//===-- SparcISelDAGToDAG.cpp - A dag to dag inst selector for Sparc ------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the SPARC target. // //===----------------------------------------------------------------------===// #include "Sparc.h" #include "SparcTargetMachine.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // TargetLowering Implementation //===----------------------------------------------------------------------===// namespace SPISD { enum { FIRST_NUMBER = ISD::BUILTIN_OP_END+SP::INSTRUCTION_LIST_END, CMPICC, // Compare two GPR operands, set icc. CMPFCC, // Compare two FP operands, set fcc. BRICC, // Branch to dest on icc condition BRFCC, // Branch to dest on fcc condition SELECT_ICC, // Select between two values using the current ICC flags. SELECT_FCC, // Select between two values using the current FCC flags. Hi, Lo, // Hi/Lo operations, typically on a global address. FTOI, // FP to Int within a FP register. ITOF, // Int to FP within a FP register. CALL, // A call instruction. RET_FLAG // Return with a flag operand. }; } /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC /// condition. static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { switch (CC) { default: assert(0 && "Unknown integer condition code!"); case ISD::SETEQ: return SPCC::ICC_E; case ISD::SETNE: return SPCC::ICC_NE; case ISD::SETLT: return SPCC::ICC_L; case ISD::SETGT: return SPCC::ICC_G; case ISD::SETLE: return SPCC::ICC_LE; case ISD::SETGE: return SPCC::ICC_GE; case ISD::SETULT: return SPCC::ICC_CS; case ISD::SETULE: return SPCC::ICC_LEU; case ISD::SETUGT: return SPCC::ICC_GU; case ISD::SETUGE: return SPCC::ICC_CC; } } /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC /// FCC condition. static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { switch (CC) { default: assert(0 && "Unknown fp condition code!"); case ISD::SETEQ: case ISD::SETOEQ: return SPCC::FCC_E; case ISD::SETNE: case ISD::SETUNE: return SPCC::FCC_NE; case ISD::SETLT: case ISD::SETOLT: return SPCC::FCC_L; case ISD::SETGT: case ISD::SETOGT: return SPCC::FCC_G; case ISD::SETLE: case ISD::SETOLE: return SPCC::FCC_LE; case ISD::SETGE: case ISD::SETOGE: return SPCC::FCC_GE; case ISD::SETULT: return SPCC::FCC_UL; case ISD::SETULE: return SPCC::FCC_ULE; case ISD::SETUGT: return SPCC::FCC_UG; case ISD::SETUGE: return SPCC::FCC_UGE; case ISD::SETUO: return SPCC::FCC_U; case ISD::SETO: return SPCC::FCC_O; case ISD::SETONE: return SPCC::FCC_LG; case ISD::SETUEQ: return SPCC::FCC_UE; } } namespace { class SparcTargetLowering : public TargetLowering { int VarArgsFrameOffset; // Frame offset to start of varargs area. public: SparcTargetLowering(TargetMachine &TM); virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); /// computeMaskedBitsForTargetNode - Determine which of the bits specified /// in Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. virtual void computeMaskedBitsForTargetNode(const SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth = 0) const; virtual std::vector LowerArguments(Function &F, SelectionDAG &DAG); virtual std::pair LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *MBB); virtual const char *getTargetNodeName(unsigned Opcode) const; }; } SparcTargetLowering::SparcTargetLowering(TargetMachine &TM) : TargetLowering(TM) { // Set up the register classes. addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); // Custom legalize GlobalAddress nodes into LO/HI parts. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool , MVT::i32, Custom); // Sparc doesn't have sext_inreg, replace them with shl/sra setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); // Sparc has no REM operation. setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); // Custom expand fp<->sint setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); // Expand fp<->uint setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); // Turn FP extload into load/fextend setOperationAction(ISD::EXTLOAD, MVT::f32, Expand); // Sparc has no select or setcc: expand to SELECT_CC. setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); setOperationAction(ISD::SETCC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Expand); setOperationAction(ISD::SETCC, MVT::f64, Expand); // Sparc doesn't have BRCOND either, it has BR_CC. setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BRIND, MVT::i32, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); // SPARC has no intrinsics for these particular operations. setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); setOperationAction(ISD::MEMSET, MVT::Other, Expand); setOperationAction(ISD::MEMCPY, MVT::Other, Expand); setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Expand); setOperationAction(ISD::CTTZ , MVT::i32, Expand); setOperationAction(ISD::CTLZ , MVT::i32, Expand); setOperationAction(ISD::ROTL , MVT::i32, Expand); setOperationAction(ISD::ROTR , MVT::i32, Expand); setOperationAction(ISD::BSWAP, MVT::i32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); // We don't have line number support yet. setOperationAction(ISD::LOCATION, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); // RET must be custom lowered, to meet ABI requirements setOperationAction(ISD::RET , MVT::Other, Custom); // VASTART needs to be custom lowered to use the VarArgsFrameIndex. setOperationAction(ISD::VASTART , MVT::Other, Custom); // VAARG needs to be lowered to not do unaligned accesses for doubles. setOperationAction(ISD::VAARG , MVT::Other, Custom); // Use the default implementation. setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); setStackPointerRegisterToSaveRestore(SP::O6); if (TM.getSubtarget().isV9()) { setOperationAction(ISD::CTPOP, MVT::i32, Legal); } computeRegisterProperties(); } const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case SPISD::CMPICC: return "SPISD::CMPICC"; case SPISD::CMPFCC: return "SPISD::CMPFCC"; case SPISD::BRICC: return "SPISD::BRICC"; case SPISD::BRFCC: return "SPISD::BRFCC"; case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; case SPISD::Hi: return "SPISD::Hi"; case SPISD::Lo: return "SPISD::Lo"; case SPISD::FTOI: return "SPISD::FTOI"; case SPISD::ITOF: return "SPISD::ITOF"; case SPISD::CALL: return "SPISD::CALL"; case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; } } /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to /// be zero. Op is expected to be a target specific node. Used by DAG /// combiner. void SparcTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth) const { uint64_t KnownZero2, KnownOne2; KnownZero = KnownOne = 0; // Don't know anything. switch (Op.getOpcode()) { default: break; case SPISD::SELECT_ICC: case SPISD::SELECT_FCC: ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; break; } } /// LowerArguments - V8 uses a very simple ABI, where all values are passed in /// either one or two GPRs, including FP values. TODO: we should pass FP values /// in FP registers for fastcc functions. std::vector SparcTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); SSARegMap *RegMap = MF.getSSARegMap(); std::vector ArgValues; static const unsigned ArgRegs[] = { SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 }; const unsigned *CurArgReg = ArgRegs, *ArgRegEnd = ArgRegs+6; unsigned ArgOffset = 68; SDOperand Root = DAG.getRoot(); std::vector OutChains; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { MVT::ValueType ObjectVT = getValueType(I->getType()); switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (I->use_empty()) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; ArgValues.push_back(DAG.getNode(ISD::UNDEF, ObjectVT)); } else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VReg = RegMap->createVirtualRegister(&SP::IntRegsRegClass); MF.addLiveIn(*CurArgReg++, VReg); SDOperand Arg = DAG.getCopyFromReg(Root, VReg, MVT::i32); if (ObjectVT != MVT::i32) { unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext : ISD::AssertZext; Arg = DAG.getNode(AssertOp, MVT::i32, Arg, DAG.getValueType(ObjectVT)); Arg = DAG.getNode(ISD::TRUNCATE, ObjectVT, Arg); } ArgValues.push_back(Arg); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset); SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDOperand Load; if (ObjectVT == MVT::i32) { Load = DAG.getLoad(MVT::i32, Root, FIPtr, DAG.getSrcValue(0)); } else { unsigned LoadOp = I->getType()->isSigned() ? ISD::SEXTLOAD : ISD::ZEXTLOAD; // Sparc is big endian, so add an offset based on the ObjectVT. unsigned Offset = 4-std::max(1U, MVT::getSizeInBits(ObjectVT)/8); FIPtr = DAG.getNode(ISD::ADD, MVT::i32, FIPtr, DAG.getConstant(Offset, MVT::i32)); Load = DAG.getExtLoad(LoadOp, MVT::i32, Root, FIPtr, DAG.getSrcValue(0), ObjectVT); Load = DAG.getNode(ISD::TRUNCATE, ObjectVT, Load); } ArgValues.push_back(Load); } ArgOffset += 4; break; case MVT::f32: if (I->use_empty()) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; ArgValues.push_back(DAG.getNode(ISD::UNDEF, ObjectVT)); } else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR // FP value is passed in an integer register. unsigned VReg = RegMap->createVirtualRegister(&SP::IntRegsRegClass); MF.addLiveIn(*CurArgReg++, VReg); SDOperand Arg = DAG.getCopyFromReg(Root, VReg, MVT::i32); Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Arg); ArgValues.push_back(Arg); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset); SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); SDOperand Load = DAG.getLoad(MVT::f32, Root, FIPtr, DAG.getSrcValue(0)); ArgValues.push_back(Load); } ArgOffset += 4; break; case MVT::i64: case MVT::f64: if (I->use_empty()) { // Argument is dead. if (CurArgReg < ArgRegEnd) ++CurArgReg; if (CurArgReg < ArgRegEnd) ++CurArgReg; ArgValues.push_back(DAG.getNode(ISD::UNDEF, ObjectVT)); } else if (/* FIXME: Apparently this isn't safe?? */ 0 && CurArgReg == ArgRegEnd && ObjectVT == MVT::f64 && ((CurArgReg-ArgRegs) & 1) == 0) { // If this is a double argument and the whole thing lives on the stack, // and the argument is aligned, load the double straight from the stack. // We can't do a load in cases like void foo([6ints], int,double), // because the double wouldn't be aligned! int FrameIdx = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset); SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); ArgValues.push_back(DAG.getLoad(MVT::f64, Root, FIPtr, DAG.getSrcValue(0))); } else { SDOperand HiVal; if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VRegHi = RegMap->createVirtualRegister(&SP::IntRegsRegClass); MF.addLiveIn(*CurArgReg++, VRegHi); HiVal = DAG.getCopyFromReg(Root, VRegHi, MVT::i32); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset); SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); HiVal = DAG.getLoad(MVT::i32, Root, FIPtr, DAG.getSrcValue(0)); } SDOperand LoVal; if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR unsigned VRegLo = RegMap->createVirtualRegister(&SP::IntRegsRegClass); MF.addLiveIn(*CurArgReg++, VRegLo); LoVal = DAG.getCopyFromReg(Root, VRegLo, MVT::i32); } else { int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset+4); SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); LoVal = DAG.getLoad(MVT::i32, Root, FIPtr, DAG.getSrcValue(0)); } // Compose the two halves together into an i64 unit. SDOperand WholeValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, LoVal, HiVal); // If we want a double, do a bit convert. if (ObjectVT == MVT::f64) WholeValue = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, WholeValue); ArgValues.push_back(WholeValue); } ArgOffset += 8; break; } } // Store remaining ArgRegs to the stack if this is a varargs function. if (F.getFunctionType()->isVarArg()) { // Remember the vararg offset for the va_start implementation. VarArgsFrameOffset = ArgOffset; for (; CurArgReg != ArgRegEnd; ++CurArgReg) { unsigned VReg = RegMap->createVirtualRegister(&SP::IntRegsRegClass); MF.addLiveIn(*CurArgReg, VReg); SDOperand Arg = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset); SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, DAG.getRoot(), Arg, FIPtr, DAG.getSrcValue(0))); ArgOffset += 4; } } if (!OutChains.empty()) DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains)); // Finally, inform the code generator which regs we return values in. switch (getValueType(F.getReturnType())) { default: assert(0 && "Unknown type!"); case MVT::isVoid: break; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: MF.addLiveOut(SP::I0); break; case MVT::i64: MF.addLiveOut(SP::I0); MF.addLiveOut(SP::I1); break; case MVT::f32: MF.addLiveOut(SP::F0); break; case MVT::f64: MF.addLiveOut(SP::D0); break; } return ArgValues; } std::pair SparcTargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { // Count the size of the outgoing arguments. unsigned ArgsSize = 0; for (unsigned i = 0, e = Args.size(); i != e; ++i) { switch (getValueType(Args[i].second)) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::f32: ArgsSize += 4; break; case MVT::i64: case MVT::f64: ArgsSize += 8; break; } } if (ArgsSize > 4*6) ArgsSize -= 4*6; // Space for first 6 arguments is prereserved. else ArgsSize = 0; // Keep stack frames 8-byte aligned. ArgsSize = (ArgsSize+7) & ~7; Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(ArgsSize, getPointerTy())); SDOperand StackPtr, NullSV; std::vector Stores; std::vector RegValuesToPass; unsigned ArgOffset = 68; for (unsigned i = 0, e = Args.size(); i != e; ++i) { SDOperand Val = Args[i].first; MVT::ValueType ObjectVT = Val.getValueType(); SDOperand ValToStore(0, 0); unsigned ObjSize; switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: // Promote the integer to 32-bits. If the input type is signed, use a // sign extend, otherwise use a zero extend. if (Args[i].second->isSigned()) Val = DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Val); else Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Val); // FALL THROUGH case MVT::i32: ObjSize = 4; if (RegValuesToPass.size() >= 6) { ValToStore = Val; } else { RegValuesToPass.push_back(Val); } break; case MVT::f32: ObjSize = 4; if (RegValuesToPass.size() >= 6) { ValToStore = Val; } else { // Convert this to a FP value in an int reg. Val = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Val); RegValuesToPass.push_back(Val); } break; case MVT::f64: ObjSize = 8; // If we can store this directly into the outgoing slot, do so. We can // do this when all ArgRegs are used and if the outgoing slot is aligned. // FIXME: McGill/misr fails with this. if (0 && RegValuesToPass.size() >= 6 && ((ArgOffset-68) & 7) == 0) { ValToStore = Val; break; } // Otherwise, convert this to a FP value in int regs. Val = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Val); // FALL THROUGH case MVT::i64: ObjSize = 8; if (RegValuesToPass.size() >= 6) { ValToStore = Val; // Whole thing is passed in memory. break; } // Split the value into top and bottom part. Top part goes in a reg. SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Val, DAG.getConstant(1, MVT::i32)); SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Val, DAG.getConstant(0, MVT::i32)); RegValuesToPass.push_back(Hi); if (RegValuesToPass.size() >= 6) { ValToStore = Lo; ArgOffset += 4; ObjSize = 4; } else { RegValuesToPass.push_back(Lo); } break; } if (ValToStore.Val) { if (!StackPtr.Val) { StackPtr = DAG.getRegister(SP::O6, MVT::i32); NullSV = DAG.getSrcValue(NULL); } SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, ValToStore, PtrOff, NullSV)); } ArgOffset += ObjSize; } // Emit all stores, make sure the occur before any copies into physregs. if (!Stores.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); static const unsigned ArgRegs[] = { SP::O0, SP::O1, SP::O2, SP::O3, SP::O4, SP::O5 }; // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into O[0-5]. SDOperand InFlag; for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, ArgRegs[i], RegValuesToPass[i], InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32); else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (InFlag.Val) Ops.push_back(InFlag); Chain = DAG.getNode(SPISD::CALL, NodeTys, Ops); InFlag = Chain.getValue(1); MVT::ValueType RetTyVT = getValueType(RetTy); SDOperand RetVal; if (RetTyVT != MVT::isVoid) { switch (RetTyVT) { default: assert(0 && "Unknown value type to return!"); case MVT::i1: case MVT::i8: case MVT::i16: RetVal = DAG.getCopyFromReg(Chain, SP::O0, MVT::i32, InFlag); Chain = RetVal.getValue(1); // Add a note to keep track of whether it is sign or zero extended. RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext :ISD::AssertZext, MVT::i32, RetVal, DAG.getValueType(RetTyVT)); RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal); break; case MVT::i32: RetVal = DAG.getCopyFromReg(Chain, SP::O0, MVT::i32, InFlag); Chain = RetVal.getValue(1); break; case MVT::f32: RetVal = DAG.getCopyFromReg(Chain, SP::F0, MVT::f32, InFlag); Chain = RetVal.getValue(1); break; case MVT::f64: RetVal = DAG.getCopyFromReg(Chain, SP::D0, MVT::f64, InFlag); Chain = RetVal.getValue(1); break; case MVT::i64: SDOperand Lo = DAG.getCopyFromReg(Chain, SP::O1, MVT::i32, InFlag); SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), SP::O0, MVT::i32, Lo.getValue(2)); RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); Chain = Hi.getValue(1); break; } } Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, DAG.getConstant(ArgsSize, getPointerTy())); return std::make_pair(RetVal, Chain); } // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. static void LookThroughSetCC(SDOperand &LHS, SDOperand &RHS, ISD::CondCode CC, unsigned &SPCC) { if (isa(RHS) && cast(RHS)->getValue() == 0 && CC == ISD::SETNE && ((LHS.getOpcode() == SPISD::SELECT_ICC && LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || (LHS.getOpcode() == SPISD::SELECT_FCC && LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && isa(LHS.getOperand(0)) && isa(LHS.getOperand(1)) && cast(LHS.getOperand(0))->getValue() == 1 && cast(LHS.getOperand(1))->getValue() == 0) { SDOperand CMPCC = LHS.getOperand(3); SPCC = cast(LHS.getOperand(2))->getValue(); LHS = CMPCC.getOperand(0); RHS = CMPCC.getOperand(1); } } SDOperand SparcTargetLowering:: LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Should not custom lower this!"); case ISD::GlobalAddress: { GlobalValue *GV = cast(Op)->getGlobal(); SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32); SDOperand Hi = DAG.getNode(SPISD::Hi, MVT::i32, GA); SDOperand Lo = DAG.getNode(SPISD::Lo, MVT::i32, GA); return DAG.getNode(ISD::ADD, MVT::i32, Lo, Hi); } case ISD::ConstantPool: { Constant *C = cast(Op)->get(); SDOperand CP = DAG.getTargetConstantPool(C, MVT::i32, cast(Op)->getAlignment()); SDOperand Hi = DAG.getNode(SPISD::Hi, MVT::i32, CP); SDOperand Lo = DAG.getNode(SPISD::Lo, MVT::i32, CP); return DAG.getNode(ISD::ADD, MVT::i32, Lo, Hi); } case ISD::FP_TO_SINT: // Convert the fp value to integer in an FP register. assert(Op.getValueType() == MVT::i32); Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0)); return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); case ISD::SINT_TO_FP: { assert(Op.getOperand(0).getValueType() == MVT::i32); SDOperand Tmp = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Op.getOperand(0)); // Convert the int value to FP in an FP register. return DAG.getNode(SPISD::ITOF, Op.getValueType(), Tmp); } case ISD::BR_CC: { SDOperand Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDOperand LHS = Op.getOperand(2); SDOperand RHS = Op.getOperand(3); SDOperand Dest = Op.getOperand(4); unsigned Opc, SPCC = ~0U; // If this is a br_cc of a "setcc", and if the setcc got lowered into // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. LookThroughSetCC(LHS, RHS, CC, SPCC); // Get the condition flag. SDOperand CompareFlag; if (LHS.getValueType() == MVT::i32) { std::vector VTs; VTs.push_back(MVT::i32); VTs.push_back(MVT::Flag); std::vector Ops; Ops.push_back(LHS); Ops.push_back(RHS); CompareFlag = DAG.getNode(SPISD::CMPICC, VTs, Ops).getValue(1); if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); Opc = SPISD::BRICC; } else { CompareFlag = DAG.getNode(SPISD::CMPFCC, MVT::Flag, LHS, RHS); if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); Opc = SPISD::BRFCC; } return DAG.getNode(Opc, MVT::Other, Chain, Dest, DAG.getConstant(SPCC, MVT::i32), CompareFlag); } case ISD::SELECT_CC: { SDOperand LHS = Op.getOperand(0); SDOperand RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDOperand TrueVal = Op.getOperand(2); SDOperand FalseVal = Op.getOperand(3); unsigned Opc, SPCC = ~0U; // If this is a select_cc of a "setcc", and if the setcc got lowered into // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. LookThroughSetCC(LHS, RHS, CC, SPCC); SDOperand CompareFlag; if (LHS.getValueType() == MVT::i32) { std::vector VTs; VTs.push_back(LHS.getValueType()); // subcc returns a value VTs.push_back(MVT::Flag); std::vector Ops; Ops.push_back(LHS); Ops.push_back(RHS); CompareFlag = DAG.getNode(SPISD::CMPICC, VTs, Ops).getValue(1); Opc = SPISD::SELECT_ICC; if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); } else { CompareFlag = DAG.getNode(SPISD::CMPFCC, MVT::Flag, LHS, RHS); Opc = SPISD::SELECT_FCC; if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); } return DAG.getNode(Opc, TrueVal.getValueType(), TrueVal, FalseVal, DAG.getConstant(SPCC, MVT::i32), CompareFlag); } case ISD::VASTART: { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDOperand Offset = DAG.getNode(ISD::ADD, MVT::i32, DAG.getRegister(SP::I6, MVT::i32), DAG.getConstant(VarArgsFrameOffset, MVT::i32)); return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), Offset, Op.getOperand(1), Op.getOperand(2)); } case ISD::VAARG: { SDNode *Node = Op.Val; MVT::ValueType VT = Node->getValueType(0); SDOperand InChain = Node->getOperand(0); SDOperand VAListPtr = Node->getOperand(1); SDOperand VAList = DAG.getLoad(getPointerTy(), InChain, VAListPtr, Node->getOperand(2)); // Increment the pointer, VAList, to the next vaarg SDOperand NextPtr = DAG.getNode(ISD::ADD, getPointerTy(), VAList, DAG.getConstant(MVT::getSizeInBits(VT)/8, getPointerTy())); // Store the incremented VAList to the legalized pointer InChain = DAG.getNode(ISD::STORE, MVT::Other, VAList.getValue(1), NextPtr, VAListPtr, Node->getOperand(2)); // Load the actual argument out of the pointer VAList, unless this is an // f64 load. if (VT != MVT::f64) { return DAG.getLoad(VT, InChain, VAList, DAG.getSrcValue(0)); } else { // Otherwise, load it as i64, then do a bitconvert. SDOperand V = DAG.getLoad(MVT::i64, InChain, VAList, DAG.getSrcValue(0)); std::vector Tys; Tys.push_back(MVT::f64); Tys.push_back(MVT::Other); std::vector Ops; // Bit-Convert the value to f64. Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, MVT::f64, V)); Ops.push_back(V.getValue(1)); return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); } } case ISD::DYNAMIC_STACKALLOC: { SDOperand Chain = Op.getOperand(0); // Legalize the chain. SDOperand Size = Op.getOperand(1); // Legalize the size. unsigned SPReg = SP::O6; SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, MVT::i32); SDOperand NewSP = DAG.getNode(ISD::SUB, MVT::i32, SP, Size); // Value Chain = DAG.getCopyToReg(SP.getValue(1), SPReg, NewSP); // Output chain // The resultant pointer is actually 16 words from the bottom of the stack, // to provide a register spill area. SDOperand NewVal = DAG.getNode(ISD::ADD, MVT::i32, NewSP, DAG.getConstant(96, MVT::i32)); std::vector Tys; Tys.push_back(MVT::i32); Tys.push_back(MVT::Other); std::vector Ops; Ops.push_back(NewVal); Ops.push_back(Chain); return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); } case ISD::RET: { SDOperand Copy; switch(Op.getNumOperands()) { default: assert(0 && "Do not know how to return this many arguments!"); abort(); case 1: return SDOperand(); // ret void is legal case 3: { unsigned ArgReg; switch(Op.getOperand(1).getValueType()) { default: assert(0 && "Unknown type to return!"); case MVT::i32: ArgReg = SP::I0; break; case MVT::f32: ArgReg = SP::F0; break; case MVT::f64: ArgReg = SP::D0; break; } Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1), SDOperand()); break; } case 5: Copy = DAG.getCopyToReg(Op.getOperand(0), SP::I0, Op.getOperand(3), SDOperand()); Copy = DAG.getCopyToReg(Copy, SP::I1, Op.getOperand(1), Copy.getValue(1)); break; } return DAG.getNode(SPISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1)); } } } MachineBasicBlock * SparcTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *BB) { unsigned BROpcode; unsigned CC; // Figure out the conditional branch opcode to use for this select_cc. switch (MI->getOpcode()) { default: assert(0 && "Unknown SELECT_CC!"); case SP::SELECT_CC_Int_ICC: case SP::SELECT_CC_FP_ICC: case SP::SELECT_CC_DFP_ICC: BROpcode = SP::BCOND; break; case SP::SELECT_CC_Int_FCC: case SP::SELECT_CC_FP_FCC: case SP::SELECT_CC_DFP_FCC: BROpcode = SP::FBCOND; break; } CC = (SPCC::CondCodes)MI->getOperand(3).getImmedValue(); // To "insert" a SELECT_CC instruction, we actually have to insert the diamond // control-flow pattern. The incoming instruction knows the destination vreg // to set, the condition code register to branch on, the true/false values to // select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // [f]bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); BuildMI(BB, BROpcode, 2).addMBB(sinkMBB).addImm(CC); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), e = BB->succ_end(); i != e; ++i) sinkMBB->addSuccessor(*i); // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while(!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, SP::PHI, 4, MI->getOperand(0).getReg()) .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB); delete MI; // The pseudo instruction is gone now. return BB; } //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------===// /// SparcDAGToDAGISel - SPARC specific code to select SPARC machine /// instructions for SelectionDAG operations. /// namespace { class SparcDAGToDAGISel : public SelectionDAGISel { SparcTargetLowering Lowering; /// Subtarget - Keep a pointer to the Sparc Subtarget around so that we can /// make the right decision when generating code for different targets. const SparcSubtarget &Subtarget; public: SparcDAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(Lowering), Lowering(TM), Subtarget(TM.getSubtarget()) { } void Select(SDOperand &Result, SDOperand Op); // Complex Pattern Selectors. bool SelectADDRrr(SDOperand N, SDOperand &R1, SDOperand &R2); bool SelectADDRri(SDOperand N, SDOperand &Base, SDOperand &Offset); /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); virtual const char *getPassName() const { return "SPARC DAG->DAG Pattern Instruction Selection"; } // Include the pieces autogenerated from the target description. #include "SparcGenDAGISel.inc" }; } // end anonymous namespace /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. void SparcDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); // Select target instructions for the DAG. DAG.setRoot(SelectRoot(DAG.getRoot())); assert(InFlightSet.empty() && "ISel InFlightSet has not been emptied!"); CodeGenMap.clear(); HandleMap.clear(); ReplaceMap.clear(); DAG.RemoveDeadNodes(); // Emit machine code to BB. ScheduleAndEmitDAG(DAG); } bool SparcDAGToDAGISel::SelectADDRri(SDOperand Addr, SDOperand &Base, SDOperand &Offset) { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // direct calls. if (Addr.getOpcode() == ISD::ADD) { if (ConstantSDNode *CN = dyn_cast(Addr.getOperand(1))) { if (Predicate_simm13(CN)) { if (FrameIndexSDNode *FIN = dyn_cast(Addr.getOperand(0))) { // Constant offset from frame ref. Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); } else { Base = Addr.getOperand(0); } Offset = CurDAG->getTargetConstant(CN->getValue(), MVT::i32); return true; } } if (Addr.getOperand(0).getOpcode() == SPISD::Lo) { Base = Addr.getOperand(1); Offset = Addr.getOperand(0).getOperand(0); return true; } if (Addr.getOperand(1).getOpcode() == SPISD::Lo) { Base = Addr.getOperand(0); Offset = Addr.getOperand(1).getOperand(0); return true; } } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool SparcDAGToDAGISel::SelectADDRrr(SDOperand Addr, SDOperand &R1, SDOperand &R2) { if (Addr.getOpcode() == ISD::FrameIndex) return false; if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // direct calls. if (Addr.getOpcode() == ISD::ADD) { if (isa(Addr.getOperand(1)) && Predicate_simm13(Addr.getOperand(1).Val)) return false; // Let the reg+imm pattern catch this! if (Addr.getOperand(0).getOpcode() == SPISD::Lo || Addr.getOperand(1).getOpcode() == SPISD::Lo) return false; // Let the reg+imm pattern catch this! R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); return true; } R1 = Addr; R2 = CurDAG->getRegister(SP::G0, MVT::i32); return true; } void SparcDAGToDAGISel::Select(SDOperand &Result, SDOperand Op) { SDNode *N = Op.Val; if (N->getOpcode() >= ISD::BUILTIN_OP_END && N->getOpcode() < SPISD::FIRST_NUMBER) { Result = Op; return; // Already selected. } // If this has already been converted, use it. std::map::iterator CGMI = CodeGenMap.find(Op); if (CGMI != CodeGenMap.end()) { Result = CGMI->second; return; } switch (N->getOpcode()) { default: break; case ISD::SDIV: case ISD::UDIV: { // FIXME: should use a custom expander to expose the SRA to the dag. SDOperand DivLHS, DivRHS; Select(DivLHS, N->getOperand(0)); Select(DivRHS, N->getOperand(1)); // Set the Y register to the high-part. SDOperand TopPart; if (N->getOpcode() == ISD::SDIV) { TopPart = SDOperand(CurDAG->getTargetNode(SP::SRAri, MVT::i32, DivLHS, CurDAG->getTargetConstant(31, MVT::i32)), 0); } else { TopPart = CurDAG->getRegister(SP::G0, MVT::i32); } TopPart = SDOperand(CurDAG->getTargetNode(SP::WRYrr, MVT::Flag, TopPart, CurDAG->getRegister(SP::G0, MVT::i32)), 0); // FIXME: Handle div by immediate. unsigned Opcode = N->getOpcode() == ISD::SDIV ? SP::SDIVrr : SP::UDIVrr; Result = CurDAG->SelectNodeTo(N, Opcode, MVT::i32, DivLHS, DivRHS, TopPart); return; } case ISD::MULHU: case ISD::MULHS: { // FIXME: Handle mul by immediate. SDOperand MulLHS, MulRHS; Select(MulLHS, N->getOperand(0)); Select(MulRHS, N->getOperand(1)); unsigned Opcode = N->getOpcode() == ISD::MULHU ? SP::UMULrr : SP::SMULrr; SDNode *Mul = CurDAG->getTargetNode(Opcode, MVT::i32, MVT::Flag, MulLHS, MulRHS); // The high part is in the Y register. Result = CurDAG->SelectNodeTo(N, SP::RDY, MVT::i32, SDOperand(Mul, 1)); return; } } SelectCode(Result, Op); } /// createSparcISelDag - This pass converts a legalized DAG into a /// SPARC-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createSparcISelDag(TargetMachine &TM) { return new SparcDAGToDAGISel(TM); }