//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the implementation of the scalar evolution analysis // engine, which is used primarily to analyze expressions involving induction // variables in loops. // // There are several aspects to this library. First is the representation of // scalar expressions, which are represented as subclasses of the SCEV class. // These classes are used to represent certain types of subexpressions that we // can handle. These classes are reference counted, managed by the const SCEV* // class. We only create one SCEV of a particular shape, so pointer-comparisons // for equality are legal. // // One important aspect of the SCEV objects is that they are never cyclic, even // if there is a cycle in the dataflow for an expression (ie, a PHI node). If // the PHI node is one of the idioms that we can represent (e.g., a polynomial // recurrence) then we represent it directly as a recurrence node, otherwise we // represent it as a SCEVUnknown node. // // In addition to being able to represent expressions of various types, we also // have folders that are used to build the *canonical* representation for a // particular expression. These folders are capable of using a variety of // rewrite rules to simplify the expressions. // // Once the folders are defined, we can implement the more interesting // higher-level code, such as the code that recognizes PHI nodes of various // types, computes the execution count of a loop, etc. // // TODO: We should use these routines and value representations to implement // dependence analysis! // //===----------------------------------------------------------------------===// // // There are several good references for the techniques used in this analysis. // // Chains of recurrences -- a method to expedite the evaluation // of closed-form functions // Olaf Bachmann, Paul S. Wang, Eugene V. Zima // // On computational properties of chains of recurrences // Eugene V. Zima // // Symbolic Evaluation of Chains of Recurrences for Loop Optimization // Robert A. van Engelen // // Efficient Symbolic Analysis for Optimizing Compilers // Robert A. van Engelen // // Using the chains of recurrences algebra for data dependence testing and // induction variable substitution // MS Thesis, Johnie Birch // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "scalar-evolution" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Assembly/Writer.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ConstantRange.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; STATISTIC(NumArrayLenItCounts, "Number of trip counts computed with array length"); STATISTIC(NumTripCountsComputed, "Number of loops with predictable loop counts"); STATISTIC(NumTripCountsNotComputed, "Number of loops without predictable loop counts"); STATISTIC(NumBruteForceTripCountsComputed, "Number of loops with trip counts computed by force"); static cl::opt MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, cl::desc("Maximum number of iterations SCEV will " "symbolically execute a constant derived loop"), cl::init(100)); static RegisterPass R("scalar-evolution", "Scalar Evolution Analysis", false, true); char ScalarEvolution::ID = 0; //===----------------------------------------------------------------------===// // SCEV class definitions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Implementation of the SCEV class. // SCEV::~SCEV() {} void SCEV::dump() const { print(errs()); errs() << '\n'; } void SCEV::print(std::ostream &o) const { raw_os_ostream OS(o); print(OS); } bool SCEV::isZero() const { if (const SCEVConstant *SC = dyn_cast(this)) return SC->getValue()->isZero(); return false; } bool SCEV::isOne() const { if (const SCEVConstant *SC = dyn_cast(this)) return SC->getValue()->isOne(); return false; } SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); return false; } const Type *SCEVCouldNotCompute::getType() const { assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); return 0; } bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); return false; } const SCEV* SCEVCouldNotCompute:: replaceSymbolicValuesWithConcrete(const SCEV* Sym, const SCEV* Conc, ScalarEvolution &SE) const { return this; } void SCEVCouldNotCompute::print(raw_ostream &OS) const { OS << "***COULDNOTCOMPUTE***"; } bool SCEVCouldNotCompute::classof(const SCEV *S) { return S->getSCEVType() == scCouldNotCompute; } // SCEVConstants - Only allow the creation of one SCEVConstant for any // particular value. Don't use a const SCEV* here, or else the object will // never be deleted! const SCEV* ScalarEvolution::getConstant(ConstantInt *V) { SCEVConstant *&R = SCEVConstants[V]; if (R == 0) R = new SCEVConstant(V); return R; } const SCEV* ScalarEvolution::getConstant(const APInt& Val) { return getConstant(ConstantInt::get(Val)); } const SCEV* ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { return getConstant(ConstantInt::get(cast(Ty), V, isSigned)); } const Type *SCEVConstant::getType() const { return V->getType(); } void SCEVConstant::print(raw_ostream &OS) const { WriteAsOperand(OS, V, false); } SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, const SCEV* op, const Type *ty) : SCEV(SCEVTy), Op(op), Ty(ty) {} bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { return Op->dominates(BB, DT); } // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any // particular input. Don't use a const SCEV* here, or else the object will // never be deleted! SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty) : SCEVCastExpr(scTruncate, op, ty) { assert((Op->getType()->isInteger() || isa(Op->getType())) && (Ty->isInteger() || isa(Ty)) && "Cannot truncate non-integer value!"); } void SCEVTruncateExpr::print(raw_ostream &OS) const { OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; } // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any // particular input. Don't use a const SCEV* here, or else the object will never // be deleted! SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty) : SCEVCastExpr(scZeroExtend, op, ty) { assert((Op->getType()->isInteger() || isa(Op->getType())) && (Ty->isInteger() || isa(Ty)) && "Cannot zero extend non-integer value!"); } void SCEVZeroExtendExpr::print(raw_ostream &OS) const { OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; } // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any // particular input. Don't use a const SCEV* here, or else the object will never // be deleted! SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty) : SCEVCastExpr(scSignExtend, op, ty) { assert((Op->getType()->isInteger() || isa(Op->getType())) && (Ty->isInteger() || isa(Ty)) && "Cannot sign extend non-integer value!"); } void SCEVSignExtendExpr::print(raw_ostream &OS) const { OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; } // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any // particular input. Don't use a const SCEV* here, or else the object will never // be deleted! void SCEVCommutativeExpr::print(raw_ostream &OS) const { assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); const char *OpStr = getOperationStr(); OS << "(" << *Operands[0]; for (unsigned i = 1, e = Operands.size(); i != e; ++i) OS << OpStr << *Operands[i]; OS << ")"; } const SCEV* SCEVCommutativeExpr:: replaceSymbolicValuesWithConcrete(const SCEV* Sym, const SCEV* Conc, ScalarEvolution &SE) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const SCEV* H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); if (H != getOperand(i)) { SmallVector NewOps; NewOps.reserve(getNumOperands()); for (unsigned j = 0; j != i; ++j) NewOps.push_back(getOperand(j)); NewOps.push_back(H); for (++i; i != e; ++i) NewOps.push_back(getOperand(i)-> replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); if (isa(this)) return SE.getAddExpr(NewOps); else if (isa(this)) return SE.getMulExpr(NewOps); else if (isa(this)) return SE.getSMaxExpr(NewOps); else if (isa(this)) return SE.getUMaxExpr(NewOps); else assert(0 && "Unknown commutative expr!"); } } return this; } bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { if (!getOperand(i)->dominates(BB, DT)) return false; } return true; } // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular // input. Don't use a const SCEV* here, or else the object will never be // deleted! bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); } void SCEVUDivExpr::print(raw_ostream &OS) const { OS << "(" << *LHS << " /u " << *RHS << ")"; } const Type *SCEVUDivExpr::getType() const { // In most cases the types of LHS and RHS will be the same, but in some // crazy cases one or the other may be a pointer. ScalarEvolution doesn't // depend on the type for correctness, but handling types carefully can // avoid extra casts in the SCEVExpander. The LHS is more likely to be // a pointer type than the RHS, so use the RHS' type here. return RHS->getType(); } // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any // particular input. Don't use a const SCEV* here, or else the object will never // be deleted! const SCEV* SCEVAddRecExpr:: replaceSymbolicValuesWithConcrete(const SCEV* Sym, const SCEV* Conc, ScalarEvolution &SE) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const SCEV* H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); if (H != getOperand(i)) { SmallVector NewOps; NewOps.reserve(getNumOperands()); for (unsigned j = 0; j != i; ++j) NewOps.push_back(getOperand(j)); NewOps.push_back(H); for (++i; i != e; ++i) NewOps.push_back(getOperand(i)-> replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); return SE.getAddRecExpr(NewOps, L); } } return this; } bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't // contain L and if the start is invariant. // Add recurrences are never invariant in the function-body (null loop). return QueryLoop && !QueryLoop->contains(L->getHeader()) && getOperand(0)->isLoopInvariant(QueryLoop); } void SCEVAddRecExpr::print(raw_ostream &OS) const { OS << "{" << *Operands[0]; for (unsigned i = 1, e = Operands.size(); i != e; ++i) OS << ",+," << *Operands[i]; OS << "}<" << L->getHeader()->getName() + ">"; } // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular // value. Don't use a const SCEV* here, or else the object will never be // deleted! bool SCEVUnknown::isLoopInvariant(const Loop *L) const { // All non-instruction values are loop invariant. All instructions are loop // invariant if they are not contained in the specified loop. // Instructions are never considered invariant in the function body // (null loop) because they are defined within the "loop". if (Instruction *I = dyn_cast(V)) return L && !L->contains(I->getParent()); return true; } bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { if (Instruction *I = dyn_cast(getValue())) return DT->dominates(I->getParent(), BB); return true; } const Type *SCEVUnknown::getType() const { return V->getType(); } void SCEVUnknown::print(raw_ostream &OS) const { WriteAsOperand(OS, V, false); } //===----------------------------------------------------------------------===// // SCEV Utilities //===----------------------------------------------------------------------===// namespace { /// SCEVComplexityCompare - Return true if the complexity of the LHS is less /// than the complexity of the RHS. This comparator is used to canonicalize /// expressions. class VISIBILITY_HIDDEN SCEVComplexityCompare { LoopInfo *LI; public: explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} bool operator()(const SCEV *LHS, const SCEV *RHS) const { // Primarily, sort the SCEVs by their getSCEVType(). if (LHS->getSCEVType() != RHS->getSCEVType()) return LHS->getSCEVType() < RHS->getSCEVType(); // Aside from the getSCEVType() ordering, the particular ordering // isn't very important except that it's beneficial to be consistent, // so that (a + b) and (b + a) don't end up as different expressions. // Sort SCEVUnknown values with some loose heuristics. TODO: This is // not as complete as it could be. if (const SCEVUnknown *LU = dyn_cast(LHS)) { const SCEVUnknown *RU = cast(RHS); // Order pointer values after integer values. This helps SCEVExpander // form GEPs. if (isa(LU->getType()) && !isa(RU->getType())) return false; if (isa(RU->getType()) && !isa(LU->getType())) return true; // Compare getValueID values. if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) return LU->getValue()->getValueID() < RU->getValue()->getValueID(); // Sort arguments by their position. if (const Argument *LA = dyn_cast(LU->getValue())) { const Argument *RA = cast(RU->getValue()); return LA->getArgNo() < RA->getArgNo(); } // For instructions, compare their loop depth, and their opcode. // This is pretty loose. if (Instruction *LV = dyn_cast(LU->getValue())) { Instruction *RV = cast(RU->getValue()); // Compare loop depths. if (LI->getLoopDepth(LV->getParent()) != LI->getLoopDepth(RV->getParent())) return LI->getLoopDepth(LV->getParent()) < LI->getLoopDepth(RV->getParent()); // Compare opcodes. if (LV->getOpcode() != RV->getOpcode()) return LV->getOpcode() < RV->getOpcode(); // Compare the number of operands. if (LV->getNumOperands() != RV->getNumOperands()) return LV->getNumOperands() < RV->getNumOperands(); } return false; } // Compare constant values. if (const SCEVConstant *LC = dyn_cast(LHS)) { const SCEVConstant *RC = cast(RHS); return LC->getValue()->getValue().ult(RC->getValue()->getValue()); } // Compare addrec loop depths. if (const SCEVAddRecExpr *LA = dyn_cast(LHS)) { const SCEVAddRecExpr *RA = cast(RHS); if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); } // Lexicographically compare n-ary expressions. if (const SCEVNAryExpr *LC = dyn_cast(LHS)) { const SCEVNAryExpr *RC = cast(RHS); for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { if (i >= RC->getNumOperands()) return false; if (operator()(LC->getOperand(i), RC->getOperand(i))) return true; if (operator()(RC->getOperand(i), LC->getOperand(i))) return false; } return LC->getNumOperands() < RC->getNumOperands(); } // Lexicographically compare udiv expressions. if (const SCEVUDivExpr *LC = dyn_cast(LHS)) { const SCEVUDivExpr *RC = cast(RHS); if (operator()(LC->getLHS(), RC->getLHS())) return true; if (operator()(RC->getLHS(), LC->getLHS())) return false; if (operator()(LC->getRHS(), RC->getRHS())) return true; if (operator()(RC->getRHS(), LC->getRHS())) return false; return false; } // Compare cast expressions by operand. if (const SCEVCastExpr *LC = dyn_cast(LHS)) { const SCEVCastExpr *RC = cast(RHS); return operator()(LC->getOperand(), RC->getOperand()); } assert(0 && "Unknown SCEV kind!"); return false; } }; } /// GroupByComplexity - Given a list of SCEV objects, order them by their /// complexity, and group objects of the same complexity together by value. /// When this routine is finished, we know that any duplicates in the vector are /// consecutive and that complexity is monotonically increasing. /// /// Note that we go take special precautions to ensure that we get determinstic /// results from this routine. In other words, we don't want the results of /// this to depend on where the addresses of various SCEV objects happened to /// land in memory. /// static void GroupByComplexity(SmallVectorImpl &Ops, LoopInfo *LI) { if (Ops.size() < 2) return; // Noop if (Ops.size() == 2) { // This is the common case, which also happens to be trivially simple. // Special case it. if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) std::swap(Ops[0], Ops[1]); return; } // Do the rough sort by complexity. std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); // Now that we are sorted by complexity, group elements of the same // complexity. Note that this is, at worst, N^2, but the vector is likely to // be extremely short in practice. Note that we take this approach because we // do not want to depend on the addresses of the objects we are grouping. for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { const SCEV *S = Ops[i]; unsigned Complexity = S->getSCEVType(); // If there are any objects of the same complexity and same value as this // one, group them. for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { if (Ops[j] == S) { // Found a duplicate. // Move it to immediately after i'th element. std::swap(Ops[i+1], Ops[j]); ++i; // no need to rescan it. if (i == e-2) return; // Done! } } } } //===----------------------------------------------------------------------===// // Simple SCEV method implementations //===----------------------------------------------------------------------===// /// BinomialCoefficient - Compute BC(It, K). The result has width W. /// Assume, K > 0. static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K, ScalarEvolution &SE, const Type* ResultTy) { // Handle the simplest case efficiently. if (K == 1) return SE.getTruncateOrZeroExtend(It, ResultTy); // We are using the following formula for BC(It, K): // // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! // // Suppose, W is the bitwidth of the return value. We must be prepared for // overflow. Hence, we must assure that the result of our computation is // equal to the accurate one modulo 2^W. Unfortunately, division isn't // safe in modular arithmetic. // // However, this code doesn't use exactly that formula; the formula it uses // is something like the following, where T is the number of factors of 2 in // K! (i.e. trailing zeros in the binary representation of K!), and ^ is // exponentiation: // // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) // // This formula is trivially equivalent to the previous formula. However, // this formula can be implemented much more efficiently. The trick is that // K! / 2^T is odd, and exact division by an odd number *is* safe in modular // arithmetic. To do exact division in modular arithmetic, all we have // to do is multiply by the inverse. Therefore, this step can be done at // width W. // // The next issue is how to safely do the division by 2^T. The way this // is done is by doing the multiplication step at a width of at least W + T // bits. This way, the bottom W+T bits of the product are accurate. Then, // when we perform the division by 2^T (which is equivalent to a right shift // by T), the bottom W bits are accurate. Extra bits are okay; they'll get // truncated out after the division by 2^T. // // In comparison to just directly using the first formula, this technique // is much more efficient; using the first formula requires W * K bits, // but this formula less than W + K bits. Also, the first formula requires // a division step, whereas this formula only requires multiplies and shifts. // // It doesn't matter whether the subtraction step is done in the calculation // width or the input iteration count's width; if the subtraction overflows, // the result must be zero anyway. We prefer here to do it in the width of // the induction variable because it helps a lot for certain cases; CodeGen // isn't smart enough to ignore the overflow, which leads to much less // efficient code if the width of the subtraction is wider than the native // register width. // // (It's possible to not widen at all by pulling out factors of 2 before // the multiplication; for example, K=2 can be calculated as // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires // extra arithmetic, so it's not an obvious win, and it gets // much more complicated for K > 3.) // Protection from insane SCEVs; this bound is conservative, // but it probably doesn't matter. if (K > 1000) return SE.getCouldNotCompute(); unsigned W = SE.getTypeSizeInBits(ResultTy); // Calculate K! / 2^T and T; we divide out the factors of two before // multiplying for calculating K! / 2^T to avoid overflow. // Other overflow doesn't matter because we only care about the bottom // W bits of the result. APInt OddFactorial(W, 1); unsigned T = 1; for (unsigned i = 3; i <= K; ++i) { APInt Mult(W, i); unsigned TwoFactors = Mult.countTrailingZeros(); T += TwoFactors; Mult = Mult.lshr(TwoFactors); OddFactorial *= Mult; } // We need at least W + T bits for the multiplication step unsigned CalculationBits = W + T; // Calcuate 2^T, at width T+W. APInt DivFactor = APInt(CalculationBits, 1).shl(T); // Calculate the multiplicative inverse of K! / 2^T; // this multiplication factor will perform the exact division by // K! / 2^T. APInt Mod = APInt::getSignedMinValue(W+1); APInt MultiplyFactor = OddFactorial.zext(W+1); MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); MultiplyFactor = MultiplyFactor.trunc(W); // Calculate the product, at width T+W const IntegerType *CalculationTy = IntegerType::get(CalculationBits); const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); for (unsigned i = 1; i != K; ++i) { const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); Dividend = SE.getMulExpr(Dividend, SE.getTruncateOrZeroExtend(S, CalculationTy)); } // Divide by 2^T const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); // Truncate the result, and divide by K! / 2^T. return SE.getMulExpr(SE.getConstant(MultiplyFactor), SE.getTruncateOrZeroExtend(DivResult, ResultTy)); } /// evaluateAtIteration - Return the value of this chain of recurrences at /// the specified iteration number. We can evaluate this recurrence by /// multiplying each element in the chain by the binomial coefficient /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: /// /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) /// /// where BC(It, k) stands for binomial coefficient. /// const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It, ScalarEvolution &SE) const { const SCEV* Result = getStart(); for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { // The computation is correct in the face of overflow provided that the // multiplication is performed _after_ the evaluation of the binomial // coefficient. const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType()); if (isa(Coeff)) return Coeff; Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); } return Result; } //===----------------------------------------------------------------------===// // SCEV Expression folder implementations //===----------------------------------------------------------------------===// const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op, const Type *Ty) { assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && "This is not a truncating conversion!"); assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); Ty = getEffectiveSCEVType(Ty); if (const SCEVConstant *SC = dyn_cast(Op)) return getUnknown( ConstantExpr::getTrunc(SC->getValue(), Ty)); // trunc(trunc(x)) --> trunc(x) if (const SCEVTruncateExpr *ST = dyn_cast(Op)) return getTruncateExpr(ST->getOperand(), Ty); // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing if (const SCEVSignExtendExpr *SS = dyn_cast(Op)) return getTruncateOrSignExtend(SS->getOperand(), Ty); // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing if (const SCEVZeroExtendExpr *SZ = dyn_cast(Op)) return getTruncateOrZeroExtend(SZ->getOperand(), Ty); // If the input value is a chrec scev, truncate the chrec's operands. if (const SCEVAddRecExpr *AddRec = dyn_cast(Op)) { SmallVector Operands; for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); return getAddRecExpr(Operands, AddRec->getLoop()); } SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)]; if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); return Result; } const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op, const Type *Ty) { assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"); assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); Ty = getEffectiveSCEVType(Ty); if (const SCEVConstant *SC = dyn_cast(Op)) { const Type *IntTy = getEffectiveSCEVType(Ty); Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); return getUnknown(C); } // zext(zext(x)) --> zext(x) if (const SCEVZeroExtendExpr *SZ = dyn_cast(Op)) return getZeroExtendExpr(SZ->getOperand(), Ty); // If the input value is a chrec scev, and we can prove that the value // did not overflow the old, smaller, value, we can zero extend all of the // operands (often constants). This allows analysis of something like // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } if (const SCEVAddRecExpr *AR = dyn_cast(Op)) if (AR->isAffine()) { // Check whether the backedge-taken count is SCEVCouldNotCompute. // Note that this serves two purposes: It filters out loops that are // simply not analyzable, and it covers the case where this code is // being called from within backedge-taken count analysis, such that // attempting to ask for the backedge-taken count would likely result // in infinite recursion. In the later case, the analysis code will // cope with a conservative value, and it will take care to purge // that value once it has finished. const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); if (!isa(MaxBECount)) { // Manually compute the final value for AR, checking for // overflow. const SCEV* Start = AR->getStart(); const SCEV* Step = AR->getStepRecurrence(*this); // Check whether the backedge-taken count can be losslessly casted to // the addrec's type. The count is always unsigned. const SCEV* CastedMaxBECount = getTruncateOrZeroExtend(MaxBECount, Start->getType()); const SCEV* RecastedMaxBECount = getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); if (MaxBECount == RecastedMaxBECount) { const Type *WideTy = IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); // Check whether Start+Step*MaxBECount has no unsigned overflow. const SCEV* ZMul = getMulExpr(CastedMaxBECount, getTruncateOrZeroExtend(Step, Start->getType())); const SCEV* Add = getAddExpr(Start, ZMul); const SCEV* OperandExtendedAdd = getAddExpr(getZeroExtendExpr(Start, WideTy), getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), getZeroExtendExpr(Step, WideTy))); if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) // Return the expression with the addrec on the outside. return getAddRecExpr(getZeroExtendExpr(Start, Ty), getZeroExtendExpr(Step, Ty), AR->getLoop()); // Similar to above, only this time treat the step value as signed. // This covers loops that count down. const SCEV* SMul = getMulExpr(CastedMaxBECount, getTruncateOrSignExtend(Step, Start->getType())); Add = getAddExpr(Start, SMul); OperandExtendedAdd = getAddExpr(getZeroExtendExpr(Start, WideTy), getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), getSignExtendExpr(Step, WideTy))); if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) // Return the expression with the addrec on the outside. return getAddRecExpr(getZeroExtendExpr(Start, Ty), getSignExtendExpr(Step, Ty), AR->getLoop()); } } } SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)]; if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); return Result; } const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op, const Type *Ty) { assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"); assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); Ty = getEffectiveSCEVType(Ty); if (const SCEVConstant *SC = dyn_cast(Op)) { const Type *IntTy = getEffectiveSCEVType(Ty); Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); return getUnknown(C); } // sext(sext(x)) --> sext(x) if (const SCEVSignExtendExpr *SS = dyn_cast(Op)) return getSignExtendExpr(SS->getOperand(), Ty); // If the input value is a chrec scev, and we can prove that the value // did not overflow the old, smaller, value, we can sign extend all of the // operands (often constants). This allows analysis of something like // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } if (const SCEVAddRecExpr *AR = dyn_cast(Op)) if (AR->isAffine()) { // Check whether the backedge-taken count is SCEVCouldNotCompute. // Note that this serves two purposes: It filters out loops that are // simply not analyzable, and it covers the case where this code is // being called from within backedge-taken count analysis, such that // attempting to ask for the backedge-taken count would likely result // in infinite recursion. In the later case, the analysis code will // cope with a conservative value, and it will take care to purge // that value once it has finished. const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); if (!isa(MaxBECount)) { // Manually compute the final value for AR, checking for // overflow. const SCEV* Start = AR->getStart(); const SCEV* Step = AR->getStepRecurrence(*this); // Check whether the backedge-taken count can be losslessly casted to // the addrec's type. The count is always unsigned. const SCEV* CastedMaxBECount = getTruncateOrZeroExtend(MaxBECount, Start->getType()); const SCEV* RecastedMaxBECount = getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); if (MaxBECount == RecastedMaxBECount) { const Type *WideTy = IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); // Check whether Start+Step*MaxBECount has no signed overflow. const SCEV* SMul = getMulExpr(CastedMaxBECount, getTruncateOrSignExtend(Step, Start->getType())); const SCEV* Add = getAddExpr(Start, SMul); const SCEV* OperandExtendedAdd = getAddExpr(getSignExtendExpr(Start, WideTy), getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), getSignExtendExpr(Step, WideTy))); if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) // Return the expression with the addrec on the outside. return getAddRecExpr(getSignExtendExpr(Start, Ty), getSignExtendExpr(Step, Ty), AR->getLoop()); } } } SCEVSignExtendExpr *&Result = SCEVSignExtends[std::make_pair(Op, Ty)]; if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); return Result; } /// getAnyExtendExpr - Return a SCEV for the given operand extended with /// unspecified bits out to the given type. /// const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op, const Type *Ty) { assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"); assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"); Ty = getEffectiveSCEVType(Ty); // Sign-extend negative constants. if (const SCEVConstant *SC = dyn_cast(Op)) if (SC->getValue()->getValue().isNegative()) return getSignExtendExpr(Op, Ty); // Peel off a truncate cast. if (const SCEVTruncateExpr *T = dyn_cast(Op)) { const SCEV* NewOp = T->getOperand(); if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) return getAnyExtendExpr(NewOp, Ty); return getTruncateOrNoop(NewOp, Ty); } // Next try a zext cast. If the cast is folded, use it. const SCEV* ZExt = getZeroExtendExpr(Op, Ty); if (!isa(ZExt)) return ZExt; // Next try a sext cast. If the cast is folded, use it. const SCEV* SExt = getSignExtendExpr(Op, Ty); if (!isa(SExt)) return SExt; // If the expression is obviously signed, use the sext cast value. if (isa(Op)) return SExt; // Absent any other information, use the zext cast value. return ZExt; } /// CollectAddOperandsWithScales - Process the given Ops list, which is /// a list of operands to be added under the given scale, update the given /// map. This is a helper function for getAddRecExpr. As an example of /// what it does, given a sequence of operands that would form an add /// expression like this: /// /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) /// /// where A and B are constants, update the map with these values: /// /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) /// /// and add 13 + A*B*29 to AccumulatedConstant. /// This will allow getAddRecExpr to produce this: /// /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) /// /// This form often exposes folding opportunities that are hidden in /// the original operand list. /// /// Return true iff it appears that any interesting folding opportunities /// may be exposed. This helps getAddRecExpr short-circuit extra work in /// the common case where no interesting opportunities are present, and /// is also used as a check to avoid infinite recursion. /// static bool CollectAddOperandsWithScales(DenseMap &M, SmallVector &NewOps, APInt &AccumulatedConstant, const SmallVectorImpl &Ops, const APInt &Scale, ScalarEvolution &SE) { bool Interesting = false; // Iterate over the add operands. for (unsigned i = 0, e = Ops.size(); i != e; ++i) { const SCEVMulExpr *Mul = dyn_cast(Ops[i]); if (Mul && isa(Mul->getOperand(0))) { APInt NewScale = Scale * cast(Mul->getOperand(0))->getValue()->getValue(); if (Mul->getNumOperands() == 2 && isa(Mul->getOperand(1))) { // A multiplication of a constant with another add; recurse. Interesting |= CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, cast(Mul->getOperand(1)) ->getOperands(), NewScale, SE); } else { // A multiplication of a constant with some other value. Update // the map. SmallVector MulOps(Mul->op_begin()+1, Mul->op_end()); const SCEV* Key = SE.getMulExpr(MulOps); std::pair::iterator, bool> Pair = M.insert(std::make_pair(Key, APInt())); if (Pair.second) { Pair.first->second = NewScale; NewOps.push_back(Pair.first->first); } else { Pair.first->second += NewScale; // The map already had an entry for this value, which may indicate // a folding opportunity. Interesting = true; } } } else if (const SCEVConstant *C = dyn_cast(Ops[i])) { // Pull a buried constant out to the outside. if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) Interesting = true; AccumulatedConstant += Scale * C->getValue()->getValue(); } else { // An ordinary operand. Update the map. std::pair::iterator, bool> Pair = M.insert(std::make_pair(Ops[i], APInt())); if (Pair.second) { Pair.first->second = Scale; NewOps.push_back(Pair.first->first); } else { Pair.first->second += Scale; // The map already had an entry for this value, which may indicate // a folding opportunity. Interesting = true; } } } return Interesting; } namespace { struct APIntCompare { bool operator()(const APInt &LHS, const APInt &RHS) const { return LHS.ult(RHS); } }; } /// getAddExpr - Get a canonical add expression, or something simpler if /// possible. const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl &Ops) { assert(!Ops.empty() && "Cannot get empty add!"); if (Ops.size() == 1) return Ops[0]; #ifndef NDEBUG for (unsigned i = 1, e = Ops.size(); i != e; ++i) assert(getEffectiveSCEVType(Ops[i]->getType()) == getEffectiveSCEVType(Ops[0]->getType()) && "SCEVAddExpr operand types don't match!"); #endif // Sort by complexity, this groups all similar expression types together. GroupByComplexity(Ops, LI); // If there are any constants, fold them together. unsigned Idx = 0; if (const SCEVConstant *LHSC = dyn_cast(Ops[0])) { ++Idx; assert(Idx < Ops.size()); while (const SCEVConstant *RHSC = dyn_cast(Ops[Idx])) { // We found two constants, fold them together! Ops[0] = getConstant(LHSC->getValue()->getValue() + RHSC->getValue()->getValue()); if (Ops.size() == 2) return Ops[0]; Ops.erase(Ops.begin()+1); // Erase the folded element LHSC = cast(Ops[0]); } // If we are left with a constant zero being added, strip it off. if (cast(Ops[0])->getValue()->isZero()) { Ops.erase(Ops.begin()); --Idx; } } if (Ops.size() == 1) return Ops[0]; // Okay, check to see if the same value occurs in the operand list twice. If // so, merge them together into an multiply expression. Since we sorted the // list, these values are required to be adjacent. const Type *Ty = Ops[0]->getType(); for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 // Found a match, merge the two values into a multiply, and add any // remaining values to the result. const SCEV* Two = getIntegerSCEV(2, Ty); const SCEV* Mul = getMulExpr(Ops[i], Two); if (Ops.size() == 2) return Mul; Ops.erase(Ops.begin()+i, Ops.begin()+i+2); Ops.push_back(Mul); return getAddExpr(Ops); } // Check for truncates. If all the operands are truncated from the same // type, see if factoring out the truncate would permit the result to be // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) // if the contents of the resulting outer trunc fold to something simple. for (; Idx < Ops.size() && isa(Ops[Idx]); ++Idx) { const SCEVTruncateExpr *Trunc = cast(Ops[Idx]); const Type *DstType = Trunc->getType(); const Type *SrcType = Trunc->getOperand()->getType(); SmallVector LargeOps; bool Ok = true; // Check all the operands to see if they can be represented in the // source type of the truncate. for (unsigned i = 0, e = Ops.size(); i != e; ++i) { if (const SCEVTruncateExpr *T = dyn_cast(Ops[i])) { if (T->getOperand()->getType() != SrcType) { Ok = false; break; } LargeOps.push_back(T->getOperand()); } else if (const SCEVConstant *C = dyn_cast(Ops[i])) { // This could be either sign or zero extension, but sign extension // is much more likely to be foldable here. LargeOps.push_back(getSignExtendExpr(C, SrcType)); } else if (const SCEVMulExpr *M = dyn_cast(Ops[i])) { SmallVector LargeMulOps; for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { if (const SCEVTruncateExpr *T = dyn_cast(M->getOperand(j))) { if (T->getOperand()->getType() != SrcType) { Ok = false; break; } LargeMulOps.push_back(T->getOperand()); } else if (const SCEVConstant *C = dyn_cast(M->getOperand(j))) { // This could be either sign or zero extension, but sign extension // is much more likely to be foldable here. LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); } else { Ok = false; break; } } if (Ok) LargeOps.push_back(getMulExpr(LargeMulOps)); } else { Ok = false; break; } } if (Ok) { // Evaluate the expression in the larger type. const SCEV* Fold = getAddExpr(LargeOps); // If it folds to something simple, use it. Otherwise, don't. if (isa(Fold) || isa(Fold)) return getTruncateExpr(Fold, DstType); } } // Skip past any other cast SCEVs. while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) ++Idx; // If there are add operands they would be next. if (Idx < Ops.size()) { bool DeletedAdd = false; while (const SCEVAddExpr *Add = dyn_cast(Ops[Idx])) { // If we have an add, expand the add operands onto the end of the operands // list. Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); Ops.erase(Ops.begin()+Idx); DeletedAdd = true; } // If we deleted at least one add, we added operands to the end of the list, // and they are not necessarily sorted. Recurse to resort and resimplify // any operands we just aquired. if (DeletedAdd) return getAddExpr(Ops); } // Skip over the add expression until we get to a multiply. while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) ++Idx; // Check to see if there are any folding opportunities present with // operands multiplied by constant values. if (Idx < Ops.size() && isa(Ops[Idx])) { uint64_t BitWidth = getTypeSizeInBits(Ty); DenseMap M; SmallVector NewOps; APInt AccumulatedConstant(BitWidth, 0); if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, Ops, APInt(BitWidth, 1), *this)) { // Some interesting folding opportunity is present, so its worthwhile to // re-generate the operands list. Group the operands by constant scale, // to avoid multiplying by the same constant scale multiple times. std::map, APIntCompare> MulOpLists; for (SmallVector::iterator I = NewOps.begin(), E = NewOps.end(); I != E; ++I) MulOpLists[M.find(*I)->second].push_back(*I); // Re-generate the operands list. Ops.clear(); if (AccumulatedConstant != 0) Ops.push_back(getConstant(AccumulatedConstant)); for (std::map, APIntCompare>::iterator I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) if (I->first != 0) Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second))); if (Ops.empty()) return getIntegerSCEV(0, Ty); if (Ops.size() == 1) return Ops[0]; return getAddExpr(Ops); } } // If we are adding something to a multiply expression, make sure the // something is not already an operand of the multiply. If so, merge it into // the multiply. for (; Idx < Ops.size() && isa(Ops[Idx]); ++Idx) { const SCEVMulExpr *Mul = cast(Ops[Idx]); for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { const SCEV *MulOpSCEV = Mul->getOperand(MulOp); for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) if (MulOpSCEV == Ops[AddOp] && !isa(Ops[AddOp])) { // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) const SCEV* InnerMul = Mul->getOperand(MulOp == 0); if (Mul->getNumOperands() != 2) { // If the multiply has more than two operands, we must get the // Y*Z term. SmallVector MulOps(Mul->op_begin(), Mul->op_end()); MulOps.erase(MulOps.begin()+MulOp); InnerMul = getMulExpr(MulOps); } const SCEV* One = getIntegerSCEV(1, Ty); const SCEV* AddOne = getAddExpr(InnerMul, One); const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]); if (Ops.size() == 2) return OuterMul; if (AddOp < Idx) { Ops.erase(Ops.begin()+AddOp); Ops.erase(Ops.begin()+Idx-1); } else { Ops.erase(Ops.begin()+Idx); Ops.erase(Ops.begin()+AddOp-1); } Ops.push_back(OuterMul); return getAddExpr(Ops); } // Check this multiply against other multiplies being added together. for (unsigned OtherMulIdx = Idx+1; OtherMulIdx < Ops.size() && isa(Ops[OtherMulIdx]); ++OtherMulIdx) { const SCEVMulExpr *OtherMul = cast(Ops[OtherMulIdx]); // If MulOp occurs in OtherMul, we can fold the two multiplies // together. for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); OMulOp != e; ++OMulOp) if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0); if (Mul->getNumOperands() != 2) { SmallVector MulOps(Mul->op_begin(), Mul->op_end()); MulOps.erase(MulOps.begin()+MulOp); InnerMul1 = getMulExpr(MulOps); } const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0); if (OtherMul->getNumOperands() != 2) { SmallVector MulOps(OtherMul->op_begin(), OtherMul->op_end()); MulOps.erase(MulOps.begin()+OMulOp); InnerMul2 = getMulExpr(MulOps); } const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2); const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); if (Ops.size() == 2) return OuterMul; Ops.erase(Ops.begin()+Idx); Ops.erase(Ops.begin()+OtherMulIdx-1); Ops.push_back(OuterMul); return getAddExpr(Ops); } } } } // If there are any add recurrences in the operands list, see if any other // added values are loop invariant. If so, we can fold them into the // recurrence. while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) ++Idx; // Scan over all recurrences, trying to fold loop invariants into them. for (; Idx < Ops.size() && isa(Ops[Idx]); ++Idx) { // Scan all of the other operands to this add and add them to the vector if // they are loop invariant w.r.t. the recurrence. SmallVector LIOps; const SCEVAddRecExpr *AddRec = cast(Ops[Idx]); for (unsigned i = 0, e = Ops.size(); i != e; ++i) if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { LIOps.push_back(Ops[i]); Ops.erase(Ops.begin()+i); --i; --e; } // If we found some loop invariants, fold them into the recurrence. if (!LIOps.empty()) { // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} LIOps.push_back(AddRec->getStart()); SmallVector AddRecOps(AddRec->op_begin(), AddRec->op_end()); AddRecOps[0] = getAddExpr(LIOps); const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); // If all of the other operands were loop invariant, we are done. if (Ops.size() == 1) return NewRec; // Otherwise, add the folded AddRec by the non-liv parts. for (unsigned i = 0;; ++i) if (Ops[i] == AddRec) { Ops[i] = NewRec; break; } return getAddExpr(Ops); } // Okay, if there weren't any loop invariants to be folded, check to see if // there are multiple AddRec's with the same loop induction variable being // added together. If so, we can fold them. for (unsigned OtherIdx = Idx+1; OtherIdx < Ops.size() && isa(Ops[OtherIdx]);++OtherIdx) if (OtherIdx != Idx) { const SCEVAddRecExpr *OtherAddRec = cast(Ops[OtherIdx]); if (AddRec->getLoop() == OtherAddRec->getLoop()) { // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} SmallVector NewOps(AddRec->op_begin(), AddRec->op_end()); for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { if (i >= NewOps.size()) { NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, OtherAddRec->op_end()); break; } NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); } const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); if (Ops.size() == 2) return NewAddRec; Ops.erase(Ops.begin()+Idx); Ops.erase(Ops.begin()+OtherIdx-1); Ops.push_back(NewAddRec); return getAddExpr(Ops); } } // Otherwise couldn't fold anything into this recurrence. Move onto the // next one. } // Okay, it looks like we really DO need an add expr. Check to see if we // already have one, otherwise create a new one. std::vector SCEVOps(Ops.begin(), Ops.end()); SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr, SCEVOps)]; if (Result == 0) Result = new SCEVAddExpr(Ops); return Result; } /// getMulExpr - Get a canonical multiply expression, or something simpler if /// possible. const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl &Ops) { assert(!Ops.empty() && "Cannot get empty mul!"); #ifndef NDEBUG for (unsigned i = 1, e = Ops.size(); i != e; ++i) assert(getEffectiveSCEVType(Ops[i]->getType()) == getEffectiveSCEVType(Ops[0]->getType()) && "SCEVMulExpr operand types don't match!"); #endif // Sort by complexity, this groups all similar expression types together. GroupByComplexity(Ops, LI); // If there are any constants, fold them together. unsigned Idx = 0; if (const SCEVConstant *LHSC = dyn_cast(Ops[0])) { // C1*(C2+V) -> C1*C2 + C1*V if (Ops.size() == 2) if (const SCEVAddExpr *Add = dyn_cast(Ops[1])) if (Add->getNumOperands() == 2 && isa(Add->getOperand(0))) return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), getMulExpr(LHSC, Add->getOperand(1))); ++Idx; while (const SCEVConstant *RHSC = dyn_cast(Ops[Idx])) { // We found two constants, fold them together! ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * RHSC->getValue()->getValue()); Ops[0] = getConstant(Fold); Ops.erase(Ops.begin()+1); // Erase the folded element if (Ops.size() == 1) return Ops[0]; LHSC = cast(Ops[0]); } // If we are left with a constant one being multiplied, strip it off. if (cast(Ops[0])->getValue()->equalsInt(1)) { Ops.erase(Ops.begin()); --Idx; } else if (cast(Ops[0])->getValue()->isZero()) { // If we have a multiply of zero, it will always be zero. return Ops[0]; } } // Skip over the add expression until we get to a multiply. while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) ++Idx; if (Ops.size() == 1) return Ops[0]; // If there are mul operands inline them all into this expression. if (Idx < Ops.size()) { bool DeletedMul = false; while (const SCEVMulExpr *Mul = dyn_cast(Ops[Idx])) { // If we have an mul, expand the mul operands onto the end of the operands // list. Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); Ops.erase(Ops.begin()+Idx); DeletedMul = true; } // If we deleted at least one mul, we added operands to the end of the list, // and they are not necessarily sorted. Recurse to resort and resimplify // any operands we just aquired. if (DeletedMul) return getMulExpr(Ops); } // If there are any add recurrences in the operands list, see if any other // added values are loop invariant. If so, we can fold them into the // recurrence. while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) ++Idx; // Scan over all recurrences, trying to fold loop invariants into them. for (; Idx < Ops.size() && isa(Ops[Idx]); ++Idx) { // Scan all of the other operands to this mul and add them to the vector if // they are loop invariant w.r.t. the recurrence. SmallVector LIOps; const SCEVAddRecExpr *AddRec = cast(Ops[Idx]); for (unsigned i = 0, e = Ops.size(); i != e; ++i) if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { LIOps.push_back(Ops[i]); Ops.erase(Ops.begin()+i); --i; --e; } // If we found some loop invariants, fold them into the recurrence. if (!LIOps.empty()) { // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} SmallVector NewOps; NewOps.reserve(AddRec->getNumOperands()); if (LIOps.size() == 1) { const SCEV *Scale = LIOps[0]; for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); } else { for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { SmallVector MulOps(LIOps.begin(), LIOps.end()); MulOps.push_back(AddRec->getOperand(i)); NewOps.push_back(getMulExpr(MulOps)); } } const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); // If all of the other operands were loop invariant, we are done. if (Ops.size() == 1) return NewRec; // Otherwise, multiply the folded AddRec by the non-liv parts. for (unsigned i = 0;; ++i) if (Ops[i] == AddRec) { Ops[i] = NewRec; break; } return getMulExpr(Ops); } // Okay, if there weren't any loop invariants to be folded, check to see if // there are multiple AddRec's with the same loop induction variable being // multiplied together. If so, we can fold them. for (unsigned OtherIdx = Idx+1; OtherIdx < Ops.size() && isa(Ops[OtherIdx]);++OtherIdx) if (OtherIdx != Idx) { const SCEVAddRecExpr *OtherAddRec = cast(Ops[OtherIdx]); if (AddRec->getLoop() == OtherAddRec->getLoop()) { // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; const SCEV* NewStart = getMulExpr(F->getStart(), G->getStart()); const SCEV* B = F->getStepRecurrence(*this); const SCEV* D = G->getStepRecurrence(*this); const SCEV* NewStep = getAddExpr(getMulExpr(F, D), getMulExpr(G, B), getMulExpr(B, D)); const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep, F->getLoop()); if (Ops.size() == 2) return NewAddRec; Ops.erase(Ops.begin()+Idx); Ops.erase(Ops.begin()+OtherIdx-1); Ops.push_back(NewAddRec); return getMulExpr(Ops); } } // Otherwise couldn't fold anything into this recurrence. Move onto the // next one. } // Okay, it looks like we really DO need an mul expr. Check to see if we // already have one, otherwise create a new one. std::vector SCEVOps(Ops.begin(), Ops.end()); SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr, SCEVOps)]; if (Result == 0) Result = new SCEVMulExpr(Ops); return Result; } /// getUDivExpr - Get a canonical multiply expression, or something simpler if /// possible. const SCEV* ScalarEvolution::getUDivExpr(const SCEV* LHS, const SCEV* RHS) { assert(getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && "SCEVUDivExpr operand types don't match!"); if (const SCEVConstant *RHSC = dyn_cast(RHS)) { if (RHSC->getValue()->equalsInt(1)) return LHS; // X udiv 1 --> x if (RHSC->isZero()) return getIntegerSCEV(0, LHS->getType()); // value is undefined // Determine if the division can be folded into the operands of // its operands. // TODO: Generalize this to non-constants by using known-bits information. const Type *Ty = LHS->getType(); unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; // For non-power-of-two values, effectively round the value up to the // nearest power of two. if (!RHSC->getValue()->getValue().isPowerOf2()) ++MaxShiftAmt; const IntegerType *ExtTy = IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. if (const SCEVAddRecExpr *AR = dyn_cast(LHS)) if (const SCEVConstant *Step = dyn_cast(AR->getStepRecurrence(*this))) if (!Step->getValue()->getValue() .urem(RHSC->getValue()->getValue()) && getZeroExtendExpr(AR, ExtTy) == getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), getZeroExtendExpr(Step, ExtTy), AR->getLoop())) { SmallVector Operands; for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); return getAddRecExpr(Operands, AR->getLoop()); } // (A*B)/C --> A*(B/C) if safe and B/C can be folded. if (const SCEVMulExpr *M = dyn_cast(LHS)) { SmallVector Operands; for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) // Find an operand that's safely divisible. for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { const SCEV* Op = M->getOperand(i); const SCEV* Div = getUDivExpr(Op, RHSC); if (!isa(Div) && getMulExpr(Div, RHSC) == Op) { const SmallVectorImpl &MOperands = M->getOperands(); Operands = SmallVector(MOperands.begin(), MOperands.end()); Operands[i] = Div; return getMulExpr(Operands); } } } // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. if (const SCEVAddRecExpr *A = dyn_cast(LHS)) { SmallVector Operands; for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { Operands.clear(); for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { const SCEV* Op = getUDivExpr(A->getOperand(i), RHS); if (isa(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) break; Operands.push_back(Op); } if (Operands.size() == A->getNumOperands()) return getAddExpr(Operands); } } // Fold if both operands are constant. if (const SCEVConstant *LHSC = dyn_cast(LHS)) { Constant *LHSCV = LHSC->getValue(); Constant *RHSCV = RHSC->getValue(); return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); } } SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)]; if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); return Result; } /// getAddRecExpr - Get an add recurrence expression for the specified loop. /// Simplify the expression as much as possible. const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start, const SCEV* Step, const Loop *L) { SmallVector Operands; Operands.push_back(Start); if (const SCEVAddRecExpr *StepChrec = dyn_cast(Step)) if (StepChrec->getLoop() == L) { Operands.insert(Operands.end(), StepChrec->op_begin(), StepChrec->op_end()); return getAddRecExpr(Operands, L); } Operands.push_back(Step); return getAddRecExpr(Operands, L); } /// getAddRecExpr - Get an add recurrence expression for the specified loop. /// Simplify the expression as much as possible. const SCEV* ScalarEvolution::getAddRecExpr(SmallVectorImpl &Operands, const Loop *L) { if (Operands.size() == 1) return Operands[0]; #ifndef NDEBUG for (unsigned i = 1, e = Operands.size(); i != e; ++i) assert(getEffectiveSCEVType(Operands[i]->getType()) == getEffectiveSCEVType(Operands[0]->getType()) && "SCEVAddRecExpr operand types don't match!"); #endif if (Operands.back()->isZero()) { Operands.pop_back(); return getAddRecExpr(Operands, L); // {X,+,0} --> X } // Canonicalize nested AddRecs in by nesting them in order of loop depth. if (const SCEVAddRecExpr *NestedAR = dyn_cast(Operands[0])) { const Loop* NestedLoop = NestedAR->getLoop(); if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { SmallVector NestedOperands(NestedAR->op_begin(), NestedAR->op_end()); Operands[0] = NestedAR->getStart(); NestedOperands[0] = getAddRecExpr(Operands, L); return getAddRecExpr(NestedOperands, NestedLoop); } } std::vector SCEVOps(Operands.begin(), Operands.end()); SCEVAddRecExpr *&Result = SCEVAddRecExprs[std::make_pair(L, SCEVOps)]; if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); return Result; } const SCEV* ScalarEvolution::getSMaxExpr(const SCEV* LHS, const SCEV* RHS) { SmallVector Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getSMaxExpr(Ops); } const SCEV* ScalarEvolution::getSMaxExpr(SmallVectorImpl &Ops) { assert(!Ops.empty() && "Cannot get empty smax!"); if (Ops.size() == 1) return Ops[0]; #ifndef NDEBUG for (unsigned i = 1, e = Ops.size(); i != e; ++i) assert(getEffectiveSCEVType(Ops[i]->getType()) == getEffectiveSCEVType(Ops[0]->getType()) && "SCEVSMaxExpr operand types don't match!"); #endif // Sort by complexity, this groups all similar expression types together. GroupByComplexity(Ops, LI); // If there are any constants, fold them together. unsigned Idx = 0; if (const SCEVConstant *LHSC = dyn_cast(Ops[0])) { ++Idx; assert(Idx < Ops.size()); while (const SCEVConstant *RHSC = dyn_cast(Ops[Idx])) { // We found two constants, fold them together! ConstantInt *Fold = ConstantInt::get( APIntOps::smax(LHSC->getValue()->getValue(), RHSC->getValue()->getValue())); Ops[0] = getConstant(Fold); Ops.erase(Ops.begin()+1); // Erase the folded element if (Ops.size() == 1) return Ops[0]; LHSC = cast(Ops[0]); } // If we are left with a constant -inf, strip it off. if (cast(Ops[0])->getValue()->isMinValue(true)) { Ops.erase(Ops.begin()); --Idx; } } if (Ops.size() == 1) return Ops[0]; // Find the first SMax while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) ++Idx; // Check to see if one of the operands is an SMax. If so, expand its operands // onto our operand list, and recurse to simplify. if (Idx < Ops.size()) { bool DeletedSMax = false; while (const SCEVSMaxExpr *SMax = dyn_cast(Ops[Idx])) { Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); Ops.erase(Ops.begin()+Idx); DeletedSMax = true; } if (DeletedSMax) return getSMaxExpr(Ops); } // Okay, check to see if the same value occurs in the operand list twice. If // so, delete one. Since we sorted the list, these values are required to // be adjacent. for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y Ops.erase(Ops.begin()+i, Ops.begin()+i+1); --i; --e; } if (Ops.size() == 1) return Ops[0]; assert(!Ops.empty() && "Reduced smax down to nothing!"); // Okay, it looks like we really DO need an smax expr. Check to see if we // already have one, otherwise create a new one. std::vector SCEVOps(Ops.begin(), Ops.end()); SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scSMaxExpr, SCEVOps)]; if (Result == 0) Result = new SCEVSMaxExpr(Ops); return Result; } const SCEV* ScalarEvolution::getUMaxExpr(const SCEV* LHS, const SCEV* RHS) { SmallVector Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getUMaxExpr(Ops); } const SCEV* ScalarEvolution::getUMaxExpr(SmallVectorImpl &Ops) { assert(!Ops.empty() && "Cannot get empty umax!"); if (Ops.size() == 1) return Ops[0]; #ifndef NDEBUG for (unsigned i = 1, e = Ops.size(); i != e; ++i) assert(getEffectiveSCEVType(Ops[i]->getType()) == getEffectiveSCEVType(Ops[0]->getType()) && "SCEVUMaxExpr operand types don't match!"); #endif // Sort by complexity, this groups all similar expression types together. GroupByComplexity(Ops, LI); // If there are any constants, fold them together. unsigned Idx = 0; if (const SCEVConstant *LHSC = dyn_cast(Ops[0])) { ++Idx; assert(Idx < Ops.size()); while (const SCEVConstant *RHSC = dyn_cast(Ops[Idx])) { // We found two constants, fold them together! ConstantInt *Fold = ConstantInt::get( APIntOps::umax(LHSC->getValue()->getValue(), RHSC->getValue()->getValue())); Ops[0] = getConstant(Fold); Ops.erase(Ops.begin()+1); // Erase the folded element if (Ops.size() == 1) return Ops[0]; LHSC = cast(Ops[0]); } // If we are left with a constant zero, strip it off. if (cast(Ops[0])->getValue()->isMinValue(false)) { Ops.erase(Ops.begin()); --Idx; } } if (Ops.size() == 1) return Ops[0]; // Find the first UMax while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) ++Idx; // Check to see if one of the operands is a UMax. If so, expand its operands // onto our operand list, and recurse to simplify. if (Idx < Ops.size()) { bool DeletedUMax = false; while (const SCEVUMaxExpr *UMax = dyn_cast(Ops[Idx])) { Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); Ops.erase(Ops.begin()+Idx); DeletedUMax = true; } if (DeletedUMax) return getUMaxExpr(Ops); } // Okay, check to see if the same value occurs in the operand list twice. If // so, delete one. Since we sorted the list, these values are required to // be adjacent. for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y Ops.erase(Ops.begin()+i, Ops.begin()+i+1); --i; --e; } if (Ops.size() == 1) return Ops[0]; assert(!Ops.empty() && "Reduced umax down to nothing!"); // Okay, it looks like we really DO need a umax expr. Check to see if we // already have one, otherwise create a new one. std::vector SCEVOps(Ops.begin(), Ops.end()); SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scUMaxExpr, SCEVOps)]; if (Result == 0) Result = new SCEVUMaxExpr(Ops); return Result; } const SCEV* ScalarEvolution::getSMinExpr(const SCEV* LHS, const SCEV* RHS) { // ~smax(~x, ~y) == smin(x, y). return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); } const SCEV* ScalarEvolution::getUMinExpr(const SCEV* LHS, const SCEV* RHS) { // ~umax(~x, ~y) == umin(x, y) return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); } const SCEV* ScalarEvolution::getUnknown(Value *V) { if (ConstantInt *CI = dyn_cast(V)) return getConstant(CI); if (isa(V)) return getIntegerSCEV(0, V->getType()); SCEVUnknown *&Result = SCEVUnknowns[V]; if (Result == 0) Result = new SCEVUnknown(V); return Result; } //===----------------------------------------------------------------------===// // Basic SCEV Analysis and PHI Idiom Recognition Code // /// isSCEVable - Test if values of the given type are analyzable within /// the SCEV framework. This primarily includes integer types, and it /// can optionally include pointer types if the ScalarEvolution class /// has access to target-specific information. bool ScalarEvolution::isSCEVable(const Type *Ty) const { // Integers are always SCEVable. if (Ty->isInteger()) return true; // Pointers are SCEVable if TargetData information is available // to provide pointer size information. if (isa(Ty)) return TD != NULL; // Otherwise it's not SCEVable. return false; } /// getTypeSizeInBits - Return the size in bits of the specified type, /// for which isSCEVable must return true. uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { assert(isSCEVable(Ty) && "Type is not SCEVable!"); // If we have a TargetData, use it! if (TD) return TD->getTypeSizeInBits(Ty); // Otherwise, we support only integer types. assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); return Ty->getPrimitiveSizeInBits(); } /// getEffectiveSCEVType - Return a type with the same bitwidth as /// the given type and which represents how SCEV will treat the given /// type, for which isSCEVable must return true. For pointer types, /// this is the pointer-sized integer type. const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { assert(isSCEVable(Ty) && "Type is not SCEVable!"); if (Ty->isInteger()) return Ty; assert(isa(Ty) && "Unexpected non-pointer non-integer type!"); return TD->getIntPtrType(); } const SCEV* ScalarEvolution::getCouldNotCompute() { return CouldNotCompute; } /// hasSCEV - Return true if the SCEV for this value has already been /// computed. bool ScalarEvolution::hasSCEV(Value *V) const { return Scalars.count(V); } /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the /// expression and create a new one. const SCEV* ScalarEvolution::getSCEV(Value *V) { assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); std::map::iterator I = Scalars.find(V); if (I != Scalars.end()) return I->second; const SCEV* S = createSCEV(V); Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); return S; } /// getIntegerSCEV - Given an integer or FP type, create a constant for the /// specified signed integer value and return a SCEV for the constant. const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { Ty = getEffectiveSCEVType(Ty); Constant *C; if (Val == 0) C = Constant::getNullValue(Ty); else if (Ty->isFloatingPoint()) C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : APFloat::IEEEdouble, Val)); else C = ConstantInt::get(Ty, Val); return getUnknown(C); } /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V /// const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) { if (const SCEVConstant *VC = dyn_cast(V)) return getUnknown(ConstantExpr::getNeg(VC->getValue())); const Type *Ty = V->getType(); Ty = getEffectiveSCEVType(Ty); return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); } /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) { if (const SCEVConstant *VC = dyn_cast(V)) return getUnknown(ConstantExpr::getNot(VC->getValue())); const Type *Ty = V->getType(); Ty = getEffectiveSCEVType(Ty); const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); return getMinusSCEV(AllOnes, V); } /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. /// const SCEV* ScalarEvolution::getMinusSCEV(const SCEV* LHS, const SCEV* RHS) { // X - Y --> X + -Y return getAddExpr(LHS, getNegativeSCEV(RHS)); } /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the /// input value to the specified type. If the type must be extended, it is zero /// extended. const SCEV* ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa(SrcTy))) && (Ty->isInteger() || (TD && isa(Ty))) && "Cannot truncate or zero extend with non-integer arguments!"); if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) return V; // No conversion if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) return getTruncateExpr(V, Ty); return getZeroExtendExpr(V, Ty); } /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the /// input value to the specified type. If the type must be extended, it is sign /// extended. const SCEV* ScalarEvolution::getTruncateOrSignExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa(SrcTy))) && (Ty->isInteger() || (TD && isa(Ty))) && "Cannot truncate or zero extend with non-integer arguments!"); if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) return V; // No conversion if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) return getTruncateExpr(V, Ty); return getSignExtendExpr(V, Ty); } /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the /// input value to the specified type. If the type must be extended, it is zero /// extended. The conversion must not be narrowing. const SCEV* ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa(SrcTy))) && (Ty->isInteger() || (TD && isa(Ty))) && "Cannot noop or zero extend with non-integer arguments!"); assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && "getNoopOrZeroExtend cannot truncate!"); if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) return V; // No conversion return getZeroExtendExpr(V, Ty); } /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the /// input value to the specified type. If the type must be extended, it is sign /// extended. The conversion must not be narrowing. const SCEV* ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa(SrcTy))) && (Ty->isInteger() || (TD && isa(Ty))) && "Cannot noop or sign extend with non-integer arguments!"); assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && "getNoopOrSignExtend cannot truncate!"); if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) return V; // No conversion return getSignExtendExpr(V, Ty); } /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of /// the input value to the specified type. If the type must be extended, /// it is extended with unspecified bits. The conversion must not be /// narrowing. const SCEV* ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa(SrcTy))) && (Ty->isInteger() || (TD && isa(Ty))) && "Cannot noop or any extend with non-integer arguments!"); assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && "getNoopOrAnyExtend cannot truncate!"); if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) return V; // No conversion return getAnyExtendExpr(V, Ty); } /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the /// input value to the specified type. The conversion must not be widening. const SCEV* ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) { const Type *SrcTy = V->getType(); assert((SrcTy->isInteger() || (TD && isa(SrcTy))) && (Ty->isInteger() || (TD && isa(Ty))) && "Cannot truncate or noop with non-integer arguments!"); assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && "getTruncateOrNoop cannot extend!"); if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) return V; // No conversion return getTruncateExpr(V, Ty); } /// getUMaxFromMismatchedTypes - Promote the operands to the wider of /// the types using zero-extension, and then perform a umax operation /// with them. const SCEV* ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV* LHS, const SCEV* RHS) { const SCEV* PromotedLHS = LHS; const SCEV* PromotedRHS = RHS; if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); else PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); return getUMaxExpr(PromotedLHS, PromotedRHS); } /// getUMinFromMismatchedTypes - Promote the operands to the wider of /// the types using zero-extension, and then perform a umin operation /// with them. const SCEV* ScalarEvolution::getUMinFromMismatchedTypes(const SCEV* LHS, const SCEV* RHS) { const SCEV* PromotedLHS = LHS; const SCEV* PromotedRHS = RHS; if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); else PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); return getUMinExpr(PromotedLHS, PromotedRHS); } /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for /// the specified instruction and replaces any references to the symbolic value /// SymName with the specified value. This is used during PHI resolution. void ScalarEvolution:: ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEV* SymName, const SCEV* NewVal) { std::map::iterator SI = Scalars.find(SCEVCallbackVH(I, this)); if (SI == Scalars.end()) return; const SCEV* NV = SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); if (NV == SI->second) return; // No change. SI->second = NV; // Update the scalars map! // Any instruction values that use this instruction might also need to be // updated! for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) ReplaceSymbolicValueWithConcrete(cast(*UI), SymName, NewVal); } /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in /// a loop header, making it a potential recurrence, or it doesn't. /// const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) { if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. if (const Loop *L = LI->getLoopFor(PN->getParent())) if (L->getHeader() == PN->getParent()) { // If it lives in the loop header, it has two incoming values, one // from outside the loop, and one from inside. unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); unsigned BackEdge = IncomingEdge^1; // While we are analyzing this PHI node, handle its value symbolically. const SCEV* SymbolicName = getUnknown(PN); assert(Scalars.find(PN) == Scalars.end() && "PHI node already processed?"); Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); // Using this symbolic name for the PHI, analyze the value coming around // the back-edge. const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge)); // NOTE: If BEValue is loop invariant, we know that the PHI node just // has a special value for the first iteration of the loop. // If the value coming around the backedge is an add with the symbolic // value we just inserted, then we found a simple induction variable! if (const SCEVAddExpr *Add = dyn_cast(BEValue)) { // If there is a single occurrence of the symbolic value, replace it // with a recurrence. unsigned FoundIndex = Add->getNumOperands(); for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) if (Add->getOperand(i) == SymbolicName) if (FoundIndex == e) { FoundIndex = i; break; } if (FoundIndex != Add->getNumOperands()) { // Create an add with everything but the specified operand. SmallVector Ops; for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) if (i != FoundIndex) Ops.push_back(Add->getOperand(i)); const SCEV* Accum = getAddExpr(Ops); // This is not a valid addrec if the step amount is varying each // loop iteration, but is not itself an addrec in this loop. if (Accum->isLoopInvariant(L) || (isa(Accum) && cast(Accum)->getLoop() == L)) { const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); const SCEV* PHISCEV = getAddRecExpr(StartVal, Accum, L); // Okay, for the entire analysis of this edge we assumed the PHI // to be symbolic. We now need to go back and update all of the // entries for the scalars that use the PHI (except for the PHI // itself) to use the new analyzed value instead of the "symbolic" // value. ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); return PHISCEV; } } } else if (const SCEVAddRecExpr *AddRec = dyn_cast(BEValue)) { // Otherwise, this could be a loop like this: // i = 0; for (j = 1; ..; ++j) { .... i = j; } // In this case, j = {1,+,1} and BEValue is j. // Because the other in-value of i (0) fits the evolution of BEValue // i really is an addrec evolution. if (AddRec->getLoop() == L && AddRec->isAffine()) { const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); // If StartVal = j.start - j.stride, we can use StartVal as the // initial step of the addrec evolution. if (StartVal == getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { const SCEV* PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), L); // Okay, for the entire analysis of this edge we assumed the PHI // to be symbolic. We now need to go back and update all of the // entries for the scalars that use the PHI (except for the PHI // itself) to use the new analyzed value instead of the "symbolic" // value. ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); return PHISCEV; } } } return SymbolicName; } // If it's not a loop phi, we can't handle it yet. return getUnknown(PN); } /// createNodeForGEP - Expand GEP instructions into add and multiply /// operations. This allows them to be analyzed by regular SCEV code. /// const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) { const Type *IntPtrTy = TD->getIntPtrType(); Value *Base = GEP->getOperand(0); // Don't attempt to analyze GEPs over unsized objects. if (!cast(Base->getType())->getElementType()->isSized()) return getUnknown(GEP); const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy); gep_type_iterator GTI = gep_type_begin(GEP); for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), E = GEP->op_end(); I != E; ++I) { Value *Index = *I; // Compute the (potentially symbolic) offset in bytes for this index. if (const StructType *STy = dyn_cast(*GTI++)) { // For a struct, add the member offset. const StructLayout &SL = *TD->getStructLayout(STy); unsigned FieldNo = cast(Index)->getZExtValue(); uint64_t Offset = SL.getElementOffset(FieldNo); TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy)); } else { // For an array, add the element offset, explicitly scaled. const SCEV* LocalOffset = getSCEV(Index); if (!isa(LocalOffset->getType())) // Getelementptr indicies are signed. LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy); LocalOffset = getMulExpr(LocalOffset, getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy)); TotalOffset = getAddExpr(TotalOffset, LocalOffset); } } return getAddExpr(getSCEV(Base), TotalOffset); } /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is /// guaranteed to end in (at every loop iteration). It is, at the same time, /// the minimum number of times S is divisible by 2. For example, given {4,+,8} /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV* S) { if (const SCEVConstant *C = dyn_cast(S)) return C->getValue()->getValue().countTrailingZeros(); if (const SCEVTruncateExpr *T = dyn_cast(S)) return std::min(GetMinTrailingZeros(T->getOperand()), (uint32_t)getTypeSizeInBits(T->getType())); if (const SCEVZeroExtendExpr *E = dyn_cast(S)) { uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? getTypeSizeInBits(E->getType()) : OpRes; } if (const SCEVSignExtendExpr *E = dyn_cast(S)) { uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? getTypeSizeInBits(E->getType()) : OpRes; } if (const SCEVAddExpr *A = dyn_cast(S)) { // The result is the min of all operands results. uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); return MinOpRes; } if (const SCEVMulExpr *M = dyn_cast(S)) { // The result is the sum of all operands results. uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); uint32_t BitWidth = getTypeSizeInBits(M->getType()); for (unsigned i = 1, e = M->getNumOperands(); SumOpRes != BitWidth && i != e; ++i) SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); return SumOpRes; } if (const SCEVAddRecExpr *A = dyn_cast(S)) { // The result is the min of all operands results. uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); return MinOpRes; } if (const SCEVSMaxExpr *M = dyn_cast(S)) { // The result is the min of all operands results. uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); return MinOpRes; } if (const SCEVUMaxExpr *M = dyn_cast(S)) { // The result is the min of all operands results. uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); return MinOpRes; } if (const SCEVUnknown *U = dyn_cast(S)) { // For a SCEVUnknown, ask ValueTracking. unsigned BitWidth = getTypeSizeInBits(U->getType()); APInt Mask = APInt::getAllOnesValue(BitWidth); APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); return Zeros.countTrailingOnes(); } // SCEVUDivExpr return 0; } uint32_t ScalarEvolution::GetMinLeadingZeros(const SCEV* S) { // TODO: Handle other SCEV expression types here. if (const SCEVConstant *C = dyn_cast(S)) return C->getValue()->getValue().countLeadingZeros(); if (const SCEVZeroExtendExpr *C = dyn_cast(S)) { // A zero-extension cast adds zero bits. return GetMinLeadingZeros(C->getOperand()) + (getTypeSizeInBits(C->getType()) - getTypeSizeInBits(C->getOperand()->getType())); } if (const SCEVUnknown *U = dyn_cast(S)) { // For a SCEVUnknown, ask ValueTracking. unsigned BitWidth = getTypeSizeInBits(U->getType()); APInt Mask = APInt::getAllOnesValue(BitWidth); APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); return Zeros.countLeadingOnes(); } return 1; } uint32_t ScalarEvolution::GetMinSignBits(const SCEV* S) { // TODO: Handle other SCEV expression types here. if (const SCEVConstant *C = dyn_cast(S)) { const APInt &A = C->getValue()->getValue(); return A.isNegative() ? A.countLeadingOnes() : A.countLeadingZeros(); } if (const SCEVSignExtendExpr *C = dyn_cast(S)) { // A sign-extension cast adds sign bits. return GetMinSignBits(C->getOperand()) + (getTypeSizeInBits(C->getType()) - getTypeSizeInBits(C->getOperand()->getType())); } if (const SCEVUnknown *U = dyn_cast(S)) { // For a SCEVUnknown, ask ValueTracking. return ComputeNumSignBits(U->getValue(), TD); } return 1; } /// createSCEV - We know that there is no SCEV for the specified value. /// Analyze the expression. /// const SCEV* ScalarEvolution::createSCEV(Value *V) { if (!isSCEVable(V->getType())) return getUnknown(V); unsigned Opcode = Instruction::UserOp1; if (Instruction *I = dyn_cast(V)) Opcode = I->getOpcode(); else if (ConstantExpr *CE = dyn_cast(V)) Opcode = CE->getOpcode(); else return getUnknown(V); User *U = cast(V); switch (Opcode) { case Instruction::Add: return getAddExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); case Instruction::Mul: return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); case Instruction::UDiv: return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); case Instruction::Sub: return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); case Instruction::And: // For an expression like x&255 that merely masks off the high bits, // use zext(trunc(x)) as the SCEV expression. if (ConstantInt *CI = dyn_cast(U->getOperand(1))) { if (CI->isNullValue()) return getSCEV(U->getOperand(1)); if (CI->isAllOnesValue()) return getSCEV(U->getOperand(0)); const APInt &A = CI->getValue(); // Instcombine's ShrinkDemandedConstant may strip bits out of // constants, obscuring what would otherwise be a low-bits mask. // Use ComputeMaskedBits to compute what ShrinkDemandedConstant // knew about to reconstruct a low-bits mask value. unsigned LZ = A.countLeadingZeros(); unsigned BitWidth = A.getBitWidth(); APInt AllOnes = APInt::getAllOnesValue(BitWidth); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) return getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), IntegerType::get(BitWidth - LZ)), U->getType()); } break; case Instruction::Or: // If the RHS of the Or is a constant, we may have something like: // X*4+1 which got turned into X*4|1. Handle this as an Add so loop // optimizations will transparently handle this case. // // In order for this transformation to be safe, the LHS must be of the // form X*(2^n) and the Or constant must be less than 2^n. if (ConstantInt *CI = dyn_cast(U->getOperand(1))) { const SCEV* LHS = getSCEV(U->getOperand(0)); const APInt &CIVal = CI->getValue(); if (GetMinTrailingZeros(LHS) >= (CIVal.getBitWidth() - CIVal.countLeadingZeros())) return getAddExpr(LHS, getSCEV(U->getOperand(1))); } break; case Instruction::Xor: if (ConstantInt *CI = dyn_cast(U->getOperand(1))) { // If the RHS of the xor is a signbit, then this is just an add. // Instcombine turns add of signbit into xor as a strength reduction step. if (CI->getValue().isSignBit()) return getAddExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); // If the RHS of xor is -1, then this is a not operation. if (CI->isAllOnesValue()) return getNotSCEV(getSCEV(U->getOperand(0))); // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. // This is a variant of the check for xor with -1, and it handles // the case where instcombine has trimmed non-demanded bits out // of an xor with -1. if (BinaryOperator *BO = dyn_cast(U->getOperand(0))) if (ConstantInt *LCI = dyn_cast(BO->getOperand(1))) if (BO->getOpcode() == Instruction::And && LCI->getValue() == CI->getValue()) if (const SCEVZeroExtendExpr *Z = dyn_cast(getSCEV(U->getOperand(0)))) { const Type *UTy = U->getType(); const SCEV* Z0 = Z->getOperand(); const Type *Z0Ty = Z0->getType(); unsigned Z0TySize = getTypeSizeInBits(Z0Ty); // If C is a low-bits mask, the zero extend is zerving to // mask off the high bits. Complement the operand and // re-apply the zext. if (APIntOps::isMask(Z0TySize, CI->getValue())) return getZeroExtendExpr(getNotSCEV(Z0), UTy); // If C is a single bit, it may be in the sign-bit position // before the zero-extend. In this case, represent the xor // using an add, which is equivalent, and re-apply the zext. APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && Trunc.isSignBit()) return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), UTy); } } break; case Instruction::Shl: // Turn shift left of a constant amount into a multiply. if (ConstantInt *SA = dyn_cast(U->getOperand(1))) { uint32_t BitWidth = cast(V->getType())->getBitWidth(); Constant *X = ConstantInt::get( APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); } break; case Instruction::LShr: // Turn logical shift right of a constant into a unsigned divide. if (ConstantInt *SA = dyn_cast(U->getOperand(1))) { uint32_t BitWidth = cast(V->getType())->getBitWidth(); Constant *X = ConstantInt::get( APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); } break; case Instruction::AShr: // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. if (ConstantInt *CI = dyn_cast(U->getOperand(1))) if (Instruction *L = dyn_cast(U->getOperand(0))) if (L->getOpcode() == Instruction::Shl && L->getOperand(1) == U->getOperand(1)) { unsigned BitWidth = getTypeSizeInBits(U->getType()); uint64_t Amt = BitWidth - CI->getZExtValue(); if (Amt == BitWidth) return getSCEV(L->getOperand(0)); // shift by zero --> noop if (Amt > BitWidth) return getIntegerSCEV(0, U->getType()); // value is undefined return getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), IntegerType::get(Amt)), U->getType()); } break; case Instruction::Trunc: return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); case Instruction::ZExt: return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); case Instruction::SExt: return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); case Instruction::BitCast: // BitCasts are no-op casts so we just eliminate the cast. if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) return getSCEV(U->getOperand(0)); break; case Instruction::IntToPtr: if (!TD) break; // Without TD we can't analyze pointers. return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), TD->getIntPtrType()); case Instruction::PtrToInt: if (!TD) break; // Without TD we can't analyze pointers. return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), U->getType()); case Instruction::GetElementPtr: if (!TD) break; // Without TD we can't analyze pointers. return createNodeForGEP(U); case Instruction::PHI: return createNodeForPHI(cast(U)); case Instruction::Select: // This could be a smax or umax that was lowered earlier. // Try to recover it. if (ICmpInst *ICI = dyn_cast(U->getOperand(0))) { Value *LHS = ICI->getOperand(0); Value *RHS = ICI->getOperand(1); switch (ICI->getPredicate()) { case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: std::swap(LHS, RHS); // fall through case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); break; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: std::swap(LHS, RHS); // fall through case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); break; case ICmpInst::ICMP_NE: // n != 0 ? n : 1 -> umax(n, 1) if (LHS == U->getOperand(1) && isa(U->getOperand(2)) && cast(U->getOperand(2))->isOne() && isa(RHS) && cast(RHS)->isZero()) return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); break; case ICmpInst::ICMP_EQ: // n == 0 ? 1 : n -> umax(n, 1) if (LHS == U->getOperand(2) && isa(U->getOperand(1)) && cast(U->getOperand(1))->isOne() && isa(RHS) && cast(RHS)->isZero()) return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); break; default: break; } } default: // We cannot analyze this expression. break; } return getUnknown(V); } //===----------------------------------------------------------------------===// // Iteration Count Computation Code // /// getBackedgeTakenCount - If the specified loop has a predictable /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute /// object. The backedge-taken count is the number of times the loop header /// will be branched to from within the loop. This is one less than the /// trip count of the loop, since it doesn't count the first iteration, /// when the header is branched to from outside the loop. /// /// Note that it is not valid to call this method on a loop without a /// loop-invariant backedge-taken count (see /// hasLoopInvariantBackedgeTakenCount). /// const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) { return getBackedgeTakenInfo(L).Exact; } /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except /// return the least SCEV value that is known never to be less than the /// actual backedge taken count. const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { return getBackedgeTakenInfo(L).Max; } const ScalarEvolution::BackedgeTakenInfo & ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { // Initially insert a CouldNotCompute for this loop. If the insertion // succeeds, procede to actually compute a backedge-taken count and // update the value. The temporary CouldNotCompute value tells SCEV // code elsewhere that it shouldn't attempt to request a new // backedge-taken count, which could result in infinite recursion. std::pair::iterator, bool> Pair = BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); if (Pair.second) { BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); if (ItCount.Exact != CouldNotCompute) { assert(ItCount.Exact->isLoopInvariant(L) && ItCount.Max->isLoopInvariant(L) && "Computed trip count isn't loop invariant for loop!"); ++NumTripCountsComputed; // Update the value in the map. Pair.first->second = ItCount; } else { if (ItCount.Max != CouldNotCompute) // Update the value in the map. Pair.first->second = ItCount; if (isa(L->getHeader()->begin())) // Only count loops that have phi nodes as not being computable. ++NumTripCountsNotComputed; } // Now that we know more about the trip count for this loop, forget any // existing SCEV values for PHI nodes in this loop since they are only // conservative estimates made without the benefit // of trip count information. if (ItCount.hasAnyInfo()) forgetLoopPHIs(L); } return Pair.first->second; } /// forgetLoopBackedgeTakenCount - This method should be called by the /// client when it has changed a loop in a way that may effect /// ScalarEvolution's ability to compute a trip count, or if the loop /// is deleted. void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { BackedgeTakenCounts.erase(L); forgetLoopPHIs(L); } /// forgetLoopPHIs - Delete the memoized SCEVs associated with the /// PHI nodes in the given loop. This is used when the trip count of /// the loop may have changed. void ScalarEvolution::forgetLoopPHIs(const Loop *L) { BasicBlock *Header = L->getHeader(); // Push all Loop-header PHIs onto the Worklist stack, except those // that are presently represented via a SCEVUnknown. SCEVUnknown for // a PHI either means that it has an unrecognized structure, or it's // a PHI that's in the progress of being computed by createNodeForPHI. // In the former case, additional loop trip count information isn't // going to change anything. In the later case, createNodeForPHI will // perform the necessary updates on its own when it gets to that point. SmallVector Worklist; for (BasicBlock::iterator I = Header->begin(); PHINode *PN = dyn_cast(I); ++I) { std::map::iterator It = Scalars.find((Value*)I); if (It != Scalars.end() && !isa(It->second)) Worklist.push_back(PN); } while (!Worklist.empty()) { Instruction *I = Worklist.pop_back_val(); if (Scalars.erase(I)) for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) Worklist.push_back(cast(UI)); } } /// ComputeBackedgeTakenCount - Compute the number of times the backedge /// of the specified loop will execute. ScalarEvolution::BackedgeTakenInfo ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); // Examine all exits and pick the most conservative values. const SCEV* BECount = CouldNotCompute; const SCEV* MaxBECount = CouldNotCompute; bool CouldNotComputeBECount = false; bool CouldNotComputeMaxBECount = false; for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { BackedgeTakenInfo NewBTI = ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); if (NewBTI.Exact == CouldNotCompute) { // We couldn't compute an exact value for this exit, so // we won't be able to compute an exact value for the loop. CouldNotComputeBECount = true; BECount = CouldNotCompute; } else if (!CouldNotComputeBECount) { if (BECount == CouldNotCompute) BECount = NewBTI.Exact; else { // TODO: More analysis could be done here. For example, a // loop with a short-circuiting && operator has an exact count // of the min of both sides. CouldNotComputeBECount = true; BECount = CouldNotCompute; } } if (NewBTI.Max == CouldNotCompute) { // We couldn't compute an maximum value for this exit, so // we won't be able to compute an maximum value for the loop. CouldNotComputeMaxBECount = true; MaxBECount = CouldNotCompute; } else if (!CouldNotComputeMaxBECount) { if (MaxBECount == CouldNotCompute) MaxBECount = NewBTI.Max; else MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, NewBTI.Max); } } return BackedgeTakenInfo(BECount, MaxBECount); } /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge /// of the specified loop will execute if it exits via the specified block. ScalarEvolution::BackedgeTakenInfo ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, BasicBlock *ExitingBlock) { // Okay, we've chosen an exiting block. See what condition causes us to // exit at this block. // // FIXME: we should be able to handle switch instructions (with a single exit) BranchInst *ExitBr = dyn_cast(ExitingBlock->getTerminator()); if (ExitBr == 0) return CouldNotCompute; assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); // At this point, we know we have a conditional branch that determines whether // the loop is exited. However, we don't know if the branch is executed each // time through the loop. If not, then the execution count of the branch will // not be equal to the trip count of the loop. // // Currently we check for this by checking to see if the Exit branch goes to // the loop header. If so, we know it will always execute the same number of // times as the loop. We also handle the case where the exit block *is* the // loop header. This is common for un-rotated loops. // // If both of those tests fail, walk up the unique predecessor chain to the // header, stopping if there is an edge that doesn't exit the loop. If the // header is reached, the execution count of the branch will be equal to the // trip count of the loop. // // More extensive analysis could be done to handle more cases here. // if (ExitBr->getSuccessor(0) != L->getHeader() && ExitBr->getSuccessor(1) != L->getHeader() && ExitBr->getParent() != L->getHeader()) { // The simple checks failed, try climbing the unique predecessor chain // up to the header. bool Ok = false; for (BasicBlock *BB = ExitBr->getParent(); BB; ) { BasicBlock *Pred = BB->getUniquePredecessor(); if (!Pred) return CouldNotCompute; TerminatorInst *PredTerm = Pred->getTerminator(); for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { BasicBlock *PredSucc = PredTerm->getSuccessor(i); if (PredSucc == BB) continue; // If the predecessor has a successor that isn't BB and isn't // outside the loop, assume the worst. if (L->contains(PredSucc)) return CouldNotCompute; } if (Pred == L->getHeader()) { Ok = true; break; } BB = Pred; } if (!Ok) return CouldNotCompute; } // Procede to the next level to examine the exit condition expression. return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), ExitBr->getSuccessor(0), ExitBr->getSuccessor(1)); } /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the /// backedge of the specified loop will execute if its exit condition /// were a conditional branch of ExitCond, TBB, and FBB. ScalarEvolution::BackedgeTakenInfo ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB) { // Check if the controlling expression for this loop is an and or or. In // such cases, an exact backedge-taken count may be infeasible, but a // maximum count may still be feasible. if (BinaryOperator *BO = dyn_cast(ExitCond)) { if (BO->getOpcode() == Instruction::And) { // Recurse on the operands of the and. BackedgeTakenInfo BTI0 = ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); BackedgeTakenInfo BTI1 = ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); const SCEV* BECount = CouldNotCompute; const SCEV* MaxBECount = CouldNotCompute; if (L->contains(TBB)) { // Both conditions must be true for the loop to continue executing. // Choose the less conservative count. if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute) BECount = CouldNotCompute; else BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); if (BTI0.Max == CouldNotCompute) MaxBECount = BTI1.Max; else if (BTI1.Max == CouldNotCompute) MaxBECount = BTI0.Max; else MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); } else { // Both conditions must be true for the loop to exit. assert(L->contains(FBB) && "Loop block has no successor in loop!"); if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute) BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute) MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); } return BackedgeTakenInfo(BECount, MaxBECount); } if (BO->getOpcode() == Instruction::Or) { // Recurse on the operands of the or. BackedgeTakenInfo BTI0 = ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); BackedgeTakenInfo BTI1 = ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); const SCEV* BECount = CouldNotCompute; const SCEV* MaxBECount = CouldNotCompute; if (L->contains(FBB)) { // Both conditions must be false for the loop to continue executing. // Choose the less conservative count. if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute) BECount = CouldNotCompute; else BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); if (BTI0.Max == CouldNotCompute) MaxBECount = BTI1.Max; else if (BTI1.Max == CouldNotCompute) MaxBECount = BTI0.Max; else MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); } else { // Both conditions must be false for the loop to exit. assert(L->contains(TBB) && "Loop block has no successor in loop!"); if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute) BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute) MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); } return BackedgeTakenInfo(BECount, MaxBECount); } } // With an icmp, it may be feasible to compute an exact backedge-taken count. // Procede to the next level to examine the icmp. if (ICmpInst *ExitCondICmp = dyn_cast(ExitCond)) return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); // If it's not an integer or pointer comparison then compute it the hard way. return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); } /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the /// backedge of the specified loop will execute if its exit condition /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. ScalarEvolution::BackedgeTakenInfo ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, ICmpInst *ExitCond, BasicBlock *TBB, BasicBlock *FBB) { // If the condition was exit on true, convert the condition to exit on false ICmpInst::Predicate Cond; if (!L->contains(FBB)) Cond = ExitCond->getPredicate(); else Cond = ExitCond->getInversePredicate(); // Handle common loops like: for (X = "string"; *X; ++X) if (LoadInst *LI = dyn_cast(ExitCond->getOperand(0))) if (Constant *RHS = dyn_cast(ExitCond->getOperand(1))) { const SCEV* ItCnt = ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); if (!isa(ItCnt)) { unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); return BackedgeTakenInfo(ItCnt, isa(ItCnt) ? ItCnt : getConstant(APInt::getMaxValue(BitWidth)-1)); } } const SCEV* LHS = getSCEV(ExitCond->getOperand(0)); const SCEV* RHS = getSCEV(ExitCond->getOperand(1)); // Try to evaluate any dependencies out of the loop. LHS = getSCEVAtScope(LHS, L); RHS = getSCEVAtScope(RHS, L); // At this point, we would like to compute how many iterations of the // loop the predicate will return true for these inputs. if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { // If there is a loop-invariant, force it into the RHS. std::swap(LHS, RHS); Cond = ICmpInst::getSwappedPredicate(Cond); } // If we have a comparison of a chrec against a constant, try to use value // ranges to answer this query. if (const SCEVConstant *RHSC = dyn_cast(RHS)) if (const SCEVAddRecExpr *AddRec = dyn_cast(LHS)) if (AddRec->getLoop() == L) { // Form the constant range. ConstantRange CompRange( ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this); if (!isa(Ret)) return Ret; } switch (Cond) { case ICmpInst::ICMP_NE: { // while (X != Y) // Convert to: while (X-Y != 0) const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); if (!isa(TC)) return TC; break; } case ICmpInst::ICMP_EQ: { // Convert to: while (X-Y == 0) // while (X == Y) const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); if (!isa(TC)) return TC; break; } case ICmpInst::ICMP_SLT: { BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); if (BTI.hasAnyInfo()) return BTI; break; } case ICmpInst::ICMP_SGT: { BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), getNotSCEV(RHS), L, true); if (BTI.hasAnyInfo()) return BTI; break; } case ICmpInst::ICMP_ULT: { BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); if (BTI.hasAnyInfo()) return BTI; break; } case ICmpInst::ICMP_UGT: { BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), getNotSCEV(RHS), L, false); if (BTI.hasAnyInfo()) return BTI; break; } default: #if 0 errs() << "ComputeBackedgeTakenCount "; if (ExitCond->getOperand(0)->getType()->isUnsigned()) errs() << "[unsigned] "; errs() << *LHS << " " << Instruction::getOpcodeName(Instruction::ICmp) << " " << *RHS << "\n"; #endif break; } return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); } static ConstantInt * EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, ScalarEvolution &SE) { const SCEV* InVal = SE.getConstant(C); const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE); assert(isa(Val) && "Evaluation of SCEV at constant didn't fold correctly?"); return cast(Val)->getValue(); } /// GetAddressedElementFromGlobal - Given a global variable with an initializer /// and a GEP expression (missing the pointer index) indexing into it, return /// the addressed element of the initializer or null if the index expression is /// invalid. static Constant * GetAddressedElementFromGlobal(GlobalVariable *GV, const std::vector &Indices) { Constant *Init = GV->getInitializer(); for (unsigned i = 0, e = Indices.size(); i != e; ++i) { uint64_t Idx = Indices[i]->getZExtValue(); if (ConstantStruct *CS = dyn_cast(Init)) { assert(Idx < CS->getNumOperands() && "Bad struct index!"); Init = cast(CS->getOperand(Idx)); } else if (ConstantArray *CA = dyn_cast(Init)) { if (Idx >= CA->getNumOperands()) return 0; // Bogus program Init = cast(CA->getOperand(Idx)); } else if (isa(Init)) { if (const StructType *STy = dyn_cast(Init->getType())) { assert(Idx < STy->getNumElements() && "Bad struct index!"); Init = Constant::getNullValue(STy->getElementType(Idx)); } else if (const ArrayType *ATy = dyn_cast(Init->getType())) { if (Idx >= ATy->getNumElements()) return 0; // Bogus program Init = Constant::getNullValue(ATy->getElementType()); } else { assert(0 && "Unknown constant aggregate type!"); } return 0; } else { return 0; // Unknown initializer type } } return Init; } /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of /// 'icmp op load X, cst', try to see if we can compute the backedge /// execution count. const SCEV* ScalarEvolution:: ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, const Loop *L, ICmpInst::Predicate predicate) { if (LI->isVolatile()) return CouldNotCompute; // Check to see if the loaded pointer is a getelementptr of a global. GetElementPtrInst *GEP = dyn_cast(LI->getOperand(0)); if (!GEP) return CouldNotCompute; // Make sure that it is really a constant global we are gepping, with an // initializer, and make sure the first IDX is really 0. GlobalVariable *GV = dyn_cast(GEP->getOperand(0)); if (!GV || !GV->isConstant() || !GV->hasInitializer() || GEP->getNumOperands() < 3 || !isa(GEP->getOperand(1)) || !cast(GEP->getOperand(1))->isNullValue()) return CouldNotCompute; // Okay, we allow one non-constant index into the GEP instruction. Value *VarIdx = 0; std::vector Indexes; unsigned VarIdxNum = 0; for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) if (ConstantInt *CI = dyn_cast(GEP->getOperand(i))) { Indexes.push_back(CI); } else if (!isa(GEP->getOperand(i))) { if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's. VarIdx = GEP->getOperand(i); VarIdxNum = i-2; Indexes.push_back(0); } // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. // Check to see if X is a loop variant variable value now. const SCEV* Idx = getSCEV(VarIdx); Idx = getSCEVAtScope(Idx, L); // We can only recognize very limited forms of loop index expressions, in // particular, only affine AddRec's like {C1,+,C2}. const SCEVAddRecExpr *IdxExpr = dyn_cast(Idx); if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || !isa(IdxExpr->getOperand(0)) || !isa(IdxExpr->getOperand(1))) return CouldNotCompute; unsigned MaxSteps = MaxBruteForceIterations; for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { ConstantInt *ItCst = ConstantInt::get(cast(IdxExpr->getType()), IterationNum); ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); // Form the GEP offset. Indexes[VarIdxNum] = Val; Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); if (Result == 0) break; // Cannot compute! // Evaluate the condition for this iteration. Result = ConstantExpr::getICmp(predicate, Result, RHS); if (!isa(Result)) break; // Couldn't decide for sure if (cast(Result)->getValue().isMinValue()) { #if 0 errs() << "\n***\n*** Computed loop count " << *ItCst << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() << "***\n"; #endif ++NumArrayLenItCounts; return getConstant(ItCst); // Found terminating iteration! } } return CouldNotCompute; } /// CanConstantFold - Return true if we can constant fold an instruction of the /// specified type, assuming that all operands were constants. static bool CanConstantFold(const Instruction *I) { if (isa(I) || isa(I) || isa(I) || isa(I) || isa(I)) return true; if (const CallInst *CI = dyn_cast(I)) if (const Function *F = CI->getCalledFunction()) return canConstantFoldCallTo(F); return false; } /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node /// in the loop that V is derived from. We allow arbitrary operations along the /// way, but the operands of an operation must either be constants or a value /// derived from a constant PHI. If this expression does not fit with these /// constraints, return null. static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { // If this is not an instruction, or if this is an instruction outside of the // loop, it can't be derived from a loop PHI. Instruction *I = dyn_cast(V); if (I == 0 || !L->contains(I->getParent())) return 0; if (PHINode *PN = dyn_cast(I)) { if (L->getHeader() == I->getParent()) return PN; else // We don't currently keep track of the control flow needed to evaluate // PHIs, so we cannot handle PHIs inside of loops. return 0; } // If we won't be able to constant fold this expression even if the operands // are constants, return early. if (!CanConstantFold(I)) return 0; // Otherwise, we can evaluate this instruction if all of its operands are // constant or derived from a PHI node themselves. PHINode *PHI = 0; for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) if (!(isa(I->getOperand(Op)) || isa(I->getOperand(Op)))) { PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); if (P == 0) return 0; // Not evolving from PHI if (PHI == 0) PHI = P; else if (PHI != P) return 0; // Evolving from multiple different PHIs. } // This is a expression evolving from a constant PHI! return PHI; } /// EvaluateExpression - Given an expression that passes the /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node /// in the loop has the value PHIVal. If we can't fold this expression for some /// reason, return null. static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { if (isa(V)) return PHIVal; if (Constant *C = dyn_cast(V)) return C; if (GlobalValue *GV = dyn_cast(V)) return GV; Instruction *I = cast(V); std::vector Operands; Operands.resize(I->getNumOperands()); for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); if (Operands[i] == 0) return 0; } if (const CmpInst *CI = dyn_cast(I)) return ConstantFoldCompareInstOperands(CI->getPredicate(), &Operands[0], Operands.size()); else return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Operands[0], Operands.size()); } /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is /// in the header of its containing loop, we know the loop executes a /// constant number of times, and the PHI node is just a recurrence /// involving constants, fold it. Constant *ScalarEvolution:: getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ std::map::iterator I = ConstantEvolutionLoopExitValue.find(PN); if (I != ConstantEvolutionLoopExitValue.end()) return I->second; if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; // Since the loop is canonicalized, the PHI node must have two entries. One // entry must be a constant (coming in from outside of the loop), and the // second must be derived from the same PHI. bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); Constant *StartCST = dyn_cast(PN->getIncomingValue(!SecondIsBackedge)); if (StartCST == 0) return RetVal = 0; // Must be a constant. Value *BEValue = PN->getIncomingValue(SecondIsBackedge); PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); if (PN2 != PN) return RetVal = 0; // Not derived from same PHI. // Execute the loop symbolically to determine the exit value. if (BEs.getActiveBits() >= 32) return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! unsigned NumIterations = BEs.getZExtValue(); // must be in range unsigned IterationNum = 0; for (Constant *PHIVal = StartCST; ; ++IterationNum) { if (IterationNum == NumIterations) return RetVal = PHIVal; // Got exit value! // Compute the value of the PHI node for the next iteration. Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); if (NextPHI == PHIVal) return RetVal = NextPHI; // Stopped evolving! if (NextPHI == 0) return 0; // Couldn't evaluate! PHIVal = NextPHI; } } /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a /// constant number of times (the condition evolves only from constants), /// try to evaluate a few iterations of the loop until we get the exit /// condition gets a value of ExitWhen (true or false). If we cannot /// evaluate the trip count of the loop, return CouldNotCompute. const SCEV* ScalarEvolution:: ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { PHINode *PN = getConstantEvolvingPHI(Cond, L); if (PN == 0) return CouldNotCompute; // Since the loop is canonicalized, the PHI node must have two entries. One // entry must be a constant (coming in from outside of the loop), and the // second must be derived from the same PHI. bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); Constant *StartCST = dyn_cast(PN->getIncomingValue(!SecondIsBackedge)); if (StartCST == 0) return CouldNotCompute; // Must be a constant. Value *BEValue = PN->getIncomingValue(SecondIsBackedge); PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI. // Okay, we find a PHI node that defines the trip count of this loop. Execute // the loop symbolically to determine when the condition gets a value of // "ExitWhen". unsigned IterationNum = 0; unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. for (Constant *PHIVal = StartCST; IterationNum != MaxIterations; ++IterationNum) { ConstantInt *CondVal = dyn_cast_or_null(EvaluateExpression(Cond, PHIVal)); // Couldn't symbolically evaluate. if (!CondVal) return CouldNotCompute; if (CondVal->getValue() == uint64_t(ExitWhen)) { ConstantEvolutionLoopExitValue[PN] = PHIVal; ++NumBruteForceTripCountsComputed; return getConstant(Type::Int32Ty, IterationNum); } // Compute the value of the PHI node for the next iteration. Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); if (NextPHI == 0 || NextPHI == PHIVal) return CouldNotCompute; // Couldn't evaluate or not making progress... PHIVal = NextPHI; } // Too many iterations were needed to evaluate. return CouldNotCompute; } /// getSCEVAtScope - Return a SCEV expression handle for the specified value /// at the specified scope in the program. The L value specifies a loop /// nest to evaluate the expression at, where null is the top-level or a /// specified loop is immediately inside of the loop. /// /// This method can be used to compute the exit value for a variable defined /// in a loop by querying what the value will hold in the parent loop. /// /// In the case that a relevant loop exit value cannot be computed, the /// original value V is returned. const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { // FIXME: this should be turned into a virtual method on SCEV! if (isa(V)) return V; // If this instruction is evolved from a constant-evolving PHI, compute the // exit value from the loop without using SCEVs. if (const SCEVUnknown *SU = dyn_cast(V)) { if (Instruction *I = dyn_cast(SU->getValue())) { const Loop *LI = (*this->LI)[I->getParent()]; if (LI && LI->getParentLoop() == L) // Looking for loop exit value. if (PHINode *PN = dyn_cast(I)) if (PN->getParent() == LI->getHeader()) { // Okay, there is no closed form solution for the PHI node. Check // to see if the loop that contains it has a known backedge-taken // count. If so, we may be able to force computation of the exit // value. const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI); if (const SCEVConstant *BTCC = dyn_cast(BackedgeTakenCount)) { // Okay, we know how many times the containing loop executes. If // this is a constant evolving PHI node, get the final value at // the specified iteration number. Constant *RV = getConstantEvolutionLoopExitValue(PN, BTCC->getValue()->getValue(), LI); if (RV) return getUnknown(RV); } } // Okay, this is an expression that we cannot symbolically evaluate // into a SCEV. Check to see if it's possible to symbolically evaluate // the arguments into constants, and if so, try to constant propagate the // result. This is particularly useful for computing loop exit values. if (CanConstantFold(I)) { // Check to see if we've folded this instruction at this loop before. std::map &Values = ValuesAtScopes[I]; std::pair::iterator, bool> Pair = Values.insert(std::make_pair(L, static_cast(0))); if (!Pair.second) return Pair.first->second ? &*getUnknown(Pair.first->second) : V; std::vector Operands; Operands.reserve(I->getNumOperands()); for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { Value *Op = I->getOperand(i); if (Constant *C = dyn_cast(Op)) { Operands.push_back(C); } else { // If any of the operands is non-constant and if they are // non-integer and non-pointer, don't even try to analyze them // with scev techniques. if (!isSCEVable(Op->getType())) return V; const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L); if (const SCEVConstant *SC = dyn_cast(OpV)) { Constant *C = SC->getValue(); if (C->getType() != Op->getType()) C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, Op->getType(), false), C, Op->getType()); Operands.push_back(C); } else if (const SCEVUnknown *SU = dyn_cast(OpV)) { if (Constant *C = dyn_cast(SU->getValue())) { if (C->getType() != Op->getType()) C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, Op->getType(), false), C, Op->getType()); Operands.push_back(C); } else return V; } else { return V; } } } Constant *C; if (const CmpInst *CI = dyn_cast(I)) C = ConstantFoldCompareInstOperands(CI->getPredicate(), &Operands[0], Operands.size()); else C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Operands[0], Operands.size()); Pair.first->second = C; return getUnknown(C); } } // This is some other type of SCEVUnknown, just return it. return V; } if (const SCEVCommutativeExpr *Comm = dyn_cast(V)) { // Avoid performing the look-up in the common case where the specified // expression has no loop-variant portions. for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); if (OpAtScope != Comm->getOperand(i)) { // Okay, at least one of these operands is loop variant but might be // foldable. Build a new instance of the folded commutative expression. SmallVector NewOps(Comm->op_begin(), Comm->op_begin()+i); NewOps.push_back(OpAtScope); for (++i; i != e; ++i) { OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); NewOps.push_back(OpAtScope); } if (isa(Comm)) return getAddExpr(NewOps); if (isa(Comm)) return getMulExpr(NewOps); if (isa(Comm)) return getSMaxExpr(NewOps); if (isa(Comm)) return getUMaxExpr(NewOps); assert(0 && "Unknown commutative SCEV type!"); } } // If we got here, all operands are loop invariant. return Comm; } if (const SCEVUDivExpr *Div = dyn_cast(V)) { const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L); const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L); if (LHS == Div->getLHS() && RHS == Div->getRHS()) return Div; // must be loop invariant return getUDivExpr(LHS, RHS); } // If this is a loop recurrence for a loop that does not contain L, then we // are dealing with the final value computed by the loop. if (const SCEVAddRecExpr *AddRec = dyn_cast(V)) { if (!L || !AddRec->getLoop()->contains(L->getHeader())) { // To evaluate this recurrence, we need to know how many times the AddRec // loop iterates. Compute this now. const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); if (BackedgeTakenCount == CouldNotCompute) return AddRec; // Then, evaluate the AddRec. return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); } return AddRec; } if (const SCEVZeroExtendExpr *Cast = dyn_cast(V)) { const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L); if (Op == Cast->getOperand()) return Cast; // must be loop invariant return getZeroExtendExpr(Op, Cast->getType()); } if (const SCEVSignExtendExpr *Cast = dyn_cast(V)) { const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L); if (Op == Cast->getOperand()) return Cast; // must be loop invariant return getSignExtendExpr(Op, Cast->getType()); } if (const SCEVTruncateExpr *Cast = dyn_cast(V)) { const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L); if (Op == Cast->getOperand()) return Cast; // must be loop invariant return getTruncateExpr(Op, Cast->getType()); } assert(0 && "Unknown SCEV type!"); return 0; } /// getSCEVAtScope - This is a convenience function which does /// getSCEVAtScope(getSCEV(V), L). const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { return getSCEVAtScope(getSCEV(V), L); } /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the /// following equation: /// /// A * X = B (mod N) /// /// where N = 2^BW and BW is the common bit width of A and B. The signedness of /// A and B isn't important. /// /// If the equation does not have a solution, SCEVCouldNotCompute is returned. static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B, ScalarEvolution &SE) { uint32_t BW = A.getBitWidth(); assert(BW == B.getBitWidth() && "Bit widths must be the same."); assert(A != 0 && "A must be non-zero."); // 1. D = gcd(A, N) // // The gcd of A and N may have only one prime factor: 2. The number of // trailing zeros in A is its multiplicity uint32_t Mult2 = A.countTrailingZeros(); // D = 2^Mult2 // 2. Check if B is divisible by D. // // B is divisible by D if and only if the multiplicity of prime factor 2 for B // is not less than multiplicity of this prime factor for D. if (B.countTrailingZeros() < Mult2) return SE.getCouldNotCompute(); // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic // modulo (N / D). // // (N / D) may need BW+1 bits in its representation. Hence, we'll use this // bit width during computations. APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D APInt Mod(BW + 1, 0); Mod.set(BW - Mult2); // Mod = N / D APInt I = AD.multiplicativeInverse(Mod); // 4. Compute the minimum unsigned root of the equation: // I * (B / D) mod (N / D) APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); // The result is guaranteed to be less than 2^BW so we may truncate it to BW // bits. return SE.getConstant(Result.trunc(BW)); } /// SolveQuadraticEquation - Find the roots of the quadratic equation for the /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which /// might be the same) or two SCEVCouldNotCompute objects. /// static std::pair SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); const SCEVConstant *LC = dyn_cast(AddRec->getOperand(0)); const SCEVConstant *MC = dyn_cast(AddRec->getOperand(1)); const SCEVConstant *NC = dyn_cast(AddRec->getOperand(2)); // We currently can only solve this if the coefficients are constants. if (!LC || !MC || !NC) { const SCEV *CNC = SE.getCouldNotCompute(); return std::make_pair(CNC, CNC); } uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); const APInt &L = LC->getValue()->getValue(); const APInt &M = MC->getValue()->getValue(); const APInt &N = NC->getValue()->getValue(); APInt Two(BitWidth, 2); APInt Four(BitWidth, 4); { using namespace APIntOps; const APInt& C = L; // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C // The B coefficient is M-N/2 APInt B(M); B -= sdiv(N,Two); // The A coefficient is N/2 APInt A(N.sdiv(Two)); // Compute the B^2-4ac term. APInt SqrtTerm(B); SqrtTerm *= B; SqrtTerm -= Four * (A * C); // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest // integer value or else APInt::sqrt() will assert. APInt SqrtVal(SqrtTerm.sqrt()); // Compute the two solutions for the quadratic formula. // The divisions must be performed as signed divisions. APInt NegB(-B); APInt TwoA( A << 1 ); if (TwoA.isMinValue()) { const SCEV *CNC = SE.getCouldNotCompute(); return std::make_pair(CNC, CNC); } ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); return std::make_pair(SE.getConstant(Solution1), SE.getConstant(Solution2)); } // end APIntOps namespace } /// HowFarToZero - Return the number of times a backedge comparing the specified /// value to zero will execute. If not computable, return CouldNotCompute. const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { // If the value is a constant if (const SCEVConstant *C = dyn_cast(V)) { // If the value is already zero, the branch will execute zero times. if (C->getValue()->isZero()) return C; return CouldNotCompute; // Otherwise it will loop infinitely. } const SCEVAddRecExpr *AddRec = dyn_cast(V); if (!AddRec || AddRec->getLoop() != L) return CouldNotCompute; if (AddRec->isAffine()) { // If this is an affine expression, the execution count of this branch is // the minimum unsigned root of the following equation: // // Start + Step*N = 0 (mod 2^BW) // // equivalent to: // // Step*N = -Start (mod 2^BW) // // where BW is the common bit width of Start and Step. // Get the initial value for the loop. const SCEV* Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); const SCEV* Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); if (const SCEVConstant *StepC = dyn_cast(Step)) { // For now we handle only constant steps. // First, handle unitary steps. if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: return getNegativeSCEV(Start); // N = -Start (as unsigned) if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: return Start; // N = Start (as unsigned) // Then, try to solve the above equation provided that Start is constant. if (const SCEVConstant *StartC = dyn_cast(Start)) return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this); } } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of // the quadratic equation to solve it. std::pair Roots = SolveQuadraticEquation(AddRec, *this); const SCEVConstant *R1 = dyn_cast(Roots.first); const SCEVConstant *R2 = dyn_cast(Roots.second); if (R1) { #if 0 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 << " sol#2: " << *R2 << "\n"; #endif // Pick the smallest positive root value. if (ConstantInt *CB = dyn_cast(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { if (CB->getZExtValue() == false) std::swap(R1, R2); // R1 is the minimum root now. // We can only use this value if the chrec ends up with an exact zero // value at this index. When solving for "X*X != 5", for example, we // should not accept a root of 2. const SCEV* Val = AddRec->evaluateAtIteration(R1, *this); if (Val->isZero()) return R1; // We found a quadratic root! } } } return CouldNotCompute; } /// HowFarToNonZero - Return the number of times a backedge checking the /// specified value for nonzero will execute. If not computable, return /// CouldNotCompute const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { // Loops that look like: while (X == 0) are very strange indeed. We don't // handle them yet except for the trivial case. This could be expanded in the // future as needed. // If the value is a constant, check to see if it is known to be non-zero // already. If so, the backedge will execute zero times. if (const SCEVConstant *C = dyn_cast(V)) { if (!C->getValue()->isNullValue()) return getIntegerSCEV(0, C->getType()); return CouldNotCompute; // Otherwise it will loop infinitely. } // We could implement others, but I really doubt anyone writes loops like // this, and if they did, they would already be constant folded. return CouldNotCompute; } /// getLoopPredecessor - If the given loop's header has exactly one unique /// predecessor outside the loop, return it. Otherwise return null. /// BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { BasicBlock *Header = L->getHeader(); BasicBlock *Pred = 0; for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI != E; ++PI) if (!L->contains(*PI)) { if (Pred && Pred != *PI) return 0; // Multiple predecessors. Pred = *PI; } return Pred; } /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB /// (which may not be an immediate predecessor) which has exactly one /// successor from which BB is reachable, or null if no such block is /// found. /// BasicBlock * ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { // If the block has a unique predecessor, then there is no path from the // predecessor to the block that does not go through the direct edge // from the predecessor to the block. if (BasicBlock *Pred = BB->getSinglePredecessor()) return Pred; // A loop's header is defined to be a block that dominates the loop. // If the header has a unique predecessor outside the loop, it must be // a block that has exactly one successor that can reach the loop. if (Loop *L = LI->getLoopFor(BB)) return getLoopPredecessor(L); return 0; } /// HasSameValue - SCEV structural equivalence is usually sufficient for /// testing whether two expressions are equal, however for the purposes of /// looking for a condition guarding a loop, it can be useful to be a little /// more general, since a front-end may have replicated the controlling /// expression. /// static bool HasSameValue(const SCEV* A, const SCEV* B) { // Quick check to see if they are the same SCEV. if (A == B) return true; // Otherwise, if they're both SCEVUnknown, it's possible that they hold // two different instructions with the same value. Check for this case. if (const SCEVUnknown *AU = dyn_cast(A)) if (const SCEVUnknown *BU = dyn_cast(B)) if (const Instruction *AI = dyn_cast(AU->getValue())) if (const Instruction *BI = dyn_cast(BU->getValue())) if (AI->isIdenticalTo(BI)) return true; // Otherwise assume they may have a different value. return false; } /// isLoopGuardedByCond - Test whether entry to the loop is protected by /// a conditional between LHS and RHS. This is used to help avoid max /// expressions in loop trip counts. bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { // Interpret a null as meaning no loop, where there is obviously no guard // (interprocedural conditions notwithstanding). if (!L) return false; BasicBlock *Predecessor = getLoopPredecessor(L); BasicBlock *PredecessorDest = L->getHeader(); // Starting at the loop predecessor, climb up the predecessor chain, as long // as there are predecessors that can be found that have unique successors // leading to the original header. for (; Predecessor; PredecessorDest = Predecessor, Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { BranchInst *LoopEntryPredicate = dyn_cast(Predecessor->getTerminator()); if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) continue; ICmpInst *ICI = dyn_cast(LoopEntryPredicate->getCondition()); if (!ICI) continue; // Now that we found a conditional branch that dominates the loop, check to // see if it is the comparison we are looking for. Value *PreCondLHS = ICI->getOperand(0); Value *PreCondRHS = ICI->getOperand(1); ICmpInst::Predicate Cond; if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest) Cond = ICI->getPredicate(); else Cond = ICI->getInversePredicate(); if (Cond == Pred) ; // An exact match. else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) ; // The actual condition is beyond sufficient. else // Check a few special cases. switch (Cond) { case ICmpInst::ICMP_UGT: if (Pred == ICmpInst::ICMP_ULT) { std::swap(PreCondLHS, PreCondRHS); Cond = ICmpInst::ICMP_ULT; break; } continue; case ICmpInst::ICMP_SGT: if (Pred == ICmpInst::ICMP_SLT) { std::swap(PreCondLHS, PreCondRHS); Cond = ICmpInst::ICMP_SLT; break; } continue; case ICmpInst::ICMP_NE: // Expressions like (x >u 0) are often canonicalized to (x != 0), // so check for this case by checking if the NE is comparing against // a minimum or maximum constant. if (!ICmpInst::isTrueWhenEqual(Pred)) if (ConstantInt *CI = dyn_cast(PreCondRHS)) { const APInt &A = CI->getValue(); switch (Pred) { case ICmpInst::ICMP_SLT: if (A.isMaxSignedValue()) break; continue; case ICmpInst::ICMP_SGT: if (A.isMinSignedValue()) break; continue; case ICmpInst::ICMP_ULT: if (A.isMaxValue()) break; continue; case ICmpInst::ICMP_UGT: if (A.isMinValue()) break; continue; default: continue; } Cond = ICmpInst::ICMP_NE; // NE is symmetric but the original comparison may not be. Swap // the operands if necessary so that they match below. if (isa(LHS)) std::swap(PreCondLHS, PreCondRHS); break; } continue; default: // We weren't able to reconcile the condition. continue; } if (!PreCondLHS->getType()->isInteger()) continue; const SCEV* PreCondLHSSCEV = getSCEV(PreCondLHS); const SCEV* PreCondRHSSCEV = getSCEV(PreCondRHS); if ((HasSameValue(LHS, PreCondLHSSCEV) && HasSameValue(RHS, PreCondRHSSCEV)) || (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) && HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)))) return true; } return false; } /// getBECount - Subtract the end and start values and divide by the step, /// rounding up, to get the number of times the backedge is executed. Return /// CouldNotCompute if an intermediate computation overflows. const SCEV* ScalarEvolution::getBECount(const SCEV* Start, const SCEV* End, const SCEV* Step) { const Type *Ty = Start->getType(); const SCEV* NegOne = getIntegerSCEV(-1, Ty); const SCEV* Diff = getMinusSCEV(End, Start); const SCEV* RoundUp = getAddExpr(Step, NegOne); // Add an adjustment to the difference between End and Start so that // the division will effectively round up. const SCEV* Add = getAddExpr(Diff, RoundUp); // Check Add for unsigned overflow. // TODO: More sophisticated things could be done here. const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1); const SCEV* OperandExtendedAdd = getAddExpr(getZeroExtendExpr(Diff, WideTy), getZeroExtendExpr(RoundUp, WideTy)); if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) return CouldNotCompute; return getUDivExpr(Add, Step); } /// HowManyLessThans - Return the number of times a backedge containing the /// specified less-than comparison will execute. If not computable, return /// CouldNotCompute. ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: HowManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, bool isSigned) { // Only handle: "ADDREC < LoopInvariant". if (!RHS->isLoopInvariant(L)) return CouldNotCompute; const SCEVAddRecExpr *AddRec = dyn_cast(LHS); if (!AddRec || AddRec->getLoop() != L) return CouldNotCompute; if (AddRec->isAffine()) { // FORNOW: We only support unit strides. unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); const SCEV* Step = AddRec->getStepRecurrence(*this); // TODO: handle non-constant strides. const SCEVConstant *CStep = dyn_cast(Step); if (!CStep || CStep->isZero()) return CouldNotCompute; if (CStep->isOne()) { // With unit stride, the iteration never steps past the limit value. } else if (CStep->getValue()->getValue().isStrictlyPositive()) { if (const SCEVConstant *CLimit = dyn_cast(RHS)) { // Test whether a positive iteration iteration can step past the limit // value and past the maximum value for its type in a single step. if (isSigned) { APInt Max = APInt::getSignedMaxValue(BitWidth); if ((Max - CStep->getValue()->getValue()) .slt(CLimit->getValue()->getValue())) return CouldNotCompute; } else { APInt Max = APInt::getMaxValue(BitWidth); if ((Max - CStep->getValue()->getValue()) .ult(CLimit->getValue()->getValue())) return CouldNotCompute; } } else // TODO: handle non-constant limit values below. return CouldNotCompute; } else // TODO: handle negative strides below. return CouldNotCompute; // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant // m. So, we count the number of iterations in which {n,+,s} < m is true. // Note that we cannot simply return max(m-n,0)/s because it's not safe to // treat m-n as signed nor unsigned due to overflow possibility. // First, we get the value of the LHS in the first iteration: n const SCEV* Start = AddRec->getOperand(0); // Determine the minimum constant start value. const SCEV* MinStart = isa(Start) ? Start : getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : APInt::getMinValue(BitWidth)); // If we know that the condition is true in order to enter the loop, // then we know that it will run exactly (m-n)/s times. Otherwise, we // only know that it will execute (max(m,n)-n)/s times. In both cases, // the division must round up. const SCEV* End = RHS; if (!isLoopGuardedByCond(L, isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, getMinusSCEV(Start, Step), RHS)) End = isSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); // Determine the maximum constant end value. const SCEV* MaxEnd = isa(End) ? End : getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) .ashr(GetMinSignBits(End) - 1) : APInt::getMaxValue(BitWidth) .lshr(GetMinLeadingZeros(End))); // Finally, we subtract these two values and divide, rounding up, to get // the number of times the backedge is executed. const SCEV* BECount = getBECount(Start, End, Step); // The maximum backedge count is similar, except using the minimum start // value and the maximum end value. const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);; return BackedgeTakenInfo(BECount, MaxBECount); } return CouldNotCompute; } /// getNumIterationsInRange - Return the number of iterations of this loop that /// produce values in the specified constant range. Another way of looking at /// this is that it returns the first iteration number where the value is not in /// the condition, thus computing the exit count. If the iteration count can't /// be computed, an instance of SCEVCouldNotCompute is returned. const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, ScalarEvolution &SE) const { if (Range.isFullSet()) // Infinite loop. return SE.getCouldNotCompute(); // If the start is a non-zero constant, shift the range to simplify things. if (const SCEVConstant *SC = dyn_cast(getStart())) if (!SC->getValue()->isZero()) { SmallVector Operands(op_begin(), op_end()); Operands[0] = SE.getIntegerSCEV(0, SC->getType()); const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop()); if (const SCEVAddRecExpr *ShiftedAddRec = dyn_cast(Shifted)) return ShiftedAddRec->getNumIterationsInRange( Range.subtract(SC->getValue()->getValue()), SE); // This is strange and shouldn't happen. return SE.getCouldNotCompute(); } // The only time we can solve this is when we have all constant indices. // Otherwise, we cannot determine the overflow conditions. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (!isa(getOperand(i))) return SE.getCouldNotCompute(); // Okay at this point we know that all elements of the chrec are constants and // that the start element is zero. // First check to see if the range contains zero. If not, the first // iteration exits. unsigned BitWidth = SE.getTypeSizeInBits(getType()); if (!Range.contains(APInt(BitWidth, 0))) return SE.getIntegerSCEV(0, getType()); if (isAffine()) { // If this is an affine expression then we have this situation: // Solve {0,+,A} in Range === Ax in Range // We know that zero is in the range. If A is positive then we know that // the upper value of the range must be the first possible exit value. // If A is negative then the lower of the range is the last possible loop // value. Also note that we already checked for a full range. APInt One(BitWidth,1); APInt A = cast(getOperand(1))->getValue()->getValue(); APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); // The exit value should be (End+A)/A. APInt ExitVal = (End + A).udiv(A); ConstantInt *ExitValue = ConstantInt::get(ExitVal); // Evaluate at the exit value. If we really did fall out of the valid // range, then we computed our trip count, otherwise wrap around or other // things must have happened. ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); if (Range.contains(Val->getValue())) return SE.getCouldNotCompute(); // Something strange happened // Ensure that the previous value is in the range. This is a sanity check. assert(Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(ExitVal - One), SE)->getValue()) && "Linear scev computation is off in a bad way!"); return SE.getConstant(ExitValue); } else if (isQuadratic()) { // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the // quadratic equation to solve it. To do this, we must frame our problem in // terms of figuring out when zero is crossed, instead of when // Range.getUpper() is crossed. SmallVector NewOps(op_begin(), op_end()); NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); // Next, solve the constructed addrec std::pair Roots = SolveQuadraticEquation(cast(NewAddRec), SE); const SCEVConstant *R1 = dyn_cast(Roots.first); const SCEVConstant *R2 = dyn_cast(Roots.second); if (R1) { // Pick the smallest positive root value. if (ConstantInt *CB = dyn_cast(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { if (CB->getZExtValue() == false) std::swap(R1, R2); // R1 is the minimum root now. // Make sure the root is not off by one. The returned iteration should // not be in the range, but the previous one should be. When solving // for "X*X < 5", for example, we should not return a root of 2. ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); if (Range.contains(R1Val->getValue())) { // The next iteration must be out of the range... ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); if (!Range.contains(R1Val->getValue())) return SE.getConstant(NextVal); return SE.getCouldNotCompute(); // Something strange happened } // If R1 was not in the range, then it is a good return value. Make // sure that R1-1 WAS in the range though, just in case. ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); if (Range.contains(R1Val->getValue())) return R1; return SE.getCouldNotCompute(); // Something strange happened } } } return SE.getCouldNotCompute(); } //===----------------------------------------------------------------------===// // SCEVCallbackVH Class Implementation //===----------------------------------------------------------------------===// void ScalarEvolution::SCEVCallbackVH::deleted() { assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); if (PHINode *PN = dyn_cast(getValPtr())) SE->ConstantEvolutionLoopExitValue.erase(PN); if (Instruction *I = dyn_cast(getValPtr())) SE->ValuesAtScopes.erase(I); SE->Scalars.erase(getValPtr()); // this now dangles! } void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); // Forget all the expressions associated with users of the old value, // so that future queries will recompute the expressions using the new // value. SmallVector Worklist; Value *Old = getValPtr(); bool DeleteOld = false; for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); UI != UE; ++UI) Worklist.push_back(*UI); while (!Worklist.empty()) { User *U = Worklist.pop_back_val(); // Deleting the Old value will cause this to dangle. Postpone // that until everything else is done. if (U == Old) { DeleteOld = true; continue; } if (PHINode *PN = dyn_cast(U)) SE->ConstantEvolutionLoopExitValue.erase(PN); if (Instruction *I = dyn_cast(U)) SE->ValuesAtScopes.erase(I); if (SE->Scalars.erase(U)) for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); UI != UE; ++UI) Worklist.push_back(*UI); } if (DeleteOld) { if (PHINode *PN = dyn_cast(Old)) SE->ConstantEvolutionLoopExitValue.erase(PN); if (Instruction *I = dyn_cast(Old)) SE->ValuesAtScopes.erase(I); SE->Scalars.erase(Old); // this now dangles! } // this may dangle! } ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) : CallbackVH(V), SE(se) {} //===----------------------------------------------------------------------===// // ScalarEvolution Class Implementation //===----------------------------------------------------------------------===// ScalarEvolution::ScalarEvolution() : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) { } bool ScalarEvolution::runOnFunction(Function &F) { this->F = &F; LI = &getAnalysis(); TD = getAnalysisIfAvailable(); return false; } void ScalarEvolution::releaseMemory() { Scalars.clear(); BackedgeTakenCounts.clear(); ConstantEvolutionLoopExitValue.clear(); ValuesAtScopes.clear(); for (std::map::iterator I = SCEVConstants.begin(), E = SCEVConstants.end(); I != E; ++I) delete I->second; for (std::map, SCEVTruncateExpr*>::iterator I = SCEVTruncates.begin(), E = SCEVTruncates.end(); I != E; ++I) delete I->second; for (std::map, SCEVZeroExtendExpr*>::iterator I = SCEVZeroExtends.begin(), E = SCEVZeroExtends.end(); I != E; ++I) delete I->second; for (std::map >, SCEVCommutativeExpr*>::iterator I = SCEVCommExprs.begin(), E = SCEVCommExprs.end(); I != E; ++I) delete I->second; for (std::map, SCEVUDivExpr*>::iterator I = SCEVUDivs.begin(), E = SCEVUDivs.end(); I != E; ++I) delete I->second; for (std::map, SCEVSignExtendExpr*>::iterator I = SCEVSignExtends.begin(), E = SCEVSignExtends.end(); I != E; ++I) delete I->second; for (std::map >, SCEVAddRecExpr*>::iterator I = SCEVAddRecExprs.begin(), E = SCEVAddRecExprs.end(); I != E; ++I) delete I->second; for (std::map::iterator I = SCEVUnknowns.begin(), E = SCEVUnknowns.end(); I != E; ++I) delete I->second; SCEVConstants.clear(); SCEVTruncates.clear(); SCEVZeroExtends.clear(); SCEVCommExprs.clear(); SCEVUDivs.clear(); SCEVSignExtends.clear(); SCEVAddRecExprs.clear(); SCEVUnknowns.clear(); } void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); } bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { return !isa(getBackedgeTakenCount(L)); } static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, const Loop *L) { // Print all inner loops first for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) PrintLoopInfo(OS, SE, *I); OS << "Loop " << L->getHeader()->getName() << ": "; SmallVector ExitBlocks; L->getExitBlocks(ExitBlocks); if (ExitBlocks.size() != 1) OS << " "; if (SE->hasLoopInvariantBackedgeTakenCount(L)) { OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); } else { OS << "Unpredictable backedge-taken count. "; } OS << "\n"; } void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { // ScalarEvolution's implementaiton of the print method is to print // out SCEV values of all instructions that are interesting. Doing // this potentially causes it to create new SCEV objects though, // which technically conflicts with the const qualifier. This isn't // observable from outside the class though (the hasSCEV function // notwithstanding), so casting away the const isn't dangerous. ScalarEvolution &SE = *const_cast(this); OS << "Classifying expressions for: " << F->getName() << "\n"; for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) if (isSCEVable(I->getType())) { OS << *I; OS << " --> "; const SCEV* SV = SE.getSCEV(&*I); SV->print(OS); const Loop *L = LI->getLoopFor((*I).getParent()); const SCEV* AtUse = SE.getSCEVAtScope(SV, L); if (AtUse != SV) { OS << " --> "; AtUse->print(OS); } if (L) { OS << "\t\t" "Exits: "; const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); if (!ExitValue->isLoopInvariant(L)) { OS << "<>"; } else { OS << *ExitValue; } } OS << "\n"; } OS << "Determining loop execution counts for: " << F->getName() << "\n"; for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) PrintLoopInfo(OS, &SE, *I); } void ScalarEvolution::print(std::ostream &o, const Module *M) const { raw_os_ostream OS(o); print(OS, M); }