//===-- AsmPrinterDwarf.cpp - AsmPrinter Dwarf Support --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Dwarf emissions parts of AsmPrinter. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asm-printer" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/DataLayout.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MachineLocation.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; //===----------------------------------------------------------------------===// // Dwarf Emission Helper Routines //===----------------------------------------------------------------------===// /// EmitSLEB128 - emit the specified signed leb128 value. void AsmPrinter::EmitSLEB128(int64_t Value, const char *Desc) const { if (isVerbose() && Desc) OutStreamer.AddComment(Desc); OutStreamer.EmitSLEB128IntValue(Value); } /// EmitULEB128 - emit the specified signed leb128 value. void AsmPrinter::EmitULEB128(uint64_t Value, const char *Desc, unsigned PadTo) const { if (isVerbose() && Desc) OutStreamer.AddComment(Desc); OutStreamer.EmitULEB128IntValue(Value, PadTo); } /// EmitCFAByte - Emit a .byte 42 directive for a DW_CFA_xxx value. void AsmPrinter::EmitCFAByte(unsigned Val) const { if (isVerbose()) { if (Val >= dwarf::DW_CFA_offset && Val < dwarf::DW_CFA_offset + 64) OutStreamer.AddComment("DW_CFA_offset + Reg (" + Twine(Val - dwarf::DW_CFA_offset) + ")"); else OutStreamer.AddComment(dwarf::CallFrameString(Val)); } OutStreamer.EmitIntValue(Val, 1); } static const char *DecodeDWARFEncoding(unsigned Encoding) { switch (Encoding) { case dwarf::DW_EH_PE_absptr: return "absptr"; case dwarf::DW_EH_PE_omit: return "omit"; case dwarf::DW_EH_PE_pcrel: return "pcrel"; case dwarf::DW_EH_PE_udata4: return "udata4"; case dwarf::DW_EH_PE_udata8: return "udata8"; case dwarf::DW_EH_PE_sdata4: return "sdata4"; case dwarf::DW_EH_PE_sdata8: return "sdata8"; case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4: return "pcrel udata4"; case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4: return "pcrel sdata4"; case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8: return "pcrel udata8"; case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8: return "pcrel sdata8"; case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4 : return "indirect pcrel udata4"; case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 : return "indirect pcrel sdata4"; case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8 : return "indirect pcrel udata8"; case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8 : return "indirect pcrel sdata8"; } return ""; } /// EmitEncodingByte - Emit a .byte 42 directive that corresponds to an /// encoding. If verbose assembly output is enabled, we output comments /// describing the encoding. Desc is an optional string saying what the /// encoding is specifying (e.g. "LSDA"). void AsmPrinter::EmitEncodingByte(unsigned Val, const char *Desc) const { if (isVerbose()) { if (Desc) OutStreamer.AddComment(Twine(Desc) + " Encoding = " + Twine(DecodeDWARFEncoding(Val))); else OutStreamer.AddComment(Twine("Encoding = ") + DecodeDWARFEncoding(Val)); } OutStreamer.EmitIntValue(Val, 1); } /// GetSizeOfEncodedValue - Return the size of the encoding in bytes. unsigned AsmPrinter::GetSizeOfEncodedValue(unsigned Encoding) const { if (Encoding == dwarf::DW_EH_PE_omit) return 0; switch (Encoding & 0x07) { default: llvm_unreachable("Invalid encoded value."); case dwarf::DW_EH_PE_absptr: return TM.getDataLayout()->getPointerSize(); case dwarf::DW_EH_PE_udata2: return 2; case dwarf::DW_EH_PE_udata4: return 4; case dwarf::DW_EH_PE_udata8: return 8; } } void AsmPrinter::EmitTTypeReference(const GlobalValue *GV, unsigned Encoding) const { if (GV) { const TargetLoweringObjectFile &TLOF = getObjFileLowering(); const MCExpr *Exp = TLOF.getTTypeGlobalReference(GV, Encoding, *Mang, TM, MMI, OutStreamer); OutStreamer.EmitValue(Exp, GetSizeOfEncodedValue(Encoding)); } else OutStreamer.EmitIntValue(0, GetSizeOfEncodedValue(Encoding)); } /// EmitSectionOffset - Emit the 4-byte offset of Label from the start of its /// section. This can be done with a special directive if the target supports /// it (e.g. cygwin) or by emitting it as an offset from a label at the start /// of the section. /// /// SectionLabel is a temporary label emitted at the start of the section that /// Label lives in. void AsmPrinter::EmitSectionOffset(const MCSymbol *Label, const MCSymbol *SectionLabel) const { // On COFF targets, we have to emit the special .secrel32 directive. if (MAI->needsDwarfSectionOffsetDirective()) { OutStreamer.EmitCOFFSecRel32(Label); return; } // Get the section that we're referring to, based on SectionLabel. const MCSection &Section = SectionLabel->getSection(); // If Label has already been emitted, verify that it is in the same section as // section label for sanity. assert((!Label->isInSection() || &Label->getSection() == &Section) && "Section offset using wrong section base for label"); // If the section in question will end up with an address of 0 anyway, we can // just emit an absolute reference to save a relocation. if (Section.isBaseAddressKnownZero()) { OutStreamer.EmitSymbolValue(Label, 4); return; } // Otherwise, emit it as a label difference from the start of the section. EmitLabelDifference(Label, SectionLabel, 4); } /// Emit a dwarf register operation. static void emitDwarfRegOp(const AsmPrinter &AP, int Reg) { assert(Reg >= 0); if (Reg < 32) { AP.OutStreamer.AddComment( dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); AP.EmitInt8(dwarf::DW_OP_reg0 + Reg); } else { AP.OutStreamer.AddComment("DW_OP_regx"); AP.EmitInt8(dwarf::DW_OP_regx); AP.OutStreamer.AddComment(Twine(Reg)); AP.EmitULEB128(Reg); } } /// Emit an (double-)indirect dwarf register operation. static void emitDwarfRegOpIndirect(const AsmPrinter &AP, int Reg, int Offset, bool Deref) { assert(Reg >= 0); if (Reg < 32) { AP.OutStreamer.AddComment( dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); AP.EmitInt8(dwarf::DW_OP_breg0 + Reg); } else { AP.OutStreamer.AddComment("DW_OP_bregx"); AP.EmitInt8(dwarf::DW_OP_bregx); AP.OutStreamer.AddComment(Twine(Reg)); AP.EmitULEB128(Reg); } AP.EmitSLEB128(Offset); if (Deref) AP.EmitInt8(dwarf::DW_OP_deref); } /// Emit a dwarf register operation for describing /// - a small value occupying only part of a register or /// - a small register representing only part of a value. static void emitDwarfOpPiece(const AsmPrinter &AP, unsigned Size, unsigned Offset) { assert(Size > 0); if (Offset > 0) { AP.OutStreamer.AddComment("DW_OP_bit_piece"); AP.EmitInt8(dwarf::DW_OP_bit_piece); AP.OutStreamer.AddComment(Twine(Size)); AP.EmitULEB128(Size); AP.OutStreamer.AddComment(Twine(Offset)); AP.EmitULEB128(Offset); } else { AP.OutStreamer.AddComment("DW_OP_piece"); AP.EmitInt8(dwarf::DW_OP_piece); unsigned ByteSize = Size / 8; // Assuming 8 bits per byte. AP.OutStreamer.AddComment(Twine(ByteSize)); AP.EmitULEB128(ByteSize); } } /// Some targets do not provide a DWARF register number for every /// register. This function attempts to emit a dwarf register by /// emitting a piece of a super-register or by piecing together /// multiple subregisters that alias the register. static void EmitDwarfRegOpPiece(const AsmPrinter &AP, const MachineLocation &MLoc) { assert(!MLoc.isIndirect()); const TargetRegisterInfo *TRI = AP.TM.getRegisterInfo(); int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); // Walk up the super-register chain until we find a valid number. // For example, EAX on x86_64 is a 32-bit piece of RAX with offset 0. for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid(); ++SR) { Reg = TRI->getDwarfRegNum(*SR, false); if (Reg >= 0) { unsigned Idx = TRI->getSubRegIndex(*SR, MLoc.getReg()); unsigned Size = TRI->getSubRegIdxSize(Idx); unsigned Offset = TRI->getSubRegIdxOffset(Idx); AP.OutStreamer.AddComment("super-register"); emitDwarfRegOp(AP, Reg); emitDwarfOpPiece(AP, Size, Offset); return; } } // Otherwise, attempt to find a covering set of sub-register numbers. // For example, Q0 on ARM is a composition of D0+D1. // // Keep track of the current position so we can emit the more // efficient DW_OP_piece. unsigned CurPos = 0; // The size of the register in bits, assuming 8 bits per byte. unsigned RegSize = TRI->getMinimalPhysRegClass(MLoc.getReg())->getSize()*8; // Keep track of the bits in the register we already emitted, so we // can avoid emitting redundant aliasing subregs. SmallBitVector Coverage(RegSize, false); for (MCSubRegIterator SR(MLoc.getReg(), TRI); SR.isValid(); ++SR) { unsigned Idx = TRI->getSubRegIndex(MLoc.getReg(), *SR); unsigned Size = TRI->getSubRegIdxSize(Idx); unsigned Offset = TRI->getSubRegIdxOffset(Idx); Reg = TRI->getDwarfRegNum(*SR, false); // Intersection between the bits we already emitted and the bits // covered by this subregister. SmallBitVector Intersection(RegSize, false); Intersection.set(Offset, Offset+Size); Intersection ^= Coverage; // If this sub-register has a DWARF number and we haven't covered // its range, emit a DWARF piece for it. if (Reg >= 0 && Intersection.any()) { AP.OutStreamer.AddComment("sub-register"); emitDwarfRegOp(AP, Reg); emitDwarfOpPiece(AP, Size, Offset == CurPos ? 0 : Offset); CurPos = Offset+Size; // Mark it as emitted. Coverage.set(Offset, Offset+Size); } } if (CurPos == 0) { // FIXME: We have no reasonable way of handling errors in here. AP.OutStreamer.AddComment("nop (could not find a dwarf register number)"); AP.EmitInt8(dwarf::DW_OP_nop); } } /// EmitDwarfRegOp - Emit dwarf register operation. void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc, bool Indirect) const { const TargetRegisterInfo *TRI = TM.getRegisterInfo(); int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); if (Reg < 0) { // We assume that pointers are always in an addressable register. if (Indirect || MLoc.isIndirect()) { // FIXME: We have no reasonable way of handling errors in here. The // caller might be in the middle of a dwarf expression. We should // probably assert that Reg >= 0 once debug info generation is more // mature. OutStreamer.AddComment( "nop (invalid dwarf register number for indirect loc)"); EmitInt8(dwarf::DW_OP_nop); return; } // Attempt to find a valid super- or sub-register. if (!Indirect && !MLoc.isIndirect()) return EmitDwarfRegOpPiece(*this, MLoc); } if (MLoc.isIndirect()) emitDwarfRegOpIndirect(*this, Reg, MLoc.getOffset(), Indirect); else if (Indirect) emitDwarfRegOpIndirect(*this, Reg, 0, false); else emitDwarfRegOp(*this, Reg); } //===----------------------------------------------------------------------===// // Dwarf Lowering Routines //===----------------------------------------------------------------------===// void AsmPrinter::emitCFIInstruction(const MCCFIInstruction &Inst) const { switch (Inst.getOperation()) { default: llvm_unreachable("Unexpected instruction"); case MCCFIInstruction::OpDefCfaOffset: OutStreamer.EmitCFIDefCfaOffset(Inst.getOffset()); break; case MCCFIInstruction::OpDefCfa: OutStreamer.EmitCFIDefCfa(Inst.getRegister(), Inst.getOffset()); break; case MCCFIInstruction::OpDefCfaRegister: OutStreamer.EmitCFIDefCfaRegister(Inst.getRegister()); break; case MCCFIInstruction::OpOffset: OutStreamer.EmitCFIOffset(Inst.getRegister(), Inst.getOffset()); break; case MCCFIInstruction::OpRegister: OutStreamer.EmitCFIRegister(Inst.getRegister(), Inst.getRegister2()); break; case MCCFIInstruction::OpWindowSave: OutStreamer.EmitCFIWindowSave(); break; } }