//===-- LegalizeTypesExpand.cpp - Expansion for LegalizeTypes -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements expansion support for LegalizeTypes. Expansion is the // act of changing a computation in an invalid type to be a computation in // multiple registers of a smaller type. For example, implementing i64 // arithmetic in two i32 registers (as is often needed on 32-bit targets, for // example). // //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" #include "llvm/Constants.h" using namespace llvm; //===----------------------------------------------------------------------===// // Result Expansion //===----------------------------------------------------------------------===// /// ExpandResult - This method is called when the specified result of the /// specified node is found to need expansion. At this point, the node may also /// have invalid operands or may have other results that need promotion, we just /// know that (at least) one result needs expansion. void DAGTypeLegalizer::ExpandResult(SDNode *N, unsigned ResNo) { DEBUG(cerr << "Expand node result: "; N->dump(&DAG); cerr << "\n"); SDOperand Lo, Hi; Lo = Hi = SDOperand(); // See if the target wants to custom expand this node. if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) == TargetLowering::Custom) { // If the target wants to, allow it to lower this itself. if (SDNode *P = TLI.ExpandOperationResult(N, DAG)) { // Everything that once used N now uses P. We are guaranteed that the // result value types of N and the result value types of P match. ReplaceNodeWith(N, P); return; } } switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "ExpandResult #" << ResNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to expand the result of this operator!"); abort(); case ISD::UNDEF: ExpandResult_UNDEF(N, Lo, Hi); break; case ISD::Constant: ExpandResult_Constant(N, Lo, Hi); break; case ISD::BUILD_PAIR: ExpandResult_BUILD_PAIR(N, Lo, Hi); break; case ISD::MERGE_VALUES: ExpandResult_MERGE_VALUES(N, Lo, Hi); break; case ISD::ANY_EXTEND: ExpandResult_ANY_EXTEND(N, Lo, Hi); break; case ISD::ZERO_EXTEND: ExpandResult_ZERO_EXTEND(N, Lo, Hi); break; case ISD::SIGN_EXTEND: ExpandResult_SIGN_EXTEND(N, Lo, Hi); break; case ISD::AssertZext: ExpandResult_AssertZext(N, Lo, Hi); break; case ISD::TRUNCATE: ExpandResult_TRUNCATE(N, Lo, Hi); break; case ISD::BIT_CONVERT: ExpandResult_BIT_CONVERT(N, Lo, Hi); break; case ISD::SIGN_EXTEND_INREG: ExpandResult_SIGN_EXTEND_INREG(N, Lo, Hi); break; case ISD::FP_TO_SINT: ExpandResult_FP_TO_SINT(N, Lo, Hi); break; case ISD::FP_TO_UINT: ExpandResult_FP_TO_UINT(N, Lo, Hi); break; case ISD::LOAD: ExpandResult_LOAD(cast(N), Lo, Hi); break; case ISD::AND: case ISD::OR: case ISD::XOR: ExpandResult_Logical(N, Lo, Hi); break; case ISD::BSWAP: ExpandResult_BSWAP(N, Lo, Hi); break; case ISD::ADD: case ISD::SUB: ExpandResult_ADDSUB(N, Lo, Hi); break; case ISD::ADDC: case ISD::SUBC: ExpandResult_ADDSUBC(N, Lo, Hi); break; case ISD::ADDE: case ISD::SUBE: ExpandResult_ADDSUBE(N, Lo, Hi); break; case ISD::SELECT: ExpandResult_SELECT(N, Lo, Hi); break; case ISD::SELECT_CC: ExpandResult_SELECT_CC(N, Lo, Hi); break; case ISD::MUL: ExpandResult_MUL(N, Lo, Hi); break; case ISD::SDIV: ExpandResult_SDIV(N, Lo, Hi); break; case ISD::SREM: ExpandResult_SREM(N, Lo, Hi); break; case ISD::UDIV: ExpandResult_UDIV(N, Lo, Hi); break; case ISD::UREM: ExpandResult_UREM(N, Lo, Hi); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: ExpandResult_Shift(N, Lo, Hi); break; case ISD::CTLZ: ExpandResult_CTLZ(N, Lo, Hi); break; case ISD::CTPOP: ExpandResult_CTPOP(N, Lo, Hi); break; case ISD::CTTZ: ExpandResult_CTTZ(N, Lo, Hi); break; case ISD::EXTRACT_VECTOR_ELT: ExpandResult_EXTRACT_VECTOR_ELT(N, Lo, Hi); break; } // If Lo/Hi is null, the sub-method took care of registering results etc. if (Lo.Val) SetExpandedOp(SDOperand(N, ResNo), Lo, Hi); } void DAGTypeLegalizer::ExpandResult_UNDEF(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); Lo = Hi = DAG.getNode(ISD::UNDEF, NVT); } void DAGTypeLegalizer::ExpandResult_Constant(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); unsigned NBitWidth = NVT.getSizeInBits(); const APInt &Cst = cast(N)->getAPIntValue(); Lo = DAG.getConstant(APInt(Cst).trunc(NBitWidth), NVT); Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT); } void DAGTypeLegalizer::ExpandResult_BUILD_PAIR(SDNode *N, SDOperand &Lo, SDOperand &Hi) { // Return the operands. Lo = N->getOperand(0); Hi = N->getOperand(1); } void DAGTypeLegalizer::ExpandResult_MERGE_VALUES(SDNode *N, SDOperand &Lo, SDOperand &Hi) { // A MERGE_VALUES node can produce any number of values. We know that the // first illegal one needs to be expanded into Lo/Hi. unsigned i; // The string of legal results gets turns into the input operands, which have // the same type. for (i = 0; isTypeLegal(N->getValueType(i)); ++i) ReplaceValueWith(SDOperand(N, i), SDOperand(N->getOperand(i))); // The first illegal result must be the one that needs to be expanded. GetExpandedOp(N->getOperand(i), Lo, Hi); // Legalize the rest of the results into the input operands whether they are // legal or not. unsigned e = N->getNumValues(); for (++i; i != e; ++i) ReplaceValueWith(SDOperand(N, i), SDOperand(N->getOperand(i))); } void DAGTypeLegalizer::ExpandResult_ANY_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand Op = N->getOperand(0); if (Op.getValueType().getSizeInBits() <= NVT.getSizeInBits()) { // The low part is any extension of the input (which degenerates to a copy). Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Op); Hi = DAG.getNode(ISD::UNDEF, NVT); // The high part is undefined. } else { // For example, extension of an i48 to an i64. The operand type necessarily // promotes to the result type, so will end up being expanded too. assert(getTypeAction(Op.getValueType()) == Promote && "Only know how to promote this result!"); SDOperand Res = GetPromotedOp(Op); assert(Res.getValueType() == N->getValueType(0) && "Operand over promoted?"); // Split the promoted operand. This will simplify when it is expanded. SplitInteger(Res, Lo, Hi); } } void DAGTypeLegalizer::ExpandResult_ZERO_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand Op = N->getOperand(0); if (Op.getValueType().getSizeInBits() <= NVT.getSizeInBits()) { // The low part is zero extension of the input (which degenerates to a copy). Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, N->getOperand(0)); Hi = DAG.getConstant(0, NVT); // The high part is just a zero. } else { // For example, extension of an i48 to an i64. The operand type necessarily // promotes to the result type, so will end up being expanded too. assert(getTypeAction(Op.getValueType()) == Promote && "Only know how to promote this result!"); SDOperand Res = GetPromotedOp(Op); assert(Res.getValueType() == N->getValueType(0) && "Operand over promoted?"); // Split the promoted operand. This will simplify when it is expanded. SplitInteger(Res, Lo, Hi); unsigned ExcessBits = Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); Hi = DAG.getZeroExtendInReg(Hi, MVT::getIntegerVT(ExcessBits)); } } void DAGTypeLegalizer::ExpandResult_SIGN_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand Op = N->getOperand(0); if (Op.getValueType().getSizeInBits() <= NVT.getSizeInBits()) { // The low part is sign extension of the input (which degenerates to a copy). Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, N->getOperand(0)); // The high part is obtained by SRA'ing all but one of the bits of low part. unsigned LoSize = NVT.getSizeInBits(); Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); } else { // For example, extension of an i48 to an i64. The operand type necessarily // promotes to the result type, so will end up being expanded too. assert(getTypeAction(Op.getValueType()) == Promote && "Only know how to promote this result!"); SDOperand Res = GetPromotedOp(Op); assert(Res.getValueType() == N->getValueType(0) && "Operand over promoted?"); // Split the promoted operand. This will simplify when it is expanded. SplitInteger(Res, Lo, Hi); unsigned ExcessBits = Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi, DAG.getValueType(MVT::getIntegerVT(ExcessBits))); } } void DAGTypeLegalizer::ExpandResult_AssertZext(SDNode *N, SDOperand &Lo, SDOperand &Hi) { GetExpandedOp(N->getOperand(0), Lo, Hi); MVT NVT = Lo.getValueType(); MVT EVT = cast(N->getOperand(1))->getVT(); unsigned NVTBits = NVT.getSizeInBits(); unsigned EVTBits = EVT.getSizeInBits(); if (NVTBits < EVTBits) { Hi = DAG.getNode(ISD::AssertZext, NVT, Hi, DAG.getValueType(MVT::getIntegerVT(EVTBits - NVTBits))); } else { Lo = DAG.getNode(ISD::AssertZext, NVT, Lo, DAG.getValueType(EVT)); // The high part must be zero, make it explicit. Hi = DAG.getConstant(0, NVT); } } void DAGTypeLegalizer::ExpandResult_TRUNCATE(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); Lo = DAG.getNode(ISD::TRUNCATE, NVT, N->getOperand(0)); Hi = DAG.getNode(ISD::SRL, N->getOperand(0).getValueType(), N->getOperand(0), DAG.getConstant(NVT.getSizeInBits(), TLI.getShiftAmountTy())); Hi = DAG.getNode(ISD::TRUNCATE, NVT, Hi); } void DAGTypeLegalizer::ExpandResult_BIT_CONVERT(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); SDOperand InOp = N->getOperand(0); MVT InVT = InOp.getValueType(); // Handle some special cases efficiently. switch (getTypeAction(InVT)) { default: assert(false && "Unknown type action!"); case Legal: case Promote: break; case Expand: // Convert the expanded pieces of the input. GetExpandedOp(InOp, Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, NVT, Hi); return; case FloatToInt: // Convert the integer operand instead. SplitInteger(GetIntegerOp(InOp), Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, NVT, Hi); return; case Split: // Convert the split parts of the input if it was split in two. GetSplitOp(InOp, Lo, Hi); if (Lo.getValueType() == Hi.getValueType()) { if (TLI.isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, NVT, Hi); return; } break; case Scalarize: // Convert the element instead. SplitInteger(BitConvertToInteger(GetScalarizedOp(InOp)), Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, NVT, Hi); return; } // Lower the bit-convert to a store/load from the stack, then expand the load. SDOperand Op = CreateStackStoreLoad(InOp, N->getValueType(0)); ExpandResult_LOAD(cast(Op.Val), Lo, Hi); } void DAGTypeLegalizer:: ExpandResult_SIGN_EXTEND_INREG(SDNode *N, SDOperand &Lo, SDOperand &Hi) { GetExpandedOp(N->getOperand(0), Lo, Hi); MVT EVT = cast(N->getOperand(1))->getVT(); if (EVT.getSizeInBits() <= Lo.getValueType().getSizeInBits()) { // sext_inreg the low part if needed. Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, Lo.getValueType(), Lo, N->getOperand(1)); // The high part gets the sign extension from the lo-part. This handles // things like sextinreg V:i64 from i8. Hi = DAG.getNode(ISD::SRA, Hi.getValueType(), Lo, DAG.getConstant(Hi.getValueType().getSizeInBits()-1, TLI.getShiftAmountTy())); } else { // For example, extension of an i48 to an i64. Leave the low part alone, // sext_inreg the high part. unsigned ExcessBits = EVT.getSizeInBits() - Lo.getValueType().getSizeInBits(); Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, Hi.getValueType(), Hi, DAG.getValueType(MVT::getIntegerVT(ExcessBits))); } } void DAGTypeLegalizer::ExpandResult_FP_TO_SINT(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT VT = N->getValueType(0); SDOperand Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i64) { if (Op.getValueType() == MVT::f32) LC = RTLIB::FPTOSINT_F32_I64; else if (Op.getValueType() == MVT::f64) LC = RTLIB::FPTOSINT_F64_I64; else if (Op.getValueType() == MVT::f80) LC = RTLIB::FPTOSINT_F80_I64; else if (Op.getValueType() == MVT::ppcf128) LC = RTLIB::FPTOSINT_PPCF128_I64; } else if (VT == MVT::i128) { if (Op.getValueType() == MVT::f32) LC = RTLIB::FPTOSINT_F32_I128; else if (Op.getValueType() == MVT::f64) LC = RTLIB::FPTOSINT_F64_I128; else if (Op.getValueType() == MVT::f80) LC = RTLIB::FPTOSINT_F80_I128; else if (Op.getValueType() == MVT::ppcf128) LC = RTLIB::FPTOSINT_PPCF128_I128; } else { assert(0 && "Unexpected fp-to-sint conversion!"); } SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*sign irrelevant*/), Lo, Hi); } void DAGTypeLegalizer::ExpandResult_FP_TO_UINT(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT VT = N->getValueType(0); SDOperand Op = N->getOperand(0); RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (VT == MVT::i64) { if (Op.getValueType() == MVT::f32) LC = RTLIB::FPTOUINT_F32_I64; else if (Op.getValueType() == MVT::f64) LC = RTLIB::FPTOUINT_F64_I64; else if (Op.getValueType() == MVT::f80) LC = RTLIB::FPTOUINT_F80_I64; else if (Op.getValueType() == MVT::ppcf128) LC = RTLIB::FPTOUINT_PPCF128_I64; } else if (VT == MVT::i128) { if (Op.getValueType() == MVT::f32) LC = RTLIB::FPTOUINT_F32_I128; else if (Op.getValueType() == MVT::f64) LC = RTLIB::FPTOUINT_F64_I128; else if (Op.getValueType() == MVT::f80) LC = RTLIB::FPTOUINT_F80_I128; else if (Op.getValueType() == MVT::ppcf128) LC = RTLIB::FPTOUINT_PPCF128_I128; } else { assert(0 && "Unexpected fp-to-uint conversion!"); } SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*sign irrelevant*/), Lo, Hi); } void DAGTypeLegalizer::ExpandResult_LOAD(LoadSDNode *N, SDOperand &Lo, SDOperand &Hi) { // FIXME: Add support for indexed loads. MVT VT = N->getValueType(0); MVT NVT = TLI.getTypeToTransformTo(VT); SDOperand Ch = N->getChain(); // Legalize the chain. SDOperand Ptr = N->getBasePtr(); // Legalize the pointer. ISD::LoadExtType ExtType = N->getExtensionType(); int SVOffset = N->getSrcValueOffset(); unsigned Alignment = N->getAlignment(); bool isVolatile = N->isVolatile(); assert(!(NVT.getSizeInBits() & 7) && "Expanded type not byte sized!"); if (ExtType == ISD::NON_EXTLOAD) { Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset, isVolatile, Alignment); // Increment the pointer to the other half. unsigned IncrementSize = NVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset+IncrementSize, isVolatile, MinAlign(Alignment, IncrementSize)); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Handle endianness of the load. if (TLI.isBigEndian()) std::swap(Lo, Hi); } else if (N->getMemoryVT().getSizeInBits() <= NVT.getSizeInBits()) { MVT EVT = N->getMemoryVT(); Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset, EVT, isVolatile, Alignment); // Remember the chain. Ch = Lo.getValue(1); if (ExtType == ISD::SEXTLOAD) { // The high part is obtained by SRA'ing all but one of the bits of the // lo part. unsigned LoSize = Lo.getValueType().getSizeInBits(); Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); } else if (ExtType == ISD::ZEXTLOAD) { // The high part is just a zero. Hi = DAG.getConstant(0, NVT); } else { assert(ExtType == ISD::EXTLOAD && "Unknown extload!"); // The high part is undefined. Hi = DAG.getNode(ISD::UNDEF, NVT); } } else if (TLI.isLittleEndian()) { // Little-endian - low bits are at low addresses. Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset, isVolatile, Alignment); unsigned ExcessBits = N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); MVT NEVT = MVT::getIntegerVT(ExcessBits); // Increment the pointer to the other half. unsigned IncrementSize = NVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset+IncrementSize, NEVT, isVolatile, MinAlign(Alignment, IncrementSize)); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); } else { // Big-endian - high bits are at low addresses. Favor aligned loads at // the cost of some bit-fiddling. MVT EVT = N->getMemoryVT(); unsigned EBytes = EVT.getStoreSizeInBits()/8; unsigned IncrementSize = NVT.getSizeInBits()/8; unsigned ExcessBits = (EBytes - IncrementSize)*8; // Load both the high bits and maybe some of the low bits. Hi = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(), SVOffset, MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits), isVolatile, Alignment); // Increment the pointer to the other half. Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); // Load the rest of the low bits. Lo = DAG.getExtLoad(ISD::ZEXTLOAD, NVT, Ch, Ptr, N->getSrcValue(), SVOffset+IncrementSize, MVT::getIntegerVT(ExcessBits), isVolatile, MinAlign(Alignment, IncrementSize)); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); if (ExcessBits < NVT.getSizeInBits()) { // Transfer low bits from the bottom of Hi to the top of Lo. Lo = DAG.getNode(ISD::OR, NVT, Lo, DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(ExcessBits, TLI.getShiftAmountTy()))); // Move high bits to the right position in Hi. Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, NVT, Hi, DAG.getConstant(NVT.getSizeInBits() - ExcessBits, TLI.getShiftAmountTy())); } } // Legalized the chain result - switch anything that used the old chain to // use the new one. ReplaceValueWith(SDOperand(N, 1), Ch); } void DAGTypeLegalizer::ExpandResult_Logical(SDNode *N, SDOperand &Lo, SDOperand &Hi) { SDOperand LL, LH, RL, RH; GetExpandedOp(N->getOperand(0), LL, LH); GetExpandedOp(N->getOperand(1), RL, RH); Lo = DAG.getNode(N->getOpcode(), LL.getValueType(), LL, RL); Hi = DAG.getNode(N->getOpcode(), LL.getValueType(), LH, RH); } void DAGTypeLegalizer::ExpandResult_BSWAP(SDNode *N, SDOperand &Lo, SDOperand &Hi) { GetExpandedOp(N->getOperand(0), Hi, Lo); // Note swapped operands. Lo = DAG.getNode(ISD::BSWAP, Lo.getValueType(), Lo); Hi = DAG.getNode(ISD::BSWAP, Hi.getValueType(), Hi); } void DAGTypeLegalizer::ExpandResult_SELECT(SDNode *N, SDOperand &Lo, SDOperand &Hi) { SDOperand LL, LH, RL, RH; GetExpandedOp(N->getOperand(1), LL, LH); GetExpandedOp(N->getOperand(2), RL, RH); Lo = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LL, RL); Hi = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LH, RH); } void DAGTypeLegalizer::ExpandResult_SELECT_CC(SDNode *N, SDOperand &Lo, SDOperand &Hi) { SDOperand LL, LH, RL, RH; GetExpandedOp(N->getOperand(2), LL, LH); GetExpandedOp(N->getOperand(3), RL, RH); Lo = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0), N->getOperand(1), LL, RL, N->getOperand(4)); Hi = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0), N->getOperand(1), LH, RH, N->getOperand(4)); } void DAGTypeLegalizer::ExpandResult_ADDSUB(SDNode *N, SDOperand &Lo, SDOperand &Hi) { // Expand the subcomponents. SDOperand LHSL, LHSH, RHSL, RHSH; GetExpandedOp(N->getOperand(0), LHSL, LHSH); GetExpandedOp(N->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); SDOperand LoOps[2] = { LHSL, RHSL }; SDOperand HiOps[3] = { LHSH, RHSH }; if (N->getOpcode() == ISD::ADD) { Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); } } void DAGTypeLegalizer::ExpandResult_ADDSUBC(SDNode *N, SDOperand &Lo, SDOperand &Hi) { // Expand the subcomponents. SDOperand LHSL, LHSH, RHSL, RHSH; GetExpandedOp(N->getOperand(0), LHSL, LHSH); GetExpandedOp(N->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); SDOperand LoOps[2] = { LHSL, RHSL }; SDOperand HiOps[3] = { LHSH, RHSH }; if (N->getOpcode() == ISD::ADDC) { Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); } // Legalized the flag result - switch anything that used the old flag to // use the new one. ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1)); } void DAGTypeLegalizer::ExpandResult_ADDSUBE(SDNode *N, SDOperand &Lo, SDOperand &Hi) { // Expand the subcomponents. SDOperand LHSL, LHSH, RHSL, RHSH; GetExpandedOp(N->getOperand(0), LHSL, LHSH); GetExpandedOp(N->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); SDOperand LoOps[3] = { LHSL, RHSL, N->getOperand(2) }; SDOperand HiOps[3] = { LHSH, RHSH }; Lo = DAG.getNode(N->getOpcode(), VTList, LoOps, 3); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(N->getOpcode(), VTList, HiOps, 3); // Legalized the flag result - switch anything that used the old flag to // use the new one. ReplaceValueWith(SDOperand(N, 1), Hi.getValue(1)); } void DAGTypeLegalizer::ExpandResult_MUL(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT VT = N->getValueType(0); MVT NVT = TLI.getTypeToTransformTo(VT); bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { SDOperand LL, LH, RL, RH; GetExpandedOp(N->getOperand(0), LL, LH); GetExpandedOp(N->getOperand(1), RL, RH); unsigned OuterBitSize = VT.getSizeInBits(); unsigned BitSize = NVT.getSizeInBits(); unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); if (DAG.MaskedValueIsZero(N->getOperand(0), APInt::getHighBitsSet(OuterBitSize, LHSSB)) && DAG.MaskedValueIsZero(N->getOperand(1), APInt::getHighBitsSet(OuterBitSize, RHSSB))) { // The inputs are both zero-extended. if (HasUMUL_LOHI) { // We can emit a umul_lohi. Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); Hi = SDOperand(Lo.Val, 1); return; } if (HasMULHU) { // We can emit a mulhu+mul. Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); return; } } if (LHSSB > BitSize && RHSSB > BitSize) { // The input values are both sign-extended. if (HasSMUL_LOHI) { // We can emit a smul_lohi. Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); Hi = SDOperand(Lo.Val, 1); return; } if (HasMULHS) { // We can emit a mulhs+mul. Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); return; } } if (HasUMUL_LOHI) { // Lo,Hi = umul LHS, RHS. SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); Lo = UMulLOHI; Hi = UMulLOHI.getValue(1); RH = DAG.getNode(ISD::MUL, NVT, LL, RH); LH = DAG.getNode(ISD::MUL, NVT, LH, RL); Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); return; } } // If nothing else, we can make a libcall. SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(RTLIB::MUL_I64, VT, Ops, 2, true/*sign irrelevant*/), Lo, Hi); } void DAGTypeLegalizer::ExpandResult_SDIV(SDNode *N, SDOperand &Lo, SDOperand &Hi) { assert(N->getValueType(0) == MVT::i64 && "Unsupported sdiv!"); SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(RTLIB::SDIV_I64, N->getValueType(0), Ops, 2, true), Lo, Hi); } void DAGTypeLegalizer::ExpandResult_SREM(SDNode *N, SDOperand &Lo, SDOperand &Hi) { assert(N->getValueType(0) == MVT::i64 && "Unsupported srem!"); SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(RTLIB::SREM_I64, N->getValueType(0), Ops, 2, true), Lo, Hi); } void DAGTypeLegalizer::ExpandResult_UDIV(SDNode *N, SDOperand &Lo, SDOperand &Hi) { assert(N->getValueType(0) == MVT::i64 && "Unsupported udiv!"); SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(RTLIB::UDIV_I64, N->getValueType(0), Ops, 2, false), Lo, Hi); } void DAGTypeLegalizer::ExpandResult_UREM(SDNode *N, SDOperand &Lo, SDOperand &Hi) { assert(N->getValueType(0) == MVT::i64 && "Unsupported urem!"); SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(RTLIB::UREM_I64, N->getValueType(0), Ops, 2, false), Lo, Hi); } void DAGTypeLegalizer::ExpandResult_Shift(SDNode *N, SDOperand &Lo, SDOperand &Hi) { MVT VT = N->getValueType(0); // If we can emit an efficient shift operation, do so now. Check to see if // the RHS is a constant. if (ConstantSDNode *CN = dyn_cast(N->getOperand(1))) return ExpandShiftByConstant(N, CN->getValue(), Lo, Hi); // If we can determine that the high bit of the shift is zero or one, even if // the low bits are variable, emit this shift in an optimized form. if (ExpandShiftWithKnownAmountBit(N, Lo, Hi)) return; // If this target supports shift_PARTS, use it. First, map to the _PARTS opc. unsigned PartsOpc; if (N->getOpcode() == ISD::SHL) { PartsOpc = ISD::SHL_PARTS; } else if (N->getOpcode() == ISD::SRL) { PartsOpc = ISD::SRL_PARTS; } else { assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); PartsOpc = ISD::SRA_PARTS; } // Next check to see if the target supports this SHL_PARTS operation or if it // will custom expand it. MVT NVT = TLI.getTypeToTransformTo(VT); TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT); if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || Action == TargetLowering::Custom) { // Expand the subcomponents. SDOperand LHSL, LHSH; GetExpandedOp(N->getOperand(0), LHSL, LHSH); SDOperand Ops[] = { LHSL, LHSH, N->getOperand(1) }; MVT VT = LHSL.getValueType(); Lo = DAG.getNode(PartsOpc, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); Hi = Lo.getValue(1); return; } // Otherwise, emit a libcall. assert(VT == MVT::i64 && "Unsupported shift!"); RTLIB::Libcall LC; bool isSigned; if (N->getOpcode() == ISD::SHL) { LC = RTLIB::SHL_I64; isSigned = false; /*sign irrelevant*/ } else if (N->getOpcode() == ISD::SRL) { LC = RTLIB::SRL_I64; isSigned = false; } else { assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); LC = RTLIB::SRA_I64; isSigned = true; } SDOperand Ops[2] = { N->getOperand(0), N->getOperand(1) }; SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned), Lo, Hi); } void DAGTypeLegalizer::ExpandResult_CTLZ(SDNode *N, SDOperand &Lo, SDOperand &Hi) { // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32) GetExpandedOp(N->getOperand(0), Lo, Hi); MVT NVT = Lo.getValueType(); SDOperand HiNotZero = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi, DAG.getConstant(0, NVT), ISD::SETNE); SDOperand LoLZ = DAG.getNode(ISD::CTLZ, NVT, Lo); SDOperand HiLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); Lo = DAG.getNode(ISD::SELECT, NVT, HiNotZero, HiLZ, DAG.getNode(ISD::ADD, NVT, LoLZ, DAG.getConstant(NVT.getSizeInBits(), NVT))); Hi = DAG.getConstant(0, NVT); } void DAGTypeLegalizer::ExpandResult_CTPOP(SDNode *N, SDOperand &Lo, SDOperand &Hi) { // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo) GetExpandedOp(N->getOperand(0), Lo, Hi); MVT NVT = Lo.getValueType(); Lo = DAG.getNode(ISD::ADD, NVT, DAG.getNode(ISD::CTPOP, NVT, Lo), DAG.getNode(ISD::CTPOP, NVT, Hi)); Hi = DAG.getConstant(0, NVT); } void DAGTypeLegalizer::ExpandResult_CTTZ(SDNode *N, SDOperand &Lo, SDOperand &Hi) { // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32) GetExpandedOp(N->getOperand(0), Lo, Hi); MVT NVT = Lo.getValueType(); SDOperand LoNotZero = DAG.getSetCC(TLI.getSetCCResultType(Lo), Lo, DAG.getConstant(0, NVT), ISD::SETNE); SDOperand LoLZ = DAG.getNode(ISD::CTTZ, NVT, Lo); SDOperand HiLZ = DAG.getNode(ISD::CTTZ, NVT, Hi); Lo = DAG.getNode(ISD::SELECT, NVT, LoNotZero, LoLZ, DAG.getNode(ISD::ADD, NVT, HiLZ, DAG.getConstant(NVT.getSizeInBits(), NVT))); Hi = DAG.getConstant(0, NVT); } void DAGTypeLegalizer::ExpandResult_EXTRACT_VECTOR_ELT(SDNode *N, SDOperand &Lo, SDOperand &Hi) { SDOperand OldVec = N->getOperand(0); unsigned OldElts = OldVec.getValueType().getVectorNumElements(); // Convert to a vector of the expanded element type, for example // <2 x i64> -> <4 x i32>. MVT OldVT = N->getValueType(0); MVT NewVT = TLI.getTypeToTransformTo(OldVT); assert(OldVT.getSizeInBits() == 2 * NewVT.getSizeInBits() && "Do not know how to handle this expansion!"); SDOperand NewVec = DAG.getNode(ISD::BIT_CONVERT, MVT::getVectorVT(NewVT, 2*OldElts), OldVec); // Extract the elements at 2 * Idx and 2 * Idx + 1 from the new vector. SDOperand Idx = N->getOperand(1); // Make sure the type of Idx is big enough to hold the new values. if (Idx.getValueType().getSizeInBits() < TLI.getPointerTy().getSizeInBits()) Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); Idx = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, Idx); Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, NewVec, Idx); Idx = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, DAG.getConstant(1, Idx.getValueType())); Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, NewVec, Idx); if (TLI.isBigEndian()) std::swap(Lo, Hi); } /// ExpandShiftByConstant - N is a shift by a value that needs to be expanded, /// and the shift amount is a constant 'Amt'. Expand the operation. void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt, SDOperand &Lo, SDOperand &Hi) { // Expand the incoming operand to be shifted, so that we have its parts SDOperand InL, InH; GetExpandedOp(N->getOperand(0), InL, InH); MVT NVT = InL.getValueType(); unsigned VTBits = N->getValueType(0).getSizeInBits(); unsigned NVTBits = NVT.getSizeInBits(); MVT ShTy = N->getOperand(1).getValueType(); if (N->getOpcode() == ISD::SHL) { if (Amt > VTBits) { Lo = Hi = DAG.getConstant(0, NVT); } else if (Amt > NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt-NVTBits,ShTy)); } else if (Amt == NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = InL; } else { Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt, ShTy)); Hi = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Amt, ShTy)), DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Amt, ShTy))); } return; } if (N->getOpcode() == ISD::SRL) { if (Amt > VTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getConstant(0, NVT); } else if (Amt > NVTBits) { Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy)); Hi = DAG.getConstant(0, NVT); } else if (Amt == NVTBits) { Lo = InH; Hi = DAG.getConstant(0, NVT); } else { Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Amt, ShTy)), DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Amt, ShTy))); Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt, ShTy)); } return; } assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); if (Amt > VTBits) { Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Amt > NVTBits) { Lo = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Amt-NVTBits, ShTy)); Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Amt == NVTBits) { Lo = InH; Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else { Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Amt, ShTy)), DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Amt, ShTy))); Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Amt, ShTy)); } } /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify /// this shift based on knowledge of the high bit of the shift amount. If we /// can tell this, we know that it is >= 32 or < 32, without knowing the actual /// shift amount. bool DAGTypeLegalizer:: ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi) { SDOperand Amt = N->getOperand(1); MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0)); MVT ShTy = Amt.getValueType(); unsigned ShBits = ShTy.getSizeInBits(); unsigned NVTBits = NVT.getSizeInBits(); assert(isPowerOf2_32(NVTBits) && "Expanded integer type size not a power of two!"); APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); APInt KnownZero, KnownOne; DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne); // If we don't know anything about the high bits, exit. if (((KnownZero|KnownOne) & HighBitMask) == 0) return false; // Get the incoming operand to be shifted. SDOperand InL, InH; GetExpandedOp(N->getOperand(0), InL, InH); // If we know that any of the high bits of the shift amount are one, then we // can do this as a couple of simple shifts. if (KnownOne.intersects(HighBitMask)) { // Mask out the high bit, which we know is set. Amt = DAG.getNode(ISD::AND, ShTy, Amt, DAG.getConstant(~HighBitMask, ShTy)); switch (N->getOpcode()) { default: assert(0 && "Unknown shift"); case ISD::SHL: Lo = DAG.getConstant(0, NVT); // Low part is zero. Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. return true; case ISD::SRL: Hi = DAG.getConstant(0, NVT); // Hi part is zero. Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. return true; case ISD::SRA: Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. DAG.getConstant(NVTBits-1, ShTy)); Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. return true; } } // If we know that all of the high bits of the shift amount are zero, then we // can do this as a couple of simple shifts. if ((KnownZero & HighBitMask) == HighBitMask) { // Compute 32-amt. SDOperand Amt2 = DAG.getNode(ISD::SUB, ShTy, DAG.getConstant(NVTBits, ShTy), Amt); unsigned Op1, Op2; switch (N->getOpcode()) { default: assert(0 && "Unknown shift"); case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break; case ISD::SRL: case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break; } Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt); Hi = DAG.getNode(ISD::OR, NVT, DAG.getNode(Op1, NVT, InH, Amt), DAG.getNode(Op2, NVT, InL, Amt2)); return true; } return false; } //===----------------------------------------------------------------------===// // Operand Expansion //===----------------------------------------------------------------------===// /// ExpandOperand - This method is called when the specified operand of the /// specified node is found to need expansion. At this point, all of the result /// types of the node are known to be legal, but other operands of the node may /// need promotion or expansion as well as the specified one. bool DAGTypeLegalizer::ExpandOperand(SDNode *N, unsigned OpNo) { DEBUG(cerr << "Expand node operand: "; N->dump(&DAG); cerr << "\n"); SDOperand Res(0, 0); if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType()) == TargetLowering::Custom) Res = TLI.LowerOperation(SDOperand(N, 0), DAG); if (Res.Val == 0) { switch (N->getOpcode()) { default: #ifndef NDEBUG cerr << "ExpandOperand Op #" << OpNo << ": "; N->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to expand this operator's operand!"); abort(); case ISD::TRUNCATE: Res = ExpandOperand_TRUNCATE(N); break; case ISD::BIT_CONVERT: Res = ExpandOperand_BIT_CONVERT(N); break; case ISD::SINT_TO_FP: Res = ExpandOperand_SINT_TO_FP(N->getOperand(0), N->getValueType(0)); break; case ISD::UINT_TO_FP: Res = ExpandOperand_UINT_TO_FP(N->getOperand(0), N->getValueType(0)); break; case ISD::EXTRACT_ELEMENT: Res = ExpandOperand_EXTRACT_ELEMENT(N); break; case ISD::BR_CC: Res = ExpandOperand_BR_CC(N); break; case ISD::SETCC: Res = ExpandOperand_SETCC(N); break; case ISD::STORE: Res = ExpandOperand_STORE(cast(N), OpNo); break; case ISD::BUILD_VECTOR: Res = ExpandOperand_BUILD_VECTOR(N); break; } } // If the result is null, the sub-method took care of registering results etc. if (!Res.Val) return false; // If the result is N, the sub-method updated N in place. Check to see if any // operands are new, and if so, mark them. if (Res.Val == N) { // Mark N as new and remark N and its operands. This allows us to correctly // revisit N if it needs another step of promotion and allows us to visit // any new operands to N. ReanalyzeNode(N); return true; } assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && "Invalid operand expansion"); ReplaceValueWith(SDOperand(N, 0), Res); return false; } SDOperand DAGTypeLegalizer::ExpandOperand_TRUNCATE(SDNode *N) { SDOperand InL, InH; GetExpandedOp(N->getOperand(0), InL, InH); // Just truncate the low part of the source. return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), InL); } SDOperand DAGTypeLegalizer::ExpandOperand_BIT_CONVERT(SDNode *N) { if (N->getValueType(0).isVector()) { // An illegal integer type is being converted to a legal vector type. // Make a two element vector out of the expanded parts and convert that // instead, but only if the new vector type is legal (otherwise there // is no point, and it might create expansion loops). For example, on // x86 this turns v1i64 = BIT_CONVERT i64 into v1i64 = BIT_CONVERT v2i32. MVT OVT = N->getOperand(0).getValueType(); MVT NVT = MVT::getVectorVT(TLI.getTypeToTransformTo(OVT), 2); if (isTypeLegal(NVT)) { SDOperand Parts[2]; GetExpandedOp(N->getOperand(0), Parts[0], Parts[1]); if (TLI.isBigEndian()) std::swap(Parts[0], Parts[1]); SDOperand Vec = DAG.getNode(ISD::BUILD_VECTOR, NVT, Parts, 2); return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Vec); } } // Otherwise, store to a temporary and load out again as the new type. return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0)); } SDOperand DAGTypeLegalizer::ExpandOperand_SINT_TO_FP(SDOperand Source, MVT DestTy) { // We know the destination is legal, but that the input needs to be expanded. MVT SourceVT = Source.getValueType(); // Check to see if the target has a custom way to lower this. If so, use it. switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { default: assert(0 && "This action not implemented for this operation!"); case TargetLowering::Legal: case TargetLowering::Expand: break; // This case is handled below. case TargetLowering::Custom: SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, Source), DAG); if (NV.Val) return NV; break; // The target lowered this. } RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; if (SourceVT == MVT::i64) { if (DestTy == MVT::f32) LC = RTLIB::SINTTOFP_I64_F32; else { assert(DestTy == MVT::f64 && "Unknown fp value type!"); LC = RTLIB::SINTTOFP_I64_F64; } } else if (SourceVT == MVT::i128) { if (DestTy == MVT::f32) LC = RTLIB::SINTTOFP_I128_F32; else if (DestTy == MVT::f64) LC = RTLIB::SINTTOFP_I128_F64; else if (DestTy == MVT::f80) LC = RTLIB::SINTTOFP_I128_F80; else { assert(DestTy == MVT::ppcf128 && "Unknown fp value type!"); LC = RTLIB::SINTTOFP_I128_PPCF128; } } else { assert(0 && "Unknown int value type!"); } assert(LC != RTLIB::UNKNOWN_LIBCALL && "Don't know how to expand this SINT_TO_FP!"); return MakeLibCall(LC, DestTy, &Source, 1, true); } SDOperand DAGTypeLegalizer::ExpandOperand_UINT_TO_FP(SDOperand Source, MVT DestTy) { // We know the destination is legal, but that the input needs to be expanded. assert(getTypeAction(Source.getValueType()) == Expand && "This is not an expansion!"); // If this is unsigned, and not supported, first perform the conversion to // signed, then adjust the result if the sign bit is set. SDOperand SignedConv = ExpandOperand_SINT_TO_FP(Source, DestTy); // The 64-bit value loaded will be incorrectly if the 'sign bit' of the // incoming integer is set. To handle this, we dynamically test to see if // it is set, and, if so, add a fudge factor. SDOperand Lo, Hi; GetExpandedOp(Source, Lo, Hi); SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi, DAG.getConstant(0, Hi.getValueType()), ISD::SETLT); SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), SignSet, Four, Zero); uint64_t FF = 0x5f800000ULL; if (TLI.isLittleEndian()) FF <<= 32; Constant *FudgeFactor = ConstantInt::get((Type*)Type::Int64Ty, FF); SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); SDOperand FudgeInReg; if (DestTy == MVT::f32) FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0); else if (DestTy.getSizeInBits() > MVT(MVT::f32).getSizeInBits()) // FIXME: Avoid the extend by construction the right constantpool? FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), CPIdx, NULL, 0, MVT::f32); else assert(0 && "Unexpected conversion"); return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); } SDOperand DAGTypeLegalizer::ExpandOperand_EXTRACT_ELEMENT(SDNode *N) { SDOperand Lo, Hi; GetExpandedOp(N->getOperand(0), Lo, Hi); return cast(N->getOperand(1))->getValue() ? Hi : Lo; } SDOperand DAGTypeLegalizer::ExpandOperand_BR_CC(SDNode *N) { SDOperand NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); ISD::CondCode CCCode = cast(N->getOperand(1))->get(); ExpandSetCCOperands(NewLHS, NewRHS, CCCode); // If ExpandSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (NewRHS.Val == 0) { NewRHS = DAG.getConstant(0, NewLHS.getValueType()); CCCode = ISD::SETNE; } // Update N to have the operands specified. return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), DAG.getCondCode(CCCode), NewLHS, NewRHS, N->getOperand(4)); } SDOperand DAGTypeLegalizer::ExpandOperand_SETCC(SDNode *N) { SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); ISD::CondCode CCCode = cast(N->getOperand(2))->get(); ExpandSetCCOperands(NewLHS, NewRHS, CCCode); // If ExpandSetCCOperands returned a scalar, use it. if (NewRHS.Val == 0) return NewLHS; // Otherwise, update N to have the operands specified. return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS, DAG.getCondCode(CCCode)); } /// ExpandSetCCOperands - Expand the operands of a comparison. This code is /// shared among BR_CC, SELECT_CC, and SETCC handlers. void DAGTypeLegalizer::ExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS, ISD::CondCode &CCCode) { SDOperand LHSLo, LHSHi, RHSLo, RHSHi; GetExpandedOp(NewLHS, LHSLo, LHSHi); GetExpandedOp(NewRHS, RHSLo, RHSHi); MVT VT = NewLHS.getValueType(); if (VT == MVT::ppcf128) { // FIXME: This generated code sucks. We want to generate // FCMP crN, hi1, hi2 // BNE crN, L: // FCMP crN, lo1, lo2 // The following can be improved, but not that much. SDOperand Tmp1, Tmp2, Tmp3; Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETEQ); Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, CCCode); Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETNE); Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, CCCode); Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); NewLHS = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); NewRHS = SDOperand(); // LHS is the result, not a compare. return; } if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) { if (RHSLo == RHSHi) if (ConstantSDNode *RHSCST = dyn_cast(RHSLo)) if (RHSCST->isAllOnesValue()) { // Equality comparison to -1. NewLHS = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); NewRHS = RHSLo; return; } NewLHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); NewRHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); NewLHS = DAG.getNode(ISD::OR, NewLHS.getValueType(), NewLHS, NewRHS); NewRHS = DAG.getConstant(0, NewLHS.getValueType()); return; } // If this is a comparison of the sign bit, just look at the top part. // X > -1, x < 0 if (ConstantSDNode *CST = dyn_cast(NewRHS)) if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0 (CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1 NewLHS = LHSHi; NewRHS = RHSHi; return; } // FIXME: This generated code sucks. ISD::CondCode LowCC; switch (CCCode) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETLT: case ISD::SETULT: LowCC = ISD::SETULT; break; case ISD::SETGT: case ISD::SETUGT: LowCC = ISD::SETUGT; break; case ISD::SETLE: case ISD::SETULE: LowCC = ISD::SETULE; break; case ISD::SETGE: case ISD::SETUGE: LowCC = ISD::SETUGE; break; } // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; // NOTE: on targets without efficient SELECT of bools, we can always use // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); SDOperand Tmp1, Tmp2; Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC, false, DagCombineInfo); if (!Tmp1.Val) Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC); Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, CCCode, false, DagCombineInfo); if (!Tmp2.Val) Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, DAG.getCondCode(CCCode)); ConstantSDNode *Tmp1C = dyn_cast(Tmp1.Val); ConstantSDNode *Tmp2C = dyn_cast(Tmp2.Val); if ((Tmp1C && Tmp1C->isNullValue()) || (Tmp2C && Tmp2C->isNullValue() && (CCCode == ISD::SETLE || CCCode == ISD::SETGE || CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || (Tmp2C && Tmp2C->getAPIntValue() == 1 && (CCCode == ISD::SETLT || CCCode == ISD::SETGT || CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { // low part is known false, returns high part. // For LE / GE, if high part is known false, ignore the low part. // For LT / GT, if high part is known true, ignore the low part. NewLHS = Tmp2; NewRHS = SDOperand(); return; } NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETEQ, false, DagCombineInfo); if (!NewLHS.Val) NewLHS = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, ISD::SETEQ); NewLHS = DAG.getNode(ISD::SELECT, Tmp1.getValueType(), NewLHS, Tmp1, Tmp2); NewRHS = SDOperand(); } SDOperand DAGTypeLegalizer::ExpandOperand_STORE(StoreSDNode *N, unsigned OpNo) { // FIXME: Add support for indexed stores. assert(OpNo == 1 && "Can only expand the stored value so far"); MVT VT = N->getOperand(1).getValueType(); MVT NVT = TLI.getTypeToTransformTo(VT); SDOperand Ch = N->getChain(); SDOperand Ptr = N->getBasePtr(); int SVOffset = N->getSrcValueOffset(); unsigned Alignment = N->getAlignment(); bool isVolatile = N->isVolatile(); SDOperand Lo, Hi; assert(!(NVT.getSizeInBits() & 7) && "Expanded type not byte sized!"); if (!N->isTruncatingStore()) { unsigned IncrementSize = 0; GetExpandedOp(N->getValue(), Lo, Hi); IncrementSize = Hi.getValueType().getSizeInBits()/8; if (TLI.isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset, isVolatile, Alignment); Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); assert(isTypeLegal(Ptr.getValueType()) && "Pointers must be legal!"); Hi = DAG.getStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize, isVolatile, MinAlign(Alignment, IncrementSize)); return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); } else if (N->getMemoryVT().getSizeInBits() <= NVT.getSizeInBits()) { GetExpandedOp(N->getValue(), Lo, Hi); return DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset, N->getMemoryVT(), isVolatile, Alignment); } else if (TLI.isLittleEndian()) { // Little-endian - low bits are at low addresses. GetExpandedOp(N->getValue(), Lo, Hi); Lo = DAG.getStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset, isVolatile, Alignment); unsigned ExcessBits = N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); MVT NEVT = MVT::getIntegerVT(ExcessBits); // Increment the pointer to the other half. unsigned IncrementSize = NVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize, NEVT, isVolatile, MinAlign(Alignment, IncrementSize)); return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); } else { // Big-endian - high bits are at low addresses. Favor aligned stores at // the cost of some bit-fiddling. GetExpandedOp(N->getValue(), Lo, Hi); MVT EVT = N->getMemoryVT(); unsigned EBytes = EVT.getStoreSizeInBits()/8; unsigned IncrementSize = NVT.getSizeInBits()/8; unsigned ExcessBits = (EBytes - IncrementSize)*8; MVT HiVT = MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits); if (ExcessBits < NVT.getSizeInBits()) { // Transfer high bits from the top of Lo to the bottom of Hi. Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(NVT.getSizeInBits() - ExcessBits, TLI.getShiftAmountTy())); Hi = DAG.getNode(ISD::OR, NVT, Hi, DAG.getNode(ISD::SRL, NVT, Lo, DAG.getConstant(ExcessBits, TLI.getShiftAmountTy()))); } // Store both the high bits and maybe some of the low bits. Hi = DAG.getTruncStore(Ch, Hi, Ptr, N->getSrcValue(), SVOffset, HiVT, isVolatile, Alignment); // Increment the pointer to the other half. Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); // Store the lowest ExcessBits bits in the second half. Lo = DAG.getTruncStore(Ch, Lo, Ptr, N->getSrcValue(), SVOffset+IncrementSize, MVT::getIntegerVT(ExcessBits), isVolatile, MinAlign(Alignment, IncrementSize)); return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); } } SDOperand DAGTypeLegalizer::ExpandOperand_BUILD_VECTOR(SDNode *N) { // The vector type is legal but the element type needs expansion. MVT VecVT = N->getValueType(0); unsigned NumElts = VecVT.getVectorNumElements(); MVT OldVT = N->getOperand(0).getValueType(); MVT NewVT = TLI.getTypeToTransformTo(OldVT); assert(OldVT.getSizeInBits() == 2 * NewVT.getSizeInBits() && "Do not know how to expand this operand!"); // Build a vector of twice the length out of the expanded elements. // For example <2 x i64> -> <4 x i32>. std::vector NewElts; NewElts.reserve(NumElts*2); for (unsigned i = 0; i < NumElts; ++i) { SDOperand Lo, Hi; GetExpandedOp(N->getOperand(i), Lo, Hi); if (TLI.isBigEndian()) std::swap(Lo, Hi); NewElts.push_back(Lo); NewElts.push_back(Hi); } SDOperand NewVec = DAG.getNode(ISD::BUILD_VECTOR, MVT::getVectorVT(NewVT, NewElts.size()), &NewElts[0], NewElts.size()); // Convert the new vector to the old vector type. return DAG.getNode(ISD::BIT_CONVERT, VecVT, NewVec); }