//===- PPC32RegisterInfo.cpp - PowerPC32 Register Information ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the PowerPC32 implementation of the MRegisterInfo class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "reginfo" #include "PowerPC.h" #include "PowerPCInstrBuilder.h" #include "PPC32RegisterInfo.h" #include "llvm/Constants.h" #include "llvm/Type.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; PPC32RegisterInfo::PPC32RegisterInfo() : PPC32GenRegisterInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP) { ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; ImmToIdxMap[PPC::ADDI] = PPC::ADD; } static const TargetRegisterClass *getClass(unsigned SrcReg) { if (PPC32::GPRCRegisterClass->contains(SrcReg)) return PPC32::GPRCRegisterClass; if (PPC32::FPRCRegisterClass->contains(SrcReg)) return PPC32::FPRCRegisterClass; assert(PPC32::CRRCRegisterClass->contains(SrcReg) &&"Reg not FPR, GPR, CRRC"); return PPC32::CRRCRegisterClass; } static unsigned getIdx(const TargetRegisterClass *RC) { if (RC == PPC32::GPRCRegisterClass) { switch (RC->getSize()) { default: assert(0 && "Invalid data size!"); case 1: return 0; case 2: return 1; case 4: return 2; } } else if (RC == PPC32::FPRCRegisterClass) { switch (RC->getSize()) { default: assert(0 && "Invalid data size!"); case 4: return 3; case 8: return 4; } } else if (RC == PPC32::CRRCRegisterClass) { switch (RC->getSize()) { default: assert(0 && "Invalid data size!"); case 4: return 2; } } std::cerr << "Invalid register class to getIdx()!\n"; abort(); } void PPC32RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, int FrameIdx) const { static const unsigned Opcode[] = { PPC::STB, PPC::STH, PPC::STW, PPC::STFS, PPC::STFD }; const TargetRegisterClass *RegClass = getClass(SrcReg); unsigned OC = Opcode[getIdx(RegClass)]; if (SrcReg == PPC::LR) { BuildMI(MBB, MI, PPC::MFLR, 1, PPC::R11); addFrameReference(BuildMI(MBB, MI, OC, 3).addReg(PPC::R11),FrameIdx); } else if (RegClass == PPC32::CRRCRegisterClass) { BuildMI(MBB, MI, PPC::MFCR, 0, PPC::R11); addFrameReference(BuildMI(MBB, MI, OC, 3).addReg(PPC::R11),FrameIdx); } else { addFrameReference(BuildMI(MBB, MI, OC, 3).addReg(SrcReg),FrameIdx); } } void PPC32RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx) const { static const unsigned Opcode[] = { PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD }; const TargetRegisterClass *RegClass = getClass(DestReg); unsigned OC = Opcode[getIdx(RegClass)]; if (DestReg == PPC::LR) { addFrameReference(BuildMI(MBB, MI, OC, 2, PPC::R11), FrameIdx); BuildMI(MBB, MI, PPC::MTLR, 1).addReg(PPC::R11); } else if (RegClass == PPC32::CRRCRegisterClass) { addFrameReference(BuildMI(MBB, MI, OC, 2, PPC::R11), FrameIdx); BuildMI(MBB, MI, PPC::MTCRF, 1, DestReg).addReg(PPC::R11); } else { addFrameReference(BuildMI(MBB, MI, OC, 2, DestReg), FrameIdx); } } void PPC32RegisterInfo::copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *RC) const { MachineInstr *I; if (RC == PPC32::GPRCRegisterClass) { BuildMI(MBB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); } else if (RC == PPC32::FPRCRegisterClass) { BuildMI(MBB, MI, PPC::FMR, 1, DestReg).addReg(SrcReg); } else if (RC == PPC32::CRRCRegisterClass) { BuildMI(MBB, MI, PPC::MCRF, 1, DestReg).addReg(SrcReg); } else { std::cerr << "Attempt to copy register that is not GPR or FPR"; abort(); } } /// foldMemoryOperand - PowerPC (like most RISC's) can only fold spills into /// copy instructions, turning them into load/store instructions. MachineInstr *PPC32RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum, int FrameIndex) const { // Make sure this is a reg-reg copy. Note that we can't handle MCRF, because // it takes more than one instruction to store it. unsigned Opc = MI->getOpcode(); if ((Opc == PPC::OR && MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) { if (OpNum == 0) { // move -> store unsigned InReg = MI->getOperand(1).getReg(); return addFrameReference(BuildMI(PPC::STW, 3).addReg(InReg), FrameIndex); } else { // move -> load unsigned OutReg = MI->getOperand(0).getReg(); return addFrameReference(BuildMI(PPC::LWZ, 2, OutReg), FrameIndex); } } else if (Opc == PPC::FMR) { // We currently always spill FP values as doubles. :( if (OpNum == 0) { // move -> store unsigned InReg = MI->getOperand(1).getReg(); return addFrameReference(BuildMI(PPC::STFD, 3).addReg(InReg), FrameIndex); } else { // move -> load unsigned OutReg = MI->getOperand(0).getReg(); return addFrameReference(BuildMI(PPC::LFD, 2, OutReg), FrameIndex); } } return 0; } //===----------------------------------------------------------------------===// // Stack Frame Processing methods //===----------------------------------------------------------------------===// // hasFP - Return true if the specified function should have a dedicated frame // pointer register. This is true if the function has variable sized allocas or // if frame pointer elimination is disabled. // static bool hasFP(MachineFunction &MF) { return NoFramePointerElim || MF.getFrameInfo()->hasVarSizedObjects(); } void PPC32RegisterInfo:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { if (hasFP(MF)) { // If we have a frame pointer, convert as follows: // ADJCALLSTACKDOWN -> addi, r1, r1, -amount // ADJCALLSTACKUP -> addi, r1, r1, amount MachineInstr *Old = I; unsigned Amount = Old->getOperand(0).getImmedValue(); if (Amount != 0) { // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); Amount = (Amount+Align-1)/Align*Align; // Replace the pseudo instruction with a new instruction... if (Old->getOpcode() == PPC::ADJCALLSTACKDOWN) { MBB.insert(I, BuildMI(PPC::ADDI, 2, PPC::R1).addReg(PPC::R1) .addSImm(-Amount)); } else { assert(Old->getOpcode() == PPC::ADJCALLSTACKUP); MBB.insert(I, BuildMI(PPC::ADDI, 2, PPC::R1).addReg(PPC::R1) .addSImm(Amount)); } } } MBB.erase(I); } void PPC32RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const { unsigned i = 0; MachineInstr &MI = *II; MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); while (!MI.getOperand(i).isFrameIndex()) { ++i; assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } int FrameIndex = MI.getOperand(i).getFrameIndex(); // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). MI.SetMachineOperandReg(i, hasFP(MF) ? PPC::R31 : PPC::R1); // Take into account whether it's an add or mem instruction unsigned OffIdx = (i == 2) ? 1 : 2; // Now add the frame object offset to the offset from r1. int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + MI.getOperand(OffIdx).getImmedValue(); // If we're not using a Frame Pointer that has been set to the value of the // SP before having the stack size subtracted from it, then add the stack size // to Offset to get the correct offset. Offset += MF.getFrameInfo()->getStackSize(); if (Offset > 32767 || Offset < -32768) { // Insert a set of r0 with the full offset value before the ld, st, or add MachineBasicBlock *MBB = MI.getParent(); MBB->insert(II, BuildMI(PPC::LIS, 1, PPC::R0).addSImm(Offset >> 16)); MBB->insert(II, BuildMI(PPC::ORI, 2, PPC::R0).addReg(PPC::R0) .addImm(Offset)); // convert into indexed form of the instruction // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 assert(ImmToIdxMap.count(MI.getOpcode()) && "No indexed form of load or store available!"); unsigned NewOpcode = ImmToIdxMap.find(MI.getOpcode())->second; MI.setOpcode(NewOpcode); MI.SetMachineOperandReg(1, MI.getOperand(i).getReg()); MI.SetMachineOperandReg(2, PPC::R0); } else { MI.SetMachineOperandConst(OffIdx,MachineOperand::MO_SignExtendedImmed,Offset); } } void PPC32RegisterInfo::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineInstr *MI; // Get the number of bytes to allocate from the FrameInfo unsigned NumBytes = MFI->getStackSize(); // If we have calls, we cannot use the red zone to store callee save registers // and we must set up a stack frame, so calculate the necessary size here. if (MFI->hasCalls()) { // We reserve argument space for call sites in the function immediately on // entry to the current function. This eliminates the need for add/sub // brackets around call sites. NumBytes += MFI->getMaxCallFrameSize(); } // If we are a leaf function, and use up to 224 bytes of stack space, // and don't have a frame pointer, then we do not need to adjust the stack // pointer (we fit in the Red Zone). if ((NumBytes == 0) || (NumBytes <= 224 && !hasFP(MF) && !MFI->hasCalls())) { MFI->setStackSize(0); return; } // Add the size of R1 to NumBytes size for the store of R1 to the bottom // of the stack and round the size to a multiple of the alignment. unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); unsigned GPRSize = getSpillSize(PPC::R1)/8; unsigned Size = hasFP(MF) ? GPRSize + GPRSize : GPRSize; NumBytes = (NumBytes+Size+Align-1)/Align*Align; // Update frame info to pretend that this is part of the stack... MFI->setStackSize(NumBytes); // Adjust stack pointer: r1 -= numbytes. if (NumBytes <= 32768) { MI=BuildMI(PPC::STWU,3).addReg(PPC::R1).addSImm(-NumBytes).addReg(PPC::R1); MBB.insert(MBBI, MI); } else { int NegNumbytes = -NumBytes; MI = BuildMI(PPC::LIS, 1, PPC::R0).addSImm(NegNumbytes >> 16); MBB.insert(MBBI, MI); MI = BuildMI(PPC::ORI, 2, PPC::R0).addReg(PPC::R0) .addImm(NegNumbytes & 0xFFFF); MBB.insert(MBBI, MI); MI = BuildMI(PPC::STWUX, 3).addReg(PPC::R1).addReg(PPC::R1).addReg(PPC::R0); MBB.insert(MBBI, MI); } if (hasFP(MF)) { MI = BuildMI(PPC::STW, 3).addReg(PPC::R31).addSImm(GPRSize).addReg(PPC::R1); MBB.insert(MBBI, MI); MI = BuildMI(PPC::OR, 2, PPC::R31).addReg(PPC::R1).addReg(PPC::R1); MBB.insert(MBBI, MI); } } void PPC32RegisterInfo::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); MachineBasicBlock::iterator MBBI = prior(MBB.end()); MachineInstr *MI; assert(MBBI->getOpcode() == PPC::BLR && "Can only insert epilog into returning blocks"); // Get the number of bytes allocated from the FrameInfo... unsigned NumBytes = MFI->getStackSize(); unsigned GPRSize = getSpillSize(PPC::R31)/8; if (NumBytes != 0) { if (hasFP(MF)) { MI = BuildMI(PPC::LWZ, 2, PPC::R31).addSImm(GPRSize).addReg(PPC::R31); MBB.insert(MBBI, MI); } MI = BuildMI(PPC::LWZ, 2, PPC::R1).addSImm(0).addReg(PPC::R1); MBB.insert(MBBI, MI); } } #include "PPC32GenRegisterInfo.inc"