//===- llvm/ADT/SmallPtrSet.h - 'Normally small' pointer set ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the SmallPtrSet class. See the doxygen comment for // SmallPtrSetImpl for more details on the algorithm used. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SMALLPTRSET_H #define LLVM_ADT_SMALLPTRSET_H #include <cassert> #include <cstring> #include "llvm/Support/DataTypes.h" namespace llvm { /// SmallPtrSetImpl - This is the common code shared among all the /// SmallPtrSet<>'s, which is almost everything. SmallPtrSet has two modes, one /// for small and one for large sets. /// /// Small sets use an array of pointers allocated in the SmallPtrSet object, /// which is treated as a simple array of pointers. When a pointer is added to /// the set, the array is scanned to see if the element already exists, if not /// the element is 'pushed back' onto the array. If we run out of space in the /// array, we grow into the 'large set' case. SmallSet should be used when the /// sets are often small. In this case, no memory allocation is used, and only /// light-weight and cache-efficient scanning is used. /// /// Large sets use a classic exponentially-probed hash table. Empty buckets are /// represented with an illegal pointer value (-1) to allow null pointers to be /// inserted. Tombstones are represented with another illegal pointer value /// (-2), to allow deletion. The hash table is resized when the table is 3/4 or /// more. When this happens, the table is doubled in size. /// class SmallPtrSetImpl { protected: /// CurArray - This is the current set of buckets. If it points to /// SmallArray, then the set is in 'small mode'. const void **CurArray; /// CurArraySize - The allocated size of CurArray, always a power of two. /// Note that CurArray points to an array that has CurArraySize+1 elements in /// it, so that the end iterator actually points to valid memory. unsigned CurArraySize; // If small, this is # elts allocated consequtively unsigned NumElements; unsigned NumTombstones; const void *SmallArray[1]; // Must be last ivar. // Helper to copy construct a SmallPtrSet. SmallPtrSetImpl(const SmallPtrSetImpl& that); public: explicit SmallPtrSetImpl(unsigned SmallSize) { assert(SmallSize && (SmallSize & (SmallSize-1)) == 0 && "Initial size must be a power of two!"); CurArray = &SmallArray[0]; CurArraySize = SmallSize; // The end pointer, always valid, is set to a valid element to help the // iterator. CurArray[SmallSize] = 0; clear(); } ~SmallPtrSetImpl(); bool empty() const { return size() == 0; } unsigned size() const { return NumElements; } static void *getTombstoneMarker() { return reinterpret_cast<void*>(-2); } static void *getEmptyMarker() { // Note that -1 is chosen to make clear() efficiently implementable with // memset and because it's not a valid pointer value. return reinterpret_cast<void*>(-1); } void clear() { // If the capacity of the array is huge, and the # elements used is small, // shrink the array. if (!isSmall() && NumElements*4 < CurArraySize && CurArraySize > 32) return shrink_and_clear(); // Fill the array with empty markers. memset(CurArray, -1, CurArraySize*sizeof(void*)); NumElements = 0; NumTombstones = 0; } protected: /// insert_imp - This returns true if the pointer was new to the set, false if /// it was already in the set. This is hidden from the client so that the /// derived class can check that the right type of pointer is passed in. bool insert_imp(const void * Ptr); /// erase_imp - If the set contains the specified pointer, remove it and /// return true, otherwise return false. This is hidden from the client so /// that the derived class can check that the right type of pointer is passed /// in. bool erase_imp(const void * Ptr); bool count_imp(const void * Ptr) const { if (isSmall()) { // Linear search for the item. for (const void *const *APtr = SmallArray, *const *E = SmallArray+NumElements; APtr != E; ++APtr) if (*APtr == Ptr) return true; return false; } // Big set case. return *FindBucketFor(Ptr) == Ptr; } private: bool isSmall() const { return CurArray == &SmallArray[0]; } unsigned Hash(const void *Ptr) const { return static_cast<unsigned>(((uintptr_t)Ptr >> 4) & (CurArraySize-1)); } const void * const *FindBucketFor(const void *Ptr) const; void shrink_and_clear(); /// Grow - Allocate a larger backing store for the buckets and move it over. void Grow(); void operator=(const SmallPtrSetImpl &RHS); // DO NOT IMPLEMENT. protected: void CopyFrom(const SmallPtrSetImpl &RHS); }; /// SmallPtrSetIteratorImpl - This is the common base class shared between all /// instances of SmallPtrSetIterator. class SmallPtrSetIteratorImpl { protected: const void *const *Bucket; public: explicit SmallPtrSetIteratorImpl(const void *const *BP) : Bucket(BP) { AdvanceIfNotValid(); } bool operator==(const SmallPtrSetIteratorImpl &RHS) const { return Bucket == RHS.Bucket; } bool operator!=(const SmallPtrSetIteratorImpl &RHS) const { return Bucket != RHS.Bucket; } protected: /// AdvanceIfNotValid - If the current bucket isn't valid, advance to a bucket /// that is. This is guaranteed to stop because the end() bucket is marked /// valid. void AdvanceIfNotValid() { while (*Bucket == SmallPtrSetImpl::getEmptyMarker() || *Bucket == SmallPtrSetImpl::getTombstoneMarker()) ++Bucket; } }; /// SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet. template<typename PtrTy> class SmallPtrSetIterator : public SmallPtrSetIteratorImpl { public: explicit SmallPtrSetIterator(const void *const *BP) : SmallPtrSetIteratorImpl(BP) {} // Most methods provided by baseclass. const PtrTy operator*() const { return static_cast<const PtrTy>(const_cast<void*>(*Bucket)); } inline SmallPtrSetIterator& operator++() { // Preincrement ++Bucket; AdvanceIfNotValid(); return *this; } SmallPtrSetIterator operator++(int) { // Postincrement SmallPtrSetIterator tmp = *this; ++*this; return tmp; } }; /// NextPowerOfTwo - This is a helper template that rounds N up to the next /// power of two. template<unsigned N> struct NextPowerOfTwo; /// NextPowerOfTwoH - If N is not a power of two, increase it. This is a helper /// template used to implement NextPowerOfTwo. template<unsigned N, bool isPowerTwo> struct NextPowerOfTwoH { enum { Val = N }; }; template<unsigned N> struct NextPowerOfTwoH<N, false> { enum { // We could just use NextVal = N+1, but this converges faster. N|(N-1) sets // the right-most zero bits to one all at once, e.g. 0b0011000 -> 0b0011111. Val = NextPowerOfTwo<(N|(N-1)) + 1>::Val }; }; template<unsigned N> struct NextPowerOfTwo { enum { Val = NextPowerOfTwoH<N, (N&(N-1)) == 0>::Val }; }; /// SmallPtrSet - This class implements a set which is optimizer for holding /// SmallSize or less elements. This internally rounds up SmallSize to the next /// power of two if it is not already a power of two. See the comments above /// SmallPtrSetImpl for details of the algorithm. template<class PtrType, unsigned SmallSize> class SmallPtrSet : public SmallPtrSetImpl { // Make sure that SmallSize is a power of two, round up if not. enum { SmallSizePowTwo = NextPowerOfTwo<SmallSize>::Val }; void *SmallArray[SmallSizePowTwo]; public: SmallPtrSet() : SmallPtrSetImpl(NextPowerOfTwo<SmallSizePowTwo>::Val) {} SmallPtrSet(const SmallPtrSet &that) : SmallPtrSetImpl(that) {} template<typename It> SmallPtrSet(It I, It E) : SmallPtrSetImpl(NextPowerOfTwo<SmallSizePowTwo>::Val) { insert(I, E); } /// insert - This returns true if the pointer was new to the set, false if it /// was already in the set. bool insert(PtrType Ptr) { return insert_imp(Ptr); } /// erase - If the set contains the specified pointer, remove it and return /// true, otherwise return false. bool erase(PtrType Ptr) { return erase_imp(Ptr); } /// count - Return true if the specified pointer is in the set. bool count(PtrType Ptr) const { return count_imp(Ptr); } template <typename IterT> void insert(IterT I, IterT E) { for (; I != E; ++I) insert(*I); } typedef SmallPtrSetIterator<PtrType> iterator; typedef SmallPtrSetIterator<PtrType> const_iterator; inline iterator begin() const { return iterator(CurArray); } inline iterator end() const { return iterator(CurArray+CurArraySize); } // Allow assignment from any smallptrset with the same element type even if it // doesn't have the same smallsize. const SmallPtrSet<PtrType, SmallSize>& operator=(const SmallPtrSet<PtrType, SmallSize> &RHS) { CopyFrom(RHS); return *this; } }; } #endif