftChild(listNode, childArray[numChildren - n]); parent = listNode; } // Now insert the last remaining child (if any). if (numChildren >= 2) { assert(n == 1); setRightChild(parent, childArray[numChildren - 1]); } delete [] childArray; return treeNode; }