//===- ARMBaseInstrInfo.cpp - ARM Instruction Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Base ARM implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "ARMBaseInstrInfo.h" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMGenInstrInfo.inc" #include "ARMMachineFunctionInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" using namespace llvm; static cl::opt EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, cl::desc("Enable ARM 2-addr to 3-addr conv")); ARMBaseInstrInfo::ARMBaseInstrInfo() : TargetInstrInfoImpl(ARMInsts, array_lengthof(ARMInsts)) { } MachineInstr * ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { // FIXME: Thumb2 support. if (!EnableARM3Addr) return NULL; MachineInstr *MI = MBBI; MachineFunction &MF = *MI->getParent()->getParent(); unsigned TSFlags = MI->getDesc().TSFlags; bool isPre = false; switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { default: return NULL; case ARMII::IndexModePre: isPre = true; break; case ARMII::IndexModePost: break; } // Try splitting an indexed load/store to an un-indexed one plus an add/sub // operation. unsigned MemOpc = getUnindexedOpcode(MI->getOpcode()); if (MemOpc == 0) return NULL; MachineInstr *UpdateMI = NULL; MachineInstr *MemMI = NULL; unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); const TargetInstrDesc &TID = MI->getDesc(); unsigned NumOps = TID.getNumOperands(); bool isLoad = !TID.mayStore(); const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0); const MachineOperand &Base = MI->getOperand(2); const MachineOperand &Offset = MI->getOperand(NumOps-3); unsigned WBReg = WB.getReg(); unsigned BaseReg = Base.getReg(); unsigned OffReg = Offset.getReg(); unsigned OffImm = MI->getOperand(NumOps-2).getImm(); ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm(); switch (AddrMode) { default: assert(false && "Unknown indexed op!"); return NULL; case ARMII::AddrMode2: { bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; unsigned Amt = ARM_AM::getAM2Offset(OffImm); if (OffReg == 0) { if (ARM_AM::getSOImmVal(Amt) == -1) // Can't encode it in a so_imm operand. This transformation will // add more than 1 instruction. Abandon! return NULL; UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) .addReg(BaseReg).addImm(Amt) .addImm(Pred).addReg(0).addReg(0); } else if (Amt != 0) { ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg) .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc) .addImm(Pred).addReg(0).addReg(0); } else UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) .addReg(BaseReg).addReg(OffReg) .addImm(Pred).addReg(0).addReg(0); break; } case ARMII::AddrMode3 : { bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; unsigned Amt = ARM_AM::getAM3Offset(OffImm); if (OffReg == 0) // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) .addReg(BaseReg).addImm(Amt) .addImm(Pred).addReg(0).addReg(0); else UpdateMI = BuildMI(MF, MI->getDebugLoc(), get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) .addReg(BaseReg).addReg(OffReg) .addImm(Pred).addReg(0).addReg(0); break; } } std::vector NewMIs; if (isPre) { if (isLoad) MemMI = BuildMI(MF, MI->getDebugLoc(), get(MemOpc), MI->getOperand(0).getReg()) .addReg(WBReg).addReg(0).addImm(0).addImm(Pred); else MemMI = BuildMI(MF, MI->getDebugLoc(), get(MemOpc)).addReg(MI->getOperand(1).getReg()) .addReg(WBReg).addReg(0).addImm(0).addImm(Pred); NewMIs.push_back(MemMI); NewMIs.push_back(UpdateMI); } else { if (isLoad) MemMI = BuildMI(MF, MI->getDebugLoc(), get(MemOpc), MI->getOperand(0).getReg()) .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred); else MemMI = BuildMI(MF, MI->getDebugLoc(), get(MemOpc)).addReg(MI->getOperand(1).getReg()) .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred); if (WB.isDead()) UpdateMI->getOperand(0).setIsDead(); NewMIs.push_back(UpdateMI); NewMIs.push_back(MemMI); } // Transfer LiveVariables states, kill / dead info. if (LV) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.getReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { unsigned Reg = MO.getReg(); LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); if (MO.isDef()) { MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; if (MO.isDead()) LV->addVirtualRegisterDead(Reg, NewMI); } if (MO.isUse() && MO.isKill()) { for (unsigned j = 0; j < 2; ++j) { // Look at the two new MI's in reverse order. MachineInstr *NewMI = NewMIs[j]; if (!NewMI->readsRegister(Reg)) continue; LV->addVirtualRegisterKilled(Reg, NewMI); if (VI.removeKill(MI)) VI.Kills.push_back(NewMI); break; } } } } } MFI->insert(MBBI, NewMIs[1]); MFI->insert(MBBI, NewMIs[0]); return NewMIs[0]; } // Branch analysis. bool ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. unsigned LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { if (isUncondBranchOpcode(LastOpc)) { TBB = LastInst->getOperand(0).getMBB(); return false; } if (isCondBranchOpcode(LastOpc)) { // Block ends with fall-through condbranch. TBB = LastInst->getOperand(0).getMBB(); Cond.push_back(LastInst->getOperand(1)); Cond.push_back(LastInst->getOperand(2)); return false; } return true; // Can't handle indirect branch. } // Get the instruction before it if it is a terminator. MachineInstr *SecondLastInst = I; // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) return true; // If the block ends with a B and a Bcc, handle it. unsigned SecondLastOpc = SecondLastInst->getOpcode(); if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { TBB = SecondLastInst->getOperand(0).getMBB(); Cond.push_back(SecondLastInst->getOperand(1)); Cond.push_back(SecondLastInst->getOperand(2)); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two unconditional branches, handle it. The second // one is not executed, so remove it. if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // ...likewise if it ends with a branch table followed by an unconditional // branch. The branch folder can create these, and we must get rid of them for // correctness of Thumb constant islands. if (isJumpTableBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { I = LastInst; if (AllowModify) I->eraseFromParent(); return true; } // Otherwise, can't handle this. return true; } unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return 0; --I; if (!isUncondBranchOpcode(I->getOpcode()) && !isCondBranchOpcode(I->getOpcode())) return 0; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (!isCondBranchOpcode(I->getOpcode())) return 1; // Remove the branch. I->eraseFromParent(); return 2; } unsigned ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond) const { // FIXME this should probably have a DebugLoc argument DebugLoc dl = DebugLoc::getUnknownLoc(); ARMFunctionInfo *AFI = MBB.getParent()->getInfo(); int BOpc = !AFI->isThumbFunction() ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); int BccOpc = !AFI->isThumbFunction() ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "ARM branch conditions have two components!"); if (FBB == 0) { if (Cond.empty()) // Unconditional branch? BuildMI(&MBB, dl, get(BOpc)).addMBB(TBB); else BuildMI(&MBB, dl, get(BccOpc)).addMBB(TBB) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); return 1; } // Two-way conditional branch. BuildMI(&MBB, dl, get(BccOpc)).addMBB(TBB) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); BuildMI(&MBB, dl, get(BOpc)).addMBB(FBB); return 2; } bool ARMBaseInstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); Cond[0].setImm(ARMCC::getOppositeCondition(CC)); return false; } bool ARMBaseInstrInfo:: PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Pred) const { unsigned Opc = MI->getOpcode(); if (isUncondBranchOpcode(Opc)) { MI->setDesc(get(getMatchingCondBranchOpcode(Opc))); MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm())); MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false)); return true; } int PIdx = MI->findFirstPredOperandIdx(); if (PIdx != -1) { MachineOperand &PMO = MI->getOperand(PIdx); PMO.setImm(Pred[0].getImm()); MI->getOperand(PIdx+1).setReg(Pred[1].getReg()); return true; } return false; } bool ARMBaseInstrInfo:: SubsumesPredicate(const SmallVectorImpl &Pred1, const SmallVectorImpl &Pred2) const { if (Pred1.size() > 2 || Pred2.size() > 2) return false; ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); if (CC1 == CC2) return true; switch (CC1) { default: return false; case ARMCC::AL: return true; case ARMCC::HS: return CC2 == ARMCC::HI; case ARMCC::LS: return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; case ARMCC::GE: return CC2 == ARMCC::GT; case ARMCC::LE: return CC2 == ARMCC::LT; } } bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { const TargetInstrDesc &TID = MI->getDesc(); if (!TID.getImplicitDefs() && !TID.hasOptionalDef()) return false; bool Found = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.getReg() == ARM::CPSR) { Pred.push_back(MO); Found = true; } } return Found; } /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing static unsigned getNumJTEntries(const std::vector &JT, unsigned JTI) DISABLE_INLINE; static unsigned getNumJTEntries(const std::vector &JT, unsigned JTI) { return JT[JTI].MBBs.size(); } /// GetInstSize - Return the size of the specified MachineInstr. /// unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { const MachineBasicBlock &MBB = *MI->getParent(); const MachineFunction *MF = MBB.getParent(); const TargetAsmInfo *TAI = MF->getTarget().getTargetAsmInfo(); // Basic size info comes from the TSFlags field. const TargetInstrDesc &TID = MI->getDesc(); unsigned TSFlags = TID.TSFlags; unsigned Opc = MI->getOpcode(); switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) { default: { // If this machine instr is an inline asm, measure it. if (MI->getOpcode() == ARM::INLINEASM) return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *TAI); if (MI->isLabel()) return 0; switch (Opc) { default: llvm_unreachable("Unknown or unset size field for instr!"); case TargetInstrInfo::IMPLICIT_DEF: case TargetInstrInfo::DECLARE: case TargetInstrInfo::DBG_LABEL: case TargetInstrInfo::EH_LABEL: return 0; } break; } case ARMII::Size8Bytes: return 8; // ARM instruction x 2. case ARMII::Size4Bytes: return 4; // ARM / Thumb2 instruction. case ARMII::Size2Bytes: return 2; // Thumb1 instruction. case ARMII::SizeSpecial: { switch (Opc) { case ARM::CONSTPOOL_ENTRY: // If this machine instr is a constant pool entry, its size is recorded as // operand #2. return MI->getOperand(2).getImm(); case ARM::Int_eh_sjlj_setjmp: return 12; case ARM::BR_JTr: case ARM::BR_JTm: case ARM::BR_JTadd: case ARM::tBR_JTr: case ARM::t2BR_JT: case ARM::t2TBB: case ARM::t2TBH: { // These are jumptable branches, i.e. a branch followed by an inlined // jumptable. The size is 4 + 4 * number of entries. For TBB, each // entry is one byte; TBH two byte each. unsigned EntrySize = (Opc == ARM::t2TBB) ? 1 : ((Opc == ARM::t2TBH) ? 2 : 4); unsigned NumOps = TID.getNumOperands(); MachineOperand JTOP = MI->getOperand(NumOps - (TID.isPredicable() ? 3 : 2)); unsigned JTI = JTOP.getIndex(); const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); assert(JTI < JT.size()); // Thumb instructions are 2 byte aligned, but JT entries are 4 byte // 4 aligned. The assembler / linker may add 2 byte padding just before // the JT entries. The size does not include this padding; the // constant islands pass does separate bookkeeping for it. // FIXME: If we know the size of the function is less than (1 << 16) *2 // bytes, we can use 16-bit entries instead. Then there won't be an // alignment issue. unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4; unsigned NumEntries = getNumJTEntries(JT, JTI); if (Opc == ARM::t2TBB && (NumEntries & 1)) // Make sure the instruction that follows TBB is 2-byte aligned. // FIXME: Constant island pass should insert an "ALIGN" instruction // instead. ++NumEntries; return NumEntries * EntrySize + InstSize; } default: // Otherwise, pseudo-instruction sizes are zero. return 0; } } } return 0; // Not reached } /// Return true if the instruction is a register to register move and /// leave the source and dest operands in the passed parameters. /// bool ARMBaseInstrInfo::isMoveInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned& SrcSubIdx, unsigned& DstSubIdx) const { SrcSubIdx = DstSubIdx = 0; // No sub-registers. switch (MI.getOpcode()) { default: break; case ARM::FCPYS: case ARM::FCPYD: case ARM::VMOVD: case ARM::VMOVQ: { SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); return true; } case ARM::MOVr: case ARM::tMOVr: case ARM::tMOVgpr2tgpr: case ARM::tMOVtgpr2gpr: case ARM::tMOVgpr2gpr: case ARM::t2MOVr: { assert(MI.getDesc().getNumOperands() >= 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && "Invalid ARM MOV instruction"); SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); return true; } } return false; } unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case ARM::LDR: case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. if (MI->getOperand(1).isFI() && MI->getOperand(2).isReg() && MI->getOperand(3).isImm() && MI->getOperand(2).getReg() == 0 && MI->getOperand(3).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; case ARM::t2LDRi12: case ARM::tRestore: if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; case ARM::FLDD: case ARM::FLDS: if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case ARM::STR: case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. if (MI->getOperand(1).isFI() && MI->getOperand(2).isReg() && MI->getOperand(3).isImm() && MI->getOperand(2).getReg() == 0 && MI->getOperand(3).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; case ARM::t2STRi12: case ARM::tSpill: if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; case ARM::FSTD: case ARM::FSTS: if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } bool ARMBaseInstrInfo::copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const { DebugLoc DL = DebugLoc::getUnknownLoc(); if (I != MBB.end()) DL = I->getDebugLoc(); if (DestRC != SrcRC) { // Not yet supported! return false; } if (DestRC == ARM::GPRRegisterClass) AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg).addReg(SrcReg))); else if (DestRC == ARM::SPRRegisterClass) AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FCPYS), DestReg) .addReg(SrcReg)); else if (DestRC == ARM::DPRRegisterClass) AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FCPYD), DestReg) .addReg(SrcReg)); else if (DestRC == ARM::QPRRegisterClass) BuildMI(MBB, I, DL, get(ARM::VMOVQ), DestReg).addReg(SrcReg); else return false; return true; } void ARMBaseInstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC) const { DebugLoc DL = DebugLoc::getUnknownLoc(); if (I != MBB.end()) DL = I->getDebugLoc(); if (RC == ARM::GPRRegisterClass) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STR)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addReg(0).addImm(0)); } else if (RC == ARM::DPRRegisterClass) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FSTD)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0)); } else { assert(RC == ARM::SPRRegisterClass && "Unknown regclass!"); AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FSTS)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0)); } } void ARMBaseInstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC) const { DebugLoc DL = DebugLoc::getUnknownLoc(); if (I != MBB.end()) DL = I->getDebugLoc(); if (RC == ARM::GPRRegisterClass) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDR), DestReg) .addFrameIndex(FI).addReg(0).addImm(0)); } else if (RC == ARM::DPRRegisterClass) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FLDD), DestReg) .addFrameIndex(FI).addImm(0)); } else { assert(RC == ARM::SPRRegisterClass && "Unknown regclass!"); AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FLDS), DestReg) .addFrameIndex(FI).addImm(0)); } } MachineInstr *ARMBaseInstrInfo:: foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl &Ops, int FI) const { if (Ops.size() != 1) return NULL; unsigned OpNum = Ops[0]; unsigned Opc = MI->getOpcode(); MachineInstr *NewMI = NULL; if (Opc == ARM::MOVr || Opc == ARM::t2MOVr) { // If it is updating CPSR, then it cannot be folded. if (MI->getOperand(4).getReg() != ARM::CPSR || MI->getOperand(4).isDead()) { unsigned Pred = MI->getOperand(2).getImm(); unsigned PredReg = MI->getOperand(3).getReg(); if (OpNum == 0) { // move -> store unsigned SrcReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); bool isUndef = MI->getOperand(1).isUndef(); if (Opc == ARM::MOVr) NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::STR)) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) .addFrameIndex(FI).addReg(0).addImm(0).addImm(Pred).addReg(PredReg); else // ARM::t2MOVr NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::t2STRi12)) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg); } else { // move -> load unsigned DstReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isUndef = MI->getOperand(0).isUndef(); if (Opc == ARM::MOVr) NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::LDR)) .addReg(DstReg, RegState::Define | getDeadRegState(isDead) | getUndefRegState(isUndef)) .addFrameIndex(FI).addReg(0).addImm(0).addImm(Pred).addReg(PredReg); else // ARM::t2MOVr NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::t2LDRi12)) .addReg(DstReg, RegState::Define | getDeadRegState(isDead) | getUndefRegState(isUndef)) .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg); } } } else if (Opc == ARM::FCPYS) { unsigned Pred = MI->getOperand(2).getImm(); unsigned PredReg = MI->getOperand(3).getReg(); if (OpNum == 0) { // move -> store unsigned SrcReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); bool isUndef = MI->getOperand(1).isUndef(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FSTS)) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) .addFrameIndex(FI) .addImm(0).addImm(Pred).addReg(PredReg); } else { // move -> load unsigned DstReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isUndef = MI->getOperand(0).isUndef(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FLDS)) .addReg(DstReg, RegState::Define | getDeadRegState(isDead) | getUndefRegState(isUndef)) .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg); } } else if (Opc == ARM::FCPYD) { unsigned Pred = MI->getOperand(2).getImm(); unsigned PredReg = MI->getOperand(3).getReg(); if (OpNum == 0) { // move -> store unsigned SrcReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); bool isUndef = MI->getOperand(1).isUndef(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FSTD)) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg); } else { // move -> load unsigned DstReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isUndef = MI->getOperand(0).isUndef(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FLDD)) .addReg(DstReg, RegState::Define | getDeadRegState(isDead) | getUndefRegState(isUndef)) .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg); } } return NewMI; } MachineInstr* ARMBaseInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, MachineInstr* LoadMI) const { // FIXME return 0; } bool ARMBaseInstrInfo::canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl &Ops) const { if (Ops.size() != 1) return false; unsigned Opc = MI->getOpcode(); if (Opc == ARM::MOVr || Opc == ARM::t2MOVr) { // If it is updating CPSR, then it cannot be folded. return MI->getOperand(4).getReg() != ARM::CPSR ||MI->getOperand(4).isDead(); } else if (Opc == ARM::FCPYS || Opc == ARM::FCPYD) { return true; } else if (Opc == ARM::VMOVD || Opc == ARM::VMOVQ) { return false; // FIXME } return false; } int llvm::getMatchingCondBranchOpcode(int Opc) { if (Opc == ARM::B) return ARM::Bcc; else if (Opc == ARM::tB) return ARM::tBcc; else if (Opc == ARM::t2B) return ARM::t2Bcc; llvm_unreachable("Unknown unconditional branch opcode!"); return 0; } void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, unsigned DestReg, unsigned BaseReg, int NumBytes, ARMCC::CondCodes Pred, unsigned PredReg, const ARMBaseInstrInfo &TII) { bool isSub = NumBytes < 0; if (isSub) NumBytes = -NumBytes; while (NumBytes) { unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); assert(ThisVal && "Didn't extract field correctly"); // We will handle these bits from offset, clear them. NumBytes &= ~ThisVal; assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); // Build the new ADD / SUB. unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) .addReg(BaseReg, RegState::Kill).addImm(ThisVal) .addImm((unsigned)Pred).addReg(PredReg).addReg(0); BaseReg = DestReg; } } int llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, int Offset, const ARMBaseInstrInfo &TII) { unsigned Opcode = MI.getOpcode(); const TargetInstrDesc &Desc = MI.getDesc(); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); bool isSub = false; // Memory operands in inline assembly always use AddrMode2. if (Opcode == ARM::INLINEASM) AddrMode = ARMII::AddrMode2; if (Opcode == ARM::ADDri) { Offset += MI.getOperand(FrameRegIdx+1).getImm(); if (Offset == 0) { // Turn it into a move. MI.setDesc(TII.get(ARM::MOVr)); MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.RemoveOperand(FrameRegIdx+1); return 0; } else if (Offset < 0) { Offset = -Offset; isSub = true; MI.setDesc(TII.get(ARM::SUBri)); } // Common case: small offset, fits into instruction. if (ARM_AM::getSOImmVal(Offset) != -1) { // Replace the FrameIndex with sp / fp MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); return 0; } // Otherwise, pull as much of the immedidate into this ADDri/SUBri // as possible. unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); // We will handle these bits from offset, clear them. Offset &= ~ThisImmVal; // Get the properly encoded SOImmVal field. assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && "Bit extraction didn't work?"); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); } else { unsigned ImmIdx = 0; int InstrOffs = 0; unsigned NumBits = 0; unsigned Scale = 1; switch (AddrMode) { case ARMII::AddrMode2: { ImmIdx = FrameRegIdx+2; InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 12; break; } case ARMII::AddrMode3: { ImmIdx = FrameRegIdx+2; InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 8; break; } case ARMII::AddrMode5: { ImmIdx = FrameRegIdx+1; InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 8; Scale = 4; break; } default: llvm_unreachable("Unsupported addressing mode!"); break; } Offset += InstrOffs * Scale; assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); if (Offset < 0) { Offset = -Offset; isSub = true; } // Attempt to fold address comp. if opcode has offset bits if (NumBits > 0) { // Common case: small offset, fits into instruction. MachineOperand &ImmOp = MI.getOperand(ImmIdx); int ImmedOffset = Offset / Scale; unsigned Mask = (1 << NumBits) - 1; if ((unsigned)Offset <= Mask * Scale) { // Replace the FrameIndex with sp MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); if (isSub) ImmedOffset |= 1 << NumBits; ImmOp.ChangeToImmediate(ImmedOffset); return 0; } // Otherwise, it didn't fit. Pull in what we can to simplify the immed. ImmedOffset = ImmedOffset & Mask; if (isSub) ImmedOffset |= 1 << NumBits; ImmOp.ChangeToImmediate(ImmedOffset); Offset &= ~(Mask*Scale); } } return (isSub) ? -Offset : Offset; }