//===-- AlphaISelLowering.cpp - Alpha DAG Lowering Implementation ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by Andrew Lenharth and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AlphaISelLowering class. // //===----------------------------------------------------------------------===// #include "AlphaISelLowering.h" #include "AlphaTargetMachine.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Module.h" #include "llvm/Support/CommandLine.h" using namespace llvm; /// AddLiveIn - This helper function adds the specified physical register to the /// MachineFunction as a live in value. It also creates a corresponding virtual /// register for it. static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC) { assert(RC->contains(PReg) && "Not the correct regclass!"); unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); MF.addLiveIn(PReg, VReg); return VReg; } AlphaTargetLowering::AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM) { // Set up the TargetLowering object. //I am having problems with shr n ubyte 1 setShiftAmountType(MVT::i64); setSetCCResultType(MVT::i64); setSetCCResultContents(ZeroOrOneSetCCResult); setUsesGlobalOffsetTable(true); addRegisterClass(MVT::i64, Alpha::GPRCRegisterClass); addRegisterClass(MVT::f64, Alpha::F8RCRegisterClass); addRegisterClass(MVT::f32, Alpha::F4RCRegisterClass); setLoadXAction(ISD::EXTLOAD, MVT::i1, Promote); setLoadXAction(ISD::EXTLOAD, MVT::f32, Expand); setLoadXAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadXAction(ISD::ZEXTLOAD, MVT::i32, Expand); setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand); setLoadXAction(ISD::SEXTLOAD, MVT::i16, Expand); setStoreXAction(MVT::i1, Promote); // setOperationAction(ISD::BRIND, MVT::Other, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::Other, Expand); setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::FREM, MVT::f32, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); if (!TM.getSubtarget().hasCT()) { setOperationAction(ISD::CTPOP , MVT::i64 , Expand); setOperationAction(ISD::CTTZ , MVT::i64 , Expand); setOperationAction(ISD::CTLZ , MVT::i64 , Expand); } setOperationAction(ISD::BSWAP , MVT::i64, Expand); setOperationAction(ISD::ROTL , MVT::i64, Expand); setOperationAction(ISD::ROTR , MVT::i64, Expand); setOperationAction(ISD::SREM , MVT::i64, Custom); setOperationAction(ISD::UREM , MVT::i64, Custom); setOperationAction(ISD::SDIV , MVT::i64, Custom); setOperationAction(ISD::UDIV , MVT::i64, Custom); setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); setOperationAction(ISD::MEMSET , MVT::Other, Expand); setOperationAction(ISD::MEMCPY , MVT::Other, Expand); // We don't support sin/cos/sqrt setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Promote); setOperationAction(ISD::BIT_CONVERT, MVT::f32, Promote); // We don't have line number support yet. setOperationAction(ISD::LOCATION, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); setOperationAction(ISD::LABEL, MVT::Other, Expand); // Not implemented yet. setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); // We want to legalize GlobalAddress and ConstantPool and // ExternalSymbols nodes into the appropriate instructions to // materialize the address. setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::ConstantPool, MVT::i64, Custom); setOperationAction(ISD::ExternalSymbol, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::ADJUST_TRAMP, MVT::i32, Expand); setOperationAction(ISD::ADJUST_TRAMP, MVT::i64, Expand); setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::i32, Custom); setOperationAction(ISD::RET, MVT::Other, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setStackPointerRegisterToSaveRestore(Alpha::R30); setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); addLegalFPImmediate(+0.0); //F31 addLegalFPImmediate(-0.0); //-F31 setJumpBufSize(272); setJumpBufAlignment(16); computeRegisterProperties(); } const char *AlphaTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case AlphaISD::CVTQT_: return "Alpha::CVTQT_"; case AlphaISD::CVTQS_: return "Alpha::CVTQS_"; case AlphaISD::CVTTQ_: return "Alpha::CVTTQ_"; case AlphaISD::GPRelHi: return "Alpha::GPRelHi"; case AlphaISD::GPRelLo: return "Alpha::GPRelLo"; case AlphaISD::RelLit: return "Alpha::RelLit"; case AlphaISD::GlobalRetAddr: return "Alpha::GlobalRetAddr"; case AlphaISD::CALL: return "Alpha::CALL"; case AlphaISD::DivCall: return "Alpha::DivCall"; case AlphaISD::RET_FLAG: return "Alpha::RET_FLAG"; case AlphaISD::COND_BRANCH_I: return "Alpha::COND_BRANCH_I"; case AlphaISD::COND_BRANCH_F: return "Alpha::COND_BRANCH_F"; } } static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = Op.getValueType(); JumpTableSDNode *JT = cast(Op); SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); SDOperand Zero = DAG.getConstant(0, PtrVT); SDOperand Hi = DAG.getNode(AlphaISD::GPRelHi, MVT::i64, JTI, DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i64)); SDOperand Lo = DAG.getNode(AlphaISD::GPRelLo, MVT::i64, JTI, Hi); return Lo; } //http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/ //AA-PY8AC-TET1_html/callCH3.html#BLOCK21 //For now, just use variable size stack frame format //In a standard call, the first six items are passed in registers $16 //- $21 and/or registers $f16 - $f21. (See Section 4.1.2 for details //of argument-to-register correspondence.) The remaining items are //collected in a memory argument list that is a naturally aligned //array of quadwords. In a standard call, this list, if present, must //be passed at 0(SP). //7 ... n 0(SP) ... (n-7)*8(SP) // //#define FP $15 // //#define RA $26 // //#define PV $27 // //#define GP $29 // //#define SP $30 static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG, int &VarArgsBase, int &VarArgsOffset) { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); std::vector ArgValues; SDOperand Root = Op.getOperand(0); AddLiveIn(MF, Alpha::R29, &Alpha::GPRCRegClass); //GP AddLiveIn(MF, Alpha::R26, &Alpha::GPRCRegClass); //RA unsigned args_int[] = { Alpha::R16, Alpha::R17, Alpha::R18, Alpha::R19, Alpha::R20, Alpha::R21}; unsigned args_float[] = { Alpha::F16, Alpha::F17, Alpha::F18, Alpha::F19, Alpha::F20, Alpha::F21}; for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) { SDOperand argt; MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); SDOperand ArgVal; if (ArgNo < 6) { switch (ObjectVT) { default: cerr << "Unknown Type " << ObjectVT << "\n"; abort(); case MVT::f64: args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo], &Alpha::F8RCRegClass); ArgVal = DAG.getCopyFromReg(Root, args_float[ArgNo], ObjectVT); break; case MVT::f32: args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo], &Alpha::F4RCRegClass); ArgVal = DAG.getCopyFromReg(Root, args_float[ArgNo], ObjectVT); break; case MVT::i64: args_int[ArgNo] = AddLiveIn(MF, args_int[ArgNo], &Alpha::GPRCRegClass); ArgVal = DAG.getCopyFromReg(Root, args_int[ArgNo], MVT::i64); break; } } else { //more args // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(8, 8 * (ArgNo - 6)); // Create the SelectionDAG nodes corresponding to a load //from this parameter SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64); ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0); } ArgValues.push_back(ArgVal); } // If the functions takes variable number of arguments, copy all regs to stack bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; if (isVarArg) { VarArgsOffset = (Op.Val->getNumValues()-1) * 8; std::vector LS; for (int i = 0; i < 6; ++i) { if (MRegisterInfo::isPhysicalRegister(args_int[i])) args_int[i] = AddLiveIn(MF, args_int[i], &Alpha::GPRCRegClass); SDOperand argt = DAG.getCopyFromReg(Root, args_int[i], MVT::i64); int FI = MFI->CreateFixedObject(8, -8 * (6 - i)); if (i == 0) VarArgsBase = FI; SDOperand SDFI = DAG.getFrameIndex(FI, MVT::i64); LS.push_back(DAG.getStore(Root, argt, SDFI, NULL, 0)); if (MRegisterInfo::isPhysicalRegister(args_float[i])) args_float[i] = AddLiveIn(MF, args_float[i], &Alpha::F8RCRegClass); argt = DAG.getCopyFromReg(Root, args_float[i], MVT::f64); FI = MFI->CreateFixedObject(8, - 8 * (12 - i)); SDFI = DAG.getFrameIndex(FI, MVT::i64); LS.push_back(DAG.getStore(Root, argt, SDFI, NULL, 0)); } //Set up a token factor with all the stack traffic Root = DAG.getNode(ISD::TokenFactor, MVT::Other, &LS[0], LS.size()); } ArgValues.push_back(Root); // Return the new list of results. std::vector RetVT(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size()); } static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) { SDOperand Copy = DAG.getCopyToReg(Op.getOperand(0), Alpha::R26, DAG.getNode(AlphaISD::GlobalRetAddr, MVT::i64), SDOperand()); switch (Op.getNumOperands()) { default: assert(0 && "Do not know how to return this many arguments!"); abort(); case 1: break; //return SDOperand(); // ret void is legal case 3: { MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); unsigned ArgReg; if (MVT::isInteger(ArgVT)) ArgReg = Alpha::R0; else { assert(MVT::isFloatingPoint(ArgVT)); ArgReg = Alpha::F0; } Copy = DAG.getCopyToReg(Copy, ArgReg, Op.getOperand(1), Copy.getValue(1)); if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(ArgReg); break; } } return DAG.getNode(AlphaISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1)); } std::pair AlphaTargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool RetTyIsSigned, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { int NumBytes = 0; if (Args.size() > 6) NumBytes = (Args.size() - 6) * 8; Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, getPointerTy())); std::vector args_to_use; for (unsigned i = 0, e = Args.size(); i != e; ++i) { switch (getValueType(Args[i].Ty)) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: // Promote the integer to 64 bits. If the input type is signed use a // sign extend, otherwise use a zero extend. if (Args[i].isSExt) Args[i].Node = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64, Args[i].Node); else if (Args[i].isZExt) Args[i].Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64, Args[i].Node); else Args[i].Node = DAG.getNode(ISD::ANY_EXTEND, MVT::i64, Args[i].Node); break; case MVT::i64: case MVT::f64: case MVT::f32: break; } args_to_use.push_back(Args[i].Node); } std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); MVT::ValueType ActualRetTyVT = RetTyVT; if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i32) ActualRetTyVT = MVT::i64; if (RetTyVT != MVT::isVoid) RetVals.push_back(ActualRetTyVT); RetVals.push_back(MVT::Other); std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end()); SDOperand TheCall = DAG.getNode(AlphaISD::CALL, RetVals, &Ops[0], Ops.size()); Chain = TheCall.getValue(RetTyVT != MVT::isVoid); Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); SDOperand RetVal = TheCall; if (RetTyVT != ActualRetTyVT) { RetVal = DAG.getNode(RetTyIsSigned ? ISD::AssertSext : ISD::AssertZext, MVT::i64, RetVal, DAG.getValueType(RetTyVT)); RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal); } return std::make_pair(RetVal, Chain); } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDOperand AlphaTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Wasn't expecting to be able to lower this!"); case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsBase, VarArgsOffset); case ISD::RET: return LowerRET(Op,DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SINT_TO_FP: { assert(MVT::i64 == Op.getOperand(0).getValueType() && "Unhandled SINT_TO_FP type in custom expander!"); SDOperand LD; bool isDouble = MVT::f64 == Op.getValueType(); LD = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); SDOperand FP = DAG.getNode(isDouble?AlphaISD::CVTQT_:AlphaISD::CVTQS_, isDouble?MVT::f64:MVT::f32, LD); return FP; } case ISD::FP_TO_SINT: { bool isDouble = MVT::f64 == Op.getOperand(0).getValueType(); SDOperand src = Op.getOperand(0); if (!isDouble) //Promote src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, src); src = DAG.getNode(AlphaISD::CVTTQ_, MVT::f64, src); return DAG.getNode(ISD::BIT_CONVERT, MVT::i64, src); } case ISD::ConstantPool: { ConstantPoolSDNode *CP = cast(Op); Constant *C = CP->getConstVal(); SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i64, CP->getAlignment()); SDOperand Hi = DAG.getNode(AlphaISD::GPRelHi, MVT::i64, CPI, DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i64)); SDOperand Lo = DAG.getNode(AlphaISD::GPRelLo, MVT::i64, CPI, Hi); return Lo; } case ISD::GlobalTLSAddress: assert(0 && "TLS not implemented for Alpha."); case ISD::GlobalAddress: { GlobalAddressSDNode *GSDN = cast(Op); GlobalValue *GV = GSDN->getGlobal(); SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i64, GSDN->getOffset()); // if (!GV->hasWeakLinkage() && !GV->isDeclaration() && !GV->hasLinkOnceLinkage()) { if (GV->hasInternalLinkage()) { SDOperand Hi = DAG.getNode(AlphaISD::GPRelHi, MVT::i64, GA, DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i64)); SDOperand Lo = DAG.getNode(AlphaISD::GPRelLo, MVT::i64, GA, Hi); return Lo; } else return DAG.getNode(AlphaISD::RelLit, MVT::i64, GA, DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i64)); } case ISD::ExternalSymbol: { return DAG.getNode(AlphaISD::RelLit, MVT::i64, DAG.getTargetExternalSymbol(cast(Op) ->getSymbol(), MVT::i64), DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, MVT::i64)); } case ISD::UREM: case ISD::SREM: //Expand only on constant case if (Op.getOperand(1).getOpcode() == ISD::Constant) { MVT::ValueType VT = Op.Val->getValueType(0); SDOperand Tmp1 = Op.Val->getOpcode() == ISD::UREM ? BuildUDIV(Op.Val, DAG, NULL) : BuildSDIV(Op.Val, DAG, NULL); Tmp1 = DAG.getNode(ISD::MUL, VT, Tmp1, Op.getOperand(1)); Tmp1 = DAG.getNode(ISD::SUB, VT, Op.getOperand(0), Tmp1); return Tmp1; } //fall through case ISD::SDIV: case ISD::UDIV: if (MVT::isInteger(Op.getValueType())) { if (Op.getOperand(1).getOpcode() == ISD::Constant) return Op.getOpcode() == ISD::SDIV ? BuildSDIV(Op.Val, DAG, NULL) : BuildUDIV(Op.Val, DAG, NULL); const char* opstr = 0; switch (Op.getOpcode()) { case ISD::UREM: opstr = "__remqu"; break; case ISD::SREM: opstr = "__remq"; break; case ISD::UDIV: opstr = "__divqu"; break; case ISD::SDIV: opstr = "__divq"; break; } SDOperand Tmp1 = Op.getOperand(0), Tmp2 = Op.getOperand(1), Addr = DAG.getExternalSymbol(opstr, MVT::i64); return DAG.getNode(AlphaISD::DivCall, MVT::i64, Addr, Tmp1, Tmp2); } break; case ISD::VAARG: { SDOperand Chain = Op.getOperand(0); SDOperand VAListP = Op.getOperand(1); SrcValueSDNode *VAListS = cast(Op.getOperand(2)); SDOperand Base = DAG.getLoad(MVT::i64, Chain, VAListP, VAListS->getValue(), VAListS->getOffset()); SDOperand Tmp = DAG.getNode(ISD::ADD, MVT::i64, VAListP, DAG.getConstant(8, MVT::i64)); SDOperand Offset = DAG.getExtLoad(ISD::SEXTLOAD, MVT::i64, Base.getValue(1), Tmp, NULL, 0, MVT::i32); SDOperand DataPtr = DAG.getNode(ISD::ADD, MVT::i64, Base, Offset); if (MVT::isFloatingPoint(Op.getValueType())) { //if fp && Offset < 6*8, then subtract 6*8 from DataPtr SDOperand FPDataPtr = DAG.getNode(ISD::SUB, MVT::i64, DataPtr, DAG.getConstant(8*6, MVT::i64)); SDOperand CC = DAG.getSetCC(MVT::i64, Offset, DAG.getConstant(8*6, MVT::i64), ISD::SETLT); DataPtr = DAG.getNode(ISD::SELECT, MVT::i64, CC, FPDataPtr, DataPtr); } SDOperand NewOffset = DAG.getNode(ISD::ADD, MVT::i64, Offset, DAG.getConstant(8, MVT::i64)); SDOperand Update = DAG.getTruncStore(Offset.getValue(1), NewOffset, Tmp, NULL, 0, MVT::i32); SDOperand Result; if (Op.getValueType() == MVT::i32) Result = DAG.getExtLoad(ISD::SEXTLOAD, MVT::i64, Update, DataPtr, NULL, 0, MVT::i32); else Result = DAG.getLoad(Op.getValueType(), Update, DataPtr, NULL, 0); return Result; } case ISD::VACOPY: { SDOperand Chain = Op.getOperand(0); SDOperand DestP = Op.getOperand(1); SDOperand SrcP = Op.getOperand(2); SrcValueSDNode *DestS = cast(Op.getOperand(3)); SrcValueSDNode *SrcS = cast(Op.getOperand(4)); SDOperand Val = DAG.getLoad(getPointerTy(), Chain, SrcP, SrcS->getValue(), SrcS->getOffset()); SDOperand Result = DAG.getStore(Val.getValue(1), Val, DestP, DestS->getValue(), DestS->getOffset()); SDOperand NP = DAG.getNode(ISD::ADD, MVT::i64, SrcP, DAG.getConstant(8, MVT::i64)); Val = DAG.getExtLoad(ISD::SEXTLOAD, MVT::i64, Result, NP, NULL,0, MVT::i32); SDOperand NPD = DAG.getNode(ISD::ADD, MVT::i64, DestP, DAG.getConstant(8, MVT::i64)); return DAG.getTruncStore(Val.getValue(1), Val, NPD, NULL, 0, MVT::i32); } case ISD::VASTART: { SDOperand Chain = Op.getOperand(0); SDOperand VAListP = Op.getOperand(1); SrcValueSDNode *VAListS = cast(Op.getOperand(2)); // vastart stores the address of the VarArgsBase and VarArgsOffset SDOperand FR = DAG.getFrameIndex(VarArgsBase, MVT::i64); SDOperand S1 = DAG.getStore(Chain, FR, VAListP, VAListS->getValue(), VAListS->getOffset()); SDOperand SA2 = DAG.getNode(ISD::ADD, MVT::i64, VAListP, DAG.getConstant(8, MVT::i64)); return DAG.getTruncStore(S1, DAG.getConstant(VarArgsOffset, MVT::i64), SA2, NULL, 0, MVT::i32); } case ISD::RETURNADDR: return DAG.getNode(AlphaISD::GlobalRetAddr, MVT::i64); //FIXME: implement case ISD::FRAMEADDR: break; } return SDOperand(); } SDOperand AlphaTargetLowering::CustomPromoteOperation(SDOperand Op, SelectionDAG &DAG) { assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::VAARG && "Unknown node to custom promote!"); // The code in LowerOperation already handles i32 vaarg return LowerOperation(Op, DAG); } //Inline Asm /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. AlphaTargetLowering::ConstraintType AlphaTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'f': case 'r': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); } std::vector AlphaTargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; // Unknown constriant letter case 'f': return make_vector(Alpha::F0 , Alpha::F1 , Alpha::F2 , Alpha::F3 , Alpha::F4 , Alpha::F5 , Alpha::F6 , Alpha::F7 , Alpha::F8 , Alpha::F9 , Alpha::F10, Alpha::F11, Alpha::F12, Alpha::F13, Alpha::F14, Alpha::F15, Alpha::F16, Alpha::F17, Alpha::F18, Alpha::F19, Alpha::F20, Alpha::F21, Alpha::F22, Alpha::F23, Alpha::F24, Alpha::F25, Alpha::F26, Alpha::F27, Alpha::F28, Alpha::F29, Alpha::F30, Alpha::F31, 0); case 'r': return make_vector(Alpha::R0 , Alpha::R1 , Alpha::R2 , Alpha::R3 , Alpha::R4 , Alpha::R5 , Alpha::R6 , Alpha::R7 , Alpha::R8 , Alpha::R9 , Alpha::R10, Alpha::R11, Alpha::R12, Alpha::R13, Alpha::R14, Alpha::R15, Alpha::R16, Alpha::R17, Alpha::R18, Alpha::R19, Alpha::R20, Alpha::R21, Alpha::R22, Alpha::R23, Alpha::R24, Alpha::R25, Alpha::R26, Alpha::R27, Alpha::R28, Alpha::R29, Alpha::R30, Alpha::R31, 0); } } return std::vector(); }