//===-- ARM64TargetTransformInfo.cpp - ARM64 specific TTI pass ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements a TargetTransformInfo analysis pass specific to the /// ARM64 target machine. It uses the target's detailed information to provide /// more precise answers to certain TTI queries, while letting the target /// independent and default TTI implementations handle the rest. /// //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm64tti" #include "ARM64.h" #include "ARM64TargetMachine.h" #include "MCTargetDesc/ARM64AddressingModes.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; // Declare the pass initialization routine locally as target-specific passes // don't havve a target-wide initialization entry point, and so we rely on the // pass constructor initialization. namespace llvm { void initializeARM64TTIPass(PassRegistry &); } namespace { class ARM64TTI final : public ImmutablePass, public TargetTransformInfo { const ARM64TargetMachine *TM; const ARM64Subtarget *ST; const ARM64TargetLowering *TLI; /// Estimate the overhead of scalarizing an instruction. Insert and Extract /// are set if the result needs to be inserted and/or extracted from vectors. unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; public: ARM64TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) { llvm_unreachable("This pass cannot be directly constructed"); } ARM64TTI(const ARM64TargetMachine *TM) : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), TLI(TM->getTargetLowering()) { initializeARM64TTIPass(*PassRegistry::getPassRegistry()); } void initializePass() override { pushTTIStack(this); } void getAnalysisUsage(AnalysisUsage &AU) const override { TargetTransformInfo::getAnalysisUsage(AU); } /// Pass identification. static char ID; /// Provide necessary pointer adjustments for the two base classes. void *getAdjustedAnalysisPointer(const void *ID) override { if (ID == &TargetTransformInfo::ID) return (TargetTransformInfo *)this; return this; } /// \name Scalar TTI Implementations /// @{ unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override; PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override; /// @} /// \name Vector TTI Implementations /// @{ unsigned getNumberOfRegisters(bool Vector) const override { if (Vector) return 32; return 31; } unsigned getRegisterBitWidth(bool Vector) const override { if (Vector) return 128; return 64; } unsigned getMaximumUnrollFactor() const override { return 2; } unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const override; unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const override; unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue, OperandValueKind Opd2Info = OK_AnyValue) const override; unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override; unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const override; unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const override; /// @} }; } // end anonymous namespace INITIALIZE_AG_PASS(ARM64TTI, TargetTransformInfo, "arm64tti", "ARM64 Target Transform Info", true, true, false) char ARM64TTI::ID = 0; ImmutablePass * llvm::createARM64TargetTransformInfoPass(const ARM64TargetMachine *TM) { return new ARM64TTI(TM); } unsigned ARM64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return ~0U; int64_t Val = Imm.getSExtValue(); if (Val == 0 || ARM64_AM::isLogicalImmediate(Val, BitSize)) return 1; if ((int64_t)Val < 0) Val = ~Val; if (BitSize == 32) Val &= (1LL << 32) - 1; unsigned LZ = countLeadingZeros((uint64_t)Val); unsigned Shift = (63 - LZ) / 16; // MOVZ is free so return true for one or fewer MOVK. return (Shift == 0) ? 1 : Shift; } ARM64TTI::PopcntSupportKind ARM64TTI::getPopcntSupport(unsigned TyWidth) const { assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); if (TyWidth == 32 || TyWidth == 64) return PSK_FastHardware; // TODO: ARM64TargetLowering::LowerCTPOP() supports 128bit popcount. return PSK_Software; } unsigned ARM64TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); EVT SrcTy = TLI->getValueType(Src); EVT DstTy = TLI->getValueType(Dst); if (!SrcTy.isSimple() || !DstTy.isSimple()) return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); static const TypeConversionCostTblEntry ConversionTbl[] = { // LowerVectorINT_TO_FP: { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 }, { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 }, { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, // LowerVectorFP_TO_INT { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 }, { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 }, { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 4 }, { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 4 }, }; int Idx = ConvertCostTableLookup( ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); if (Idx != -1) return ConversionTbl[Idx].Cost; return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); } unsigned ARM64TTI::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const { assert(Val->isVectorTy() && "This must be a vector type"); if (Index != -1U) { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Val); // This type is legalized to a scalar type. if (!LT.second.isVector()) return 0; // The type may be split. Normalize the index to the new type. unsigned Width = LT.second.getVectorNumElements(); Index = Index % Width; // The element at index zero is already inside the vector. if (Index == 0) return 0; } // All other insert/extracts cost this much. return 2; } unsigned ARM64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, OperandValueKind Opd2Info) const { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Ty); int ISD = TLI->InstructionOpcodeToISD(Opcode); switch (ISD) { default: return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info); case ISD::ADD: case ISD::MUL: case ISD::XOR: case ISD::OR: case ISD::AND: // These nodes are marked as 'custom' for combining purposes only. // We know that they are legal. See LowerAdd in ISelLowering. return 1 * LT.first; } } unsigned ARM64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { // Address computations in vectorized code with non-consecutive addresses will // likely result in more instructions compared to scalar code where the // computation can more often be merged into the index mode. The resulting // extra micro-ops can significantly decrease throughput. unsigned NumVectorInstToHideOverhead = 10; if (Ty->isVectorTy() && IsComplex) return NumVectorInstToHideOverhead; // In many cases the address computation is not merged into the instruction // addressing mode. return 1; } unsigned ARM64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const { int ISD = TLI->InstructionOpcodeToISD(Opcode); // We don't lower vector selects well that are wider than the register width. if (ValTy->isVectorTy() && ISD == ISD::SELECT) { // We would need this many instructions to hide the scalarization happening. unsigned AmortizationCost = 20; static const TypeConversionCostTblEntry VectorSelectTbl[] = { { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost }, { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost }, { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost }, { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } }; EVT SelCondTy = TLI->getValueType(CondTy); EVT SelValTy = TLI->getValueType(ValTy); if (SelCondTy.isSimple() && SelValTy.isSimple()) { int Idx = ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(), SelValTy.getSimpleVT()); if (Idx != -1) return VectorSelectTbl[Idx].Cost; } } return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); } unsigned ARM64TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const { std::pair LT = TLI->getTypeLegalizationCost(Src); if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 && Src->getVectorElementType()->isIntegerTy(64)) { // Unaligned stores are extremely inefficient. We don't split // unaligned v2i64 stores because the negative impact that has shown in // practice on inlined memcpy code. // We make v2i64 stores expensive so that we will only vectorize if there // are 6 other instructions getting vectorized. unsigned AmortizationCost = 6; return LT.first * 2 * AmortizationCost; } if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) && Src->getVectorNumElements() < 8) { // We scalarize the loads/stores because there is not v.4b register and we // have to promote the elements to v.4h. unsigned NumVecElts = Src->getVectorNumElements(); unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; // We generate 2 instructions per vector element. return NumVectorizableInstsToAmortize * NumVecElts * 2; } return LT.first; }