//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the SDNode class and derived classes, which are used to // represent the nodes and operations present in a SelectionDAG. These nodes // and operations are machine code level operations, with some similarities to // the GCC RTL representation. // // Clients should include the SelectionDAG.h file instead of this file directly. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H #define LLVM_CODEGEN_SELECTIONDAGNODES_H #include "llvm/Constants.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/Support/MathExtras.h" #include "llvm/System/DataTypes.h" #include "llvm/Support/DebugLoc.h" #include namespace llvm { class SelectionDAG; class GlobalValue; class MachineBasicBlock; class MachineConstantPoolValue; class SDNode; class Value; template struct DenseMapInfo; template struct simplify_type; template struct ilist_traits; void checkForCycles(const SDNode *N); /// SDVTList - This represents a list of ValueType's that has been intern'd by /// a SelectionDAG. Instances of this simple value class are returned by /// SelectionDAG::getVTList(...). /// struct SDVTList { const EVT *VTs; unsigned int NumVTs; }; /// ISD namespace - This namespace contains an enum which represents all of the /// SelectionDAG node types and value types. /// namespace ISD { //===--------------------------------------------------------------------===// /// ISD::NodeType enum - This enum defines the target-independent operators /// for a SelectionDAG. /// /// Targets may also define target-dependent operator codes for SDNodes. For /// example, on x86, these are the enum values in the X86ISD namespace. /// Targets should aim to use target-independent operators to model their /// instruction sets as much as possible, and only use target-dependent /// operators when they have special requirements. /// /// Finally, during and after selection proper, SNodes may use special /// operator codes that correspond directly with MachineInstr opcodes. These /// are used to represent selected instructions. See the isMachineOpcode() /// and getMachineOpcode() member functions of SDNode. /// enum NodeType { // DELETED_NODE - This is an illegal value that is used to catch // errors. This opcode is not a legal opcode for any node. DELETED_NODE, // EntryToken - This is the marker used to indicate the start of the region. EntryToken, // TokenFactor - This node takes multiple tokens as input and produces a // single token result. This is used to represent the fact that the operand // operators are independent of each other. TokenFactor, // AssertSext, AssertZext - These nodes record if a register contains a // value that has already been zero or sign extended from a narrower type. // These nodes take two operands. The first is the node that has already // been extended, and the second is a value type node indicating the width // of the extension AssertSext, AssertZext, // Various leaf nodes. BasicBlock, VALUETYPE, CONDCODE, Register, Constant, ConstantFP, GlobalAddress, GlobalTLSAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol, BlockAddress, // The address of the GOT GLOBAL_OFFSET_TABLE, // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and // llvm.returnaddress on the DAG. These nodes take one operand, the index // of the frame or return address to return. An index of zero corresponds // to the current function's frame or return address, an index of one to the // parent's frame or return address, and so on. FRAMEADDR, RETURNADDR, // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to // first (possible) on-stack argument. This is needed for correct stack // adjustment during unwind. FRAME_TO_ARGS_OFFSET, // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the // address of the exception block on entry to an landing pad block. EXCEPTIONADDR, // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the // address of the Language Specific Data Area for the enclosing function. LSDAADDR, // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents // the selection index of the exception thrown. EHSELECTION, // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents // 'eh_return' gcc dwarf builtin, which is used to return from // exception. The general meaning is: adjust stack by OFFSET and pass // execution to HANDLER. Many platform-related details also :) EH_RETURN, // TargetConstant* - Like Constant*, but the DAG does not do any folding or // simplification of the constant. TargetConstant, TargetConstantFP, // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or // anything else with this node, and this is valid in the target-specific // dag, turning into a GlobalAddress operand. TargetGlobalAddress, TargetGlobalTLSAddress, TargetFrameIndex, TargetJumpTable, TargetConstantPool, TargetExternalSymbol, TargetBlockAddress, /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) /// This node represents a target intrinsic function with no side effects. /// The first operand is the ID number of the intrinsic from the /// llvm::Intrinsic namespace. The operands to the intrinsic follow. The /// node has returns the result of the intrinsic. INTRINSIC_WO_CHAIN, /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) /// This node represents a target intrinsic function with side effects that /// returns a result. The first operand is a chain pointer. The second is /// the ID number of the intrinsic from the llvm::Intrinsic namespace. The /// operands to the intrinsic follow. The node has two results, the result /// of the intrinsic and an output chain. INTRINSIC_W_CHAIN, /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) /// This node represents a target intrinsic function with side effects that /// does not return a result. The first operand is a chain pointer. The /// second is the ID number of the intrinsic from the llvm::Intrinsic /// namespace. The operands to the intrinsic follow. INTRINSIC_VOID, // CopyToReg - This node has three operands: a chain, a register number to // set to this value, and a value. CopyToReg, // CopyFromReg - This node indicates that the input value is a virtual or // physical register that is defined outside of the scope of this // SelectionDAG. The register is available from the RegisterSDNode object. CopyFromReg, // UNDEF - An undefined node UNDEF, // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by // a Constant, which is required to be operand #1) half of the integer or // float value specified as operand #0. This is only for use before // legalization, for values that will be broken into multiple registers. EXTRACT_ELEMENT, // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given // two values of the same integer value type, this produces a value twice as // big. Like EXTRACT_ELEMENT, this can only be used before legalization. BUILD_PAIR, // MERGE_VALUES - This node takes multiple discrete operands and returns // them all as its individual results. This nodes has exactly the same // number of inputs and outputs. This node is useful for some pieces of the // code generator that want to think about a single node with multiple // results, not multiple nodes. MERGE_VALUES, // Simple integer binary arithmetic operators. ADD, SUB, MUL, SDIV, UDIV, SREM, UREM, // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing // a signed/unsigned value of type i[2*N], and return the full value as // two results, each of type iN. SMUL_LOHI, UMUL_LOHI, // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and // remainder result. SDIVREM, UDIVREM, // CARRY_FALSE - This node is used when folding other nodes, // like ADDC/SUBC, which indicate the carry result is always false. CARRY_FALSE, // Carry-setting nodes for multiple precision addition and subtraction. // These nodes take two operands of the same value type, and produce two // results. The first result is the normal add or sub result, the second // result is the carry flag result. ADDC, SUBC, // Carry-using nodes for multiple precision addition and subtraction. These // nodes take three operands: The first two are the normal lhs and rhs to // the add or sub, and the third is the input carry flag. These nodes // produce two results; the normal result of the add or sub, and the output // carry flag. These nodes both read and write a carry flag to allow them // to them to be chained together for add and sub of arbitrarily large // values. ADDE, SUBE, // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition. // These nodes take two operands: the normal LHS and RHS to the add. They // produce two results: the normal result of the add, and a boolean that // indicates if an overflow occured (*not* a flag, because it may be stored // to memory, etc.). If the type of the boolean is not i1 then the high // bits conform to getBooleanContents. // These nodes are generated from the llvm.[su]add.with.overflow intrinsics. SADDO, UADDO, // Same for subtraction SSUBO, USUBO, // Same for multiplication SMULO, UMULO, // Simple binary floating point operators. FADD, FSUB, FMUL, FDIV, FREM, // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This // DAG node does not require that X and Y have the same type, just that they // are both floating point. X and the result must have the same type. // FCOPYSIGN(f32, f64) is allowed. FCOPYSIGN, // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point // value as an integer 0/1 value. FGETSIGN, /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the /// specified, possibly variable, elements. The number of elements is /// required to be a power of two. The types of the operands must all be /// the same and must match the vector element type, except that integer /// types are allowed to be larger than the element type, in which case /// the operands are implicitly truncated. BUILD_VECTOR, /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element /// at IDX replaced with VAL. If the type of VAL is larger than the vector /// element type then VAL is truncated before replacement. INSERT_VECTOR_ELT, /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR /// identified by the (potentially variable) element number IDX. If the /// return type is an integer type larger than the element type of the /// vector, the result is extended to the width of the return type. EXTRACT_VECTOR_ELT, /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of /// vector type with the same length and element type, this produces a /// concatenated vector result value, with length equal to the sum of the /// lengths of the input vectors. CONCAT_VECTORS, /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an /// vector value) starting with the (potentially variable) element number /// IDX, which must be a multiple of the result vector length. EXTRACT_SUBVECTOR, /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as /// VEC1/VEC2. A VECTOR_SHUFFLE node also contains an array of constant int /// values that indicate which value (or undef) each result element will /// get. These constant ints are accessible through the /// ShuffleVectorSDNode class. This is quite similar to the Altivec /// 'vperm' instruction, except that the indices must be constants and are /// in terms of the element size of VEC1/VEC2, not in terms of bytes. VECTOR_SHUFFLE, /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a /// scalar value into element 0 of the resultant vector type. The top /// elements 1 to N-1 of the N-element vector are undefined. The type /// of the operand must match the vector element type, except when they /// are integer types. In this case the operand is allowed to be wider /// than the vector element type, and is implicitly truncated to it. SCALAR_TO_VECTOR, // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing // an unsigned/signed value of type i[2*N], then return the top part. MULHU, MULHS, // Bitwise operators - logical and, logical or, logical xor, shift left, // shift right algebraic (shift in sign bits), shift right logical (shift in // zeroes), rotate left, rotate right, and byteswap. AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP, // Counting operators CTTZ, CTLZ, CTPOP, // Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not // i1 then the high bits must conform to getBooleanContents. SELECT, // Select with condition operator - This selects between a true value and // a false value (ops #2 and #3) based on the boolean result of comparing // the lhs and rhs (ops #0 and #1) of a conditional expression with the // condition code in op #4, a CondCodeSDNode. SELECT_CC, // SetCC operator - This evaluates to a true value iff the condition is // true. If the result value type is not i1 then the high bits conform // to getBooleanContents. The operands to this are the left and right // operands to compare (ops #0, and #1) and the condition code to compare // them with (op #2) as a CondCodeSDNode. SETCC, // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of // integer elements with all bits of the result elements set to true if the // comparison is true or all cleared if the comparison is false. The // operands to this are the left and right operands to compare (LHS/RHS) and // the condition code to compare them with (COND) as a CondCodeSDNode. VSETCC, // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded // integer shift operations, just like ADD/SUB_PARTS. The operation // ordering is: // [Lo,Hi] = op [LoLHS,HiLHS], Amt SHL_PARTS, SRA_PARTS, SRL_PARTS, // Conversion operators. These are all single input single output // operations. For all of these, the result type must be strictly // wider or narrower (depending on the operation) than the source // type. // SIGN_EXTEND - Used for integer types, replicating the sign bit // into new bits. SIGN_EXTEND, // ZERO_EXTEND - Used for integer types, zeroing the new bits. ZERO_EXTEND, // ANY_EXTEND - Used for integer types. The high bits are undefined. ANY_EXTEND, // TRUNCATE - Completely drop the high bits. TRUNCATE, // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign // depends on the first letter) to floating point. SINT_TO_FP, UINT_TO_FP, // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to // sign extend a small value in a large integer register (e.g. sign // extending the low 8 bits of a 32-bit register to fill the top 24 bits // with the 7th bit). The size of the smaller type is indicated by the 1th // operand, a ValueType node. SIGN_EXTEND_INREG, /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned /// integer. FP_TO_SINT, FP_TO_UINT, /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type /// down to the precision of the destination VT. TRUNC is a flag, which is /// always an integer that is zero or one. If TRUNC is 0, this is a /// normal rounding, if it is 1, this FP_ROUND is known to not change the /// value of Y. /// /// The TRUNC = 1 case is used in cases where we know that the value will /// not be modified by the node, because Y is not using any of the extra /// precision of source type. This allows certain transformations like /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed. FP_ROUND, // FLT_ROUNDS_ - Returns current rounding mode: // -1 Undefined // 0 Round to 0 // 1 Round to nearest // 2 Round to +inf // 3 Round to -inf FLT_ROUNDS_, /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and /// rounds it to a floating point value. It then promotes it and returns it /// in a register of the same size. This operation effectively just /// discards excess precision. The type to round down to is specified by /// the VT operand, a VTSDNode. FP_ROUND_INREG, /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type. FP_EXTEND, // BIT_CONVERT - This operator converts between integer, vector and FP // values, as if the value was stored to memory with one type and loaded // from the same address with the other type (or equivalently for vector // format conversions, etc). The source and result are required to have // the same bit size (e.g. f32 <-> i32). This can also be used for // int-to-int or fp-to-fp conversions, but that is a noop, deleted by // getNode(). BIT_CONVERT, // CONVERT_RNDSAT - This operator is used to support various conversions // between various types (float, signed, unsigned and vectors of those // types) with rounding and saturation. NOTE: Avoid using this operator as // most target don't support it and the operator might be removed in the // future. It takes the following arguments: // 0) value // 1) dest type (type to convert to) // 2) src type (type to convert from) // 3) rounding imm // 4) saturation imm // 5) ISD::CvtCode indicating the type of conversion to do CONVERT_RNDSAT, // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW, // FLOG, FLOG2, FLOG10, FEXP, FEXP2, // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating // point operations. These are inspired by libm. FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW, FLOG, FLOG2, FLOG10, FEXP, FEXP2, FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR, // LOAD and STORE have token chains as their first operand, then the same // operands as an LLVM load/store instruction, then an offset node that // is added / subtracted from the base pointer to form the address (for // indexed memory ops). LOAD, STORE, // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned // to a specified boundary. This node always has two return values: a new // stack pointer value and a chain. The first operand is the token chain, // the second is the number of bytes to allocate, and the third is the // alignment boundary. The size is guaranteed to be a multiple of the stack // alignment, and the alignment is guaranteed to be bigger than the stack // alignment (if required) or 0 to get standard stack alignment. DYNAMIC_STACKALLOC, // Control flow instructions. These all have token chains. // BR - Unconditional branch. The first operand is the chain // operand, the second is the MBB to branch to. BR, // BRIND - Indirect branch. The first operand is the chain, the second // is the value to branch to, which must be of the same type as the target's // pointer type. BRIND, // BR_JT - Jumptable branch. The first operand is the chain, the second // is the jumptable index, the last one is the jumptable entry index. BR_JT, // BRCOND - Conditional branch. The first operand is the chain, the // second is the condition, the third is the block to branch to if the // condition is true. If the type of the condition is not i1, then the // high bits must conform to getBooleanContents. BRCOND, // BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in // that the condition is represented as condition code, and two nodes to // compare, rather than as a combined SetCC node. The operands in order are // chain, cc, lhs, rhs, block to branch to if condition is true. BR_CC, // INLINEASM - Represents an inline asm block. This node always has two // return values: a chain and a flag result. The inputs are as follows: // Operand #0 : Input chain. // Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string. // Operand #2n+2: A RegisterNode. // Operand #2n+3: A TargetConstant, indicating if the reg is a use/def // Operand #last: Optional, an incoming flag. INLINEASM, // EH_LABEL - Represents a label in mid basic block used to track // locations needed for debug and exception handling tables. These nodes // take a chain as input and return a chain. EH_LABEL, // STACKSAVE - STACKSAVE has one operand, an input chain. It produces a // value, the same type as the pointer type for the system, and an output // chain. STACKSAVE, // STACKRESTORE has two operands, an input chain and a pointer to restore to // it returns an output chain. STACKRESTORE, // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of // a call sequence, and carry arbitrary information that target might want // to know. The first operand is a chain, the rest are specified by the // target and not touched by the DAG optimizers. // CALLSEQ_START..CALLSEQ_END pairs may not be nested. CALLSEQ_START, // Beginning of a call sequence CALLSEQ_END, // End of a call sequence // VAARG - VAARG has three operands: an input chain, a pointer, and a // SRCVALUE. It returns a pair of values: the vaarg value and a new chain. VAARG, // VACOPY - VACOPY has five operands: an input chain, a destination pointer, // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the // source. VACOPY, // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a // pointer, and a SRCVALUE. VAEND, VASTART, // SRCVALUE - This is a node type that holds a Value* that is used to // make reference to a value in the LLVM IR. SRCVALUE, // PCMARKER - This corresponds to the pcmarker intrinsic. PCMARKER, // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic. // The only operand is a chain and a value and a chain are produced. The // value is the contents of the architecture specific cycle counter like // register (or other high accuracy low latency clock source) READCYCLECOUNTER, // HANDLENODE node - Used as a handle for various purposes. HANDLENODE, // TRAMPOLINE - This corresponds to the init_trampoline intrinsic. // It takes as input a token chain, the pointer to the trampoline, // the pointer to the nested function, the pointer to pass for the // 'nest' parameter, a SRCVALUE for the trampoline and another for // the nested function (allowing targets to access the original // Function*). It produces the result of the intrinsic and a token // chain as output. TRAMPOLINE, // TRAP - Trapping instruction TRAP, // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are // their first operand. The other operands are the address to prefetch, // read / write specifier, and locality specifier. PREFETCH, // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load, // store-store, device) // This corresponds to the memory.barrier intrinsic. // it takes an input chain, 4 operands to specify the type of barrier, an // operand specifying if the barrier applies to device and uncached memory // and produces an output chain. MEMBARRIER, // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) // this corresponds to the atomic.lcs intrinsic. // cmp is compared to *ptr, and if equal, swap is stored in *ptr. // the return is always the original value in *ptr ATOMIC_CMP_SWAP, // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) // this corresponds to the atomic.swap intrinsic. // amt is stored to *ptr atomically. // the return is always the original value in *ptr ATOMIC_SWAP, // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt) // this corresponds to the atomic.load.[OpName] intrinsic. // op(*ptr, amt) is stored to *ptr atomically. // the return is always the original value in *ptr ATOMIC_LOAD_ADD, ATOMIC_LOAD_SUB, ATOMIC_LOAD_AND, ATOMIC_LOAD_OR, ATOMIC_LOAD_XOR, ATOMIC_LOAD_NAND, ATOMIC_LOAD_MIN, ATOMIC_LOAD_MAX, ATOMIC_LOAD_UMIN, ATOMIC_LOAD_UMAX, /// BUILTIN_OP_END - This must be the last enum value in this list. /// The target-specific pre-isel opcode values start here. BUILTIN_OP_END }; /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations /// which do not reference a specific memory location should be less than /// this value. Those that do must not be less than this value, and can /// be used with SelectionDAG::getMemIntrinsicNode. static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+80; /// Node predicates /// isBuildVectorAllOnes - Return true if the specified node is a /// BUILD_VECTOR where all of the elements are ~0 or undef. bool isBuildVectorAllOnes(const SDNode *N); /// isBuildVectorAllZeros - Return true if the specified node is a /// BUILD_VECTOR where all of the elements are 0 or undef. bool isBuildVectorAllZeros(const SDNode *N); /// isScalarToVector - Return true if the specified node is a /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low /// element is not an undef. bool isScalarToVector(const SDNode *N); //===--------------------------------------------------------------------===// /// MemIndexedMode enum - This enum defines the load / store indexed /// addressing modes. /// /// UNINDEXED "Normal" load / store. The effective address is already /// computed and is available in the base pointer. The offset /// operand is always undefined. In addition to producing a /// chain, an unindexed load produces one value (result of the /// load); an unindexed store does not produce a value. /// /// PRE_INC Similar to the unindexed mode where the effective address is /// PRE_DEC the value of the base pointer add / subtract the offset. /// It considers the computation as being folded into the load / /// store operation (i.e. the load / store does the address /// computation as well as performing the memory transaction). /// The base operand is always undefined. In addition to /// producing a chain, pre-indexed load produces two values /// (result of the load and the result of the address /// computation); a pre-indexed store produces one value (result /// of the address computation). /// /// POST_INC The effective address is the value of the base pointer. The /// POST_DEC value of the offset operand is then added to / subtracted /// from the base after memory transaction. In addition to /// producing a chain, post-indexed load produces two values /// (the result of the load and the result of the base +/- offset /// computation); a post-indexed store produces one value (the /// the result of the base +/- offset computation). /// enum MemIndexedMode { UNINDEXED = 0, PRE_INC, PRE_DEC, POST_INC, POST_DEC, LAST_INDEXED_MODE }; //===--------------------------------------------------------------------===// /// LoadExtType enum - This enum defines the three variants of LOADEXT /// (load with extension). /// /// SEXTLOAD loads the integer operand and sign extends it to a larger /// integer result type. /// ZEXTLOAD loads the integer operand and zero extends it to a larger /// integer result type. /// EXTLOAD is used for three things: floating point extending loads, /// integer extending loads [the top bits are undefined], and vector /// extending loads [load into low elt]. /// enum LoadExtType { NON_EXTLOAD = 0, EXTLOAD, SEXTLOAD, ZEXTLOAD, LAST_LOADEXT_TYPE }; //===--------------------------------------------------------------------===// /// ISD::CondCode enum - These are ordered carefully to make the bitfields /// below work out, when considering SETFALSE (something that never exists /// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal /// to. If the "N" column is 1, the result of the comparison is undefined if /// the input is a NAN. /// /// All of these (except for the 'always folded ops') should be handled for /// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT, /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used. /// /// Note that these are laid out in a specific order to allow bit-twiddling /// to transform conditions. enum CondCode { // Opcode N U L G E Intuitive operation SETFALSE, // 0 0 0 0 Always false (always folded) SETOEQ, // 0 0 0 1 True if ordered and equal SETOGT, // 0 0 1 0 True if ordered and greater than SETOGE, // 0 0 1 1 True if ordered and greater than or equal SETOLT, // 0 1 0 0 True if ordered and less than SETOLE, // 0 1 0 1 True if ordered and less than or equal SETONE, // 0 1 1 0 True if ordered and operands are unequal SETO, // 0 1 1 1 True if ordered (no nans) SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y) SETUEQ, // 1 0 0 1 True if unordered or equal SETUGT, // 1 0 1 0 True if unordered or greater than SETUGE, // 1 0 1 1 True if unordered, greater than, or equal SETULT, // 1 1 0 0 True if unordered or less than SETULE, // 1 1 0 1 True if unordered, less than, or equal SETUNE, // 1 1 1 0 True if unordered or not equal SETTRUE, // 1 1 1 1 Always true (always folded) // Don't care operations: undefined if the input is a nan. SETFALSE2, // 1 X 0 0 0 Always false (always folded) SETEQ, // 1 X 0 0 1 True if equal SETGT, // 1 X 0 1 0 True if greater than SETGE, // 1 X 0 1 1 True if greater than or equal SETLT, // 1 X 1 0 0 True if less than SETLE, // 1 X 1 0 1 True if less than or equal SETNE, // 1 X 1 1 0 True if not equal SETTRUE2, // 1 X 1 1 1 Always true (always folded) SETCC_INVALID // Marker value. }; /// isSignedIntSetCC - Return true if this is a setcc instruction that /// performs a signed comparison when used with integer operands. inline bool isSignedIntSetCC(CondCode Code) { return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE; } /// isUnsignedIntSetCC - Return true if this is a setcc instruction that /// performs an unsigned comparison when used with integer operands. inline bool isUnsignedIntSetCC(CondCode Code) { return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE; } /// isTrueWhenEqual - Return true if the specified condition returns true if /// the two operands to the condition are equal. Note that if one of the two /// operands is a NaN, this value is meaningless. inline bool isTrueWhenEqual(CondCode Cond) { return ((int)Cond & 1) != 0; } /// getUnorderedFlavor - This function returns 0 if the condition is always /// false if an operand is a NaN, 1 if the condition is always true if the /// operand is a NaN, and 2 if the condition is undefined if the operand is a /// NaN. inline unsigned getUnorderedFlavor(CondCode Cond) { return ((int)Cond >> 3) & 3; } /// getSetCCInverse - Return the operation corresponding to !(X op Y), where /// 'op' is a valid SetCC operation. CondCode getSetCCInverse(CondCode Operation, bool isInteger); /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) /// when given the operation for (X op Y). CondCode getSetCCSwappedOperands(CondCode Operation); /// getSetCCOrOperation - Return the result of a logical OR between different /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This /// function returns SETCC_INVALID if it is not possible to represent the /// resultant comparison. CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger); /// getSetCCAndOperation - Return the result of a logical AND between /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This /// function returns SETCC_INVALID if it is not possible to represent the /// resultant comparison. CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger); //===--------------------------------------------------------------------===// /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT /// supports. enum CvtCode { CVT_FF, // Float from Float CVT_FS, // Float from Signed CVT_FU, // Float from Unsigned CVT_SF, // Signed from Float CVT_UF, // Unsigned from Float CVT_SS, // Signed from Signed CVT_SU, // Signed from Unsigned CVT_US, // Unsigned from Signed CVT_UU, // Unsigned from Unsigned CVT_INVALID // Marker - Invalid opcode }; } // end llvm::ISD namespace //===----------------------------------------------------------------------===// /// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple /// values as the result of a computation. Many nodes return multiple values, /// from loads (which define a token and a return value) to ADDC (which returns /// a result and a carry value), to calls (which may return an arbitrary number /// of values). /// /// As such, each use of a SelectionDAG computation must indicate the node that /// computes it as well as which return value to use from that node. This pair /// of information is represented with the SDValue value type. /// class SDValue { SDNode *Node; // The node defining the value we are using. unsigned ResNo; // Which return value of the node we are using. public: SDValue() : Node(0), ResNo(0) {} SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {} /// get the index which selects a specific result in the SDNode unsigned getResNo() const { return ResNo; } /// get the SDNode which holds the desired result SDNode *getNode() const { return Node; } /// set the SDNode void setNode(SDNode *N) { Node = N; } inline SDNode *operator->() const { return Node; } bool operator==(const SDValue &O) const { return Node == O.Node && ResNo == O.ResNo; } bool operator!=(const SDValue &O) const { return !operator==(O); } bool operator<(const SDValue &O) const { return Node < O.Node || (Node == O.Node && ResNo < O.ResNo); } SDValue getValue(unsigned R) const { return SDValue(Node, R); } // isOperandOf - Return true if this node is an operand of N. bool isOperandOf(SDNode *N) const; /// getValueType - Return the ValueType of the referenced return value. /// inline EVT getValueType() const; /// getValueSizeInBits - Returns the size of the value in bits. /// unsigned getValueSizeInBits() const { return getValueType().getSizeInBits(); } // Forwarding methods - These forward to the corresponding methods in SDNode. inline unsigned getOpcode() const; inline unsigned getNumOperands() const; inline const SDValue &getOperand(unsigned i) const; inline uint64_t getConstantOperandVal(unsigned i) const; inline bool isTargetMemoryOpcode() const; inline bool isTargetOpcode() const; inline bool isMachineOpcode() const; inline unsigned getMachineOpcode() const; inline const DebugLoc getDebugLoc() const; /// reachesChainWithoutSideEffects - Return true if this operand (which must /// be a chain) reaches the specified operand without crossing any /// side-effecting instructions. In practice, this looks through token /// factors and non-volatile loads. In order to remain efficient, this only /// looks a couple of nodes in, it does not do an exhaustive search. bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth = 2) const; /// use_empty - Return true if there are no nodes using value ResNo /// of Node. /// inline bool use_empty() const; /// hasOneUse - Return true if there is exactly one node using value /// ResNo of Node. /// inline bool hasOneUse() const; }; template<> struct DenseMapInfo { static inline SDValue getEmptyKey() { return SDValue((SDNode*)-1, -1U); } static inline SDValue getTombstoneKey() { return SDValue((SDNode*)-1, 0); } static unsigned getHashValue(const SDValue &Val) { return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^ (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo(); } static bool isEqual(const SDValue &LHS, const SDValue &RHS) { return LHS == RHS; } }; template <> struct isPodLike { static const bool value = true; }; /// simplify_type specializations - Allow casting operators to work directly on /// SDValues as if they were SDNode*'s. template<> struct simplify_type { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(const SDValue &Val) { return static_cast(Val.getNode()); } }; template<> struct simplify_type { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(const SDValue &Val) { return static_cast(Val.getNode()); } }; /// SDUse - Represents a use of a SDNode. This class holds an SDValue, /// which records the SDNode being used and the result number, a /// pointer to the SDNode using the value, and Next and Prev pointers, /// which link together all the uses of an SDNode. /// class SDUse { /// Val - The value being used. SDValue Val; /// User - The user of this value. SDNode *User; /// Prev, Next - Pointers to the uses list of the SDNode referred by /// this operand. SDUse **Prev, *Next; SDUse(const SDUse &U); // Do not implement void operator=(const SDUse &U); // Do not implement public: SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {} /// Normally SDUse will just implicitly convert to an SDValue that it holds. operator const SDValue&() const { return Val; } /// If implicit conversion to SDValue doesn't work, the get() method returns /// the SDValue. const SDValue &get() const { return Val; } /// getUser - This returns the SDNode that contains this Use. SDNode *getUser() { return User; } /// getNext - Get the next SDUse in the use list. SDUse *getNext() const { return Next; } /// getNode - Convenience function for get().getNode(). SDNode *getNode() const { return Val.getNode(); } /// getResNo - Convenience function for get().getResNo(). unsigned getResNo() const { return Val.getResNo(); } /// getValueType - Convenience function for get().getValueType(). EVT getValueType() const { return Val.getValueType(); } /// operator== - Convenience function for get().operator== bool operator==(const SDValue &V) const { return Val == V; } /// operator!= - Convenience function for get().operator!= bool operator!=(const SDValue &V) const { return Val != V; } /// operator< - Convenience function for get().operator< bool operator<(const SDValue &V) const { return Val < V; } private: friend class SelectionDAG; friend class SDNode; void setUser(SDNode *p) { User = p; } /// set - Remove this use from its existing use list, assign it the /// given value, and add it to the new value's node's use list. inline void set(const SDValue &V); /// setInitial - like set, but only supports initializing a newly-allocated /// SDUse with a non-null value. inline void setInitial(const SDValue &V); /// setNode - like set, but only sets the Node portion of the value, /// leaving the ResNo portion unmodified. inline void setNode(SDNode *N); void addToList(SDUse **List) { Next = *List; if (Next) Next->Prev = &Next; Prev = List; *List = this; } void removeFromList() { *Prev = Next; if (Next) Next->Prev = Prev; } }; /// simplify_type specializations - Allow casting operators to work directly on /// SDValues as if they were SDNode*'s. template<> struct simplify_type { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(const SDUse &Val) { return static_cast(Val.getNode()); } }; template<> struct simplify_type { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(const SDUse &Val) { return static_cast(Val.getNode()); } }; /// SDNode - Represents one node in the SelectionDAG. /// class SDNode : public FoldingSetNode, public ilist_node { private: /// NodeType - The operation that this node performs. /// int16_t NodeType; /// OperandsNeedDelete - This is true if OperandList was new[]'d. If true, /// then they will be delete[]'d when the node is destroyed. uint16_t OperandsNeedDelete : 1; /// HasDebugValue - This tracks whether this node has one or more dbg_value /// nodes corresponding to it. uint16_t HasDebugValue : 1; protected: /// SubclassData - This member is defined by this class, but is not used for /// anything. Subclasses can use it to hold whatever state they find useful. /// This field is initialized to zero by the ctor. uint16_t SubclassData : 14; private: /// NodeId - Unique id per SDNode in the DAG. int NodeId; /// OperandList - The values that are used by this operation. /// SDUse *OperandList; /// ValueList - The types of the values this node defines. SDNode's may /// define multiple values simultaneously. const EVT *ValueList; /// UseList - List of uses for this SDNode. SDUse *UseList; /// NumOperands/NumValues - The number of entries in the Operand/Value list. unsigned short NumOperands, NumValues; /// debugLoc - source line information. DebugLoc debugLoc; /// getValueTypeList - Return a pointer to the specified value type. static const EVT *getValueTypeList(EVT VT); friend class SelectionDAG; friend struct ilist_traits; public: //===--------------------------------------------------------------------===// // Accessors // /// getOpcode - Return the SelectionDAG opcode value for this node. For /// pre-isel nodes (those for which isMachineOpcode returns false), these /// are the opcode values in the ISD and ISD namespaces. For /// post-isel opcodes, see getMachineOpcode. unsigned getOpcode() const { return (unsigned short)NodeType; } /// isTargetOpcode - Test if this node has a target-specific opcode (in the /// \ISD namespace). bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; } /// isTargetMemoryOpcode - Test if this node has a target-specific /// memory-referencing opcode (in the \ISD namespace and /// greater than FIRST_TARGET_MEMORY_OPCODE). bool isTargetMemoryOpcode() const { return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE; } /// isMachineOpcode - Test if this node has a post-isel opcode, directly /// corresponding to a MachineInstr opcode. bool isMachineOpcode() const { return NodeType < 0; } /// getMachineOpcode - This may only be called if isMachineOpcode returns /// true. It returns the MachineInstr opcode value that the node's opcode /// corresponds to. unsigned getMachineOpcode() const { assert(isMachineOpcode() && "Not a MachineInstr opcode!"); return ~NodeType; } /// getHasDebugValue - get this bit. bool getHasDebugValue() const { return HasDebugValue; } /// setHasDebugValue - set this bit. void setHasDebugValue(bool b) { HasDebugValue = b; } /// use_empty - Return true if there are no uses of this node. /// bool use_empty() const { return UseList == NULL; } /// hasOneUse - Return true if there is exactly one use of this node. /// bool hasOneUse() const { return !use_empty() && llvm::next(use_begin()) == use_end(); } /// use_size - Return the number of uses of this node. This method takes /// time proportional to the number of uses. /// size_t use_size() const { return std::distance(use_begin(), use_end()); } /// getNodeId - Return the unique node id. /// int getNodeId() const { return NodeId; } /// setNodeId - Set unique node id. void setNodeId(int Id) { NodeId = Id; } /// getDebugLoc - Return the source location info. const DebugLoc getDebugLoc() const { return debugLoc; } /// setDebugLoc - Set source location info. Try to avoid this, putting /// it in the constructor is preferable. void setDebugLoc(const DebugLoc dl) { debugLoc = dl; } /// use_iterator - This class provides iterator support for SDUse /// operands that use a specific SDNode. class use_iterator : public std::iterator { SDUse *Op; explicit use_iterator(SDUse *op) : Op(op) { } friend class SDNode; public: typedef std::iterator::reference reference; typedef std::iterator::pointer pointer; use_iterator(const use_iterator &I) : Op(I.Op) {} use_iterator() : Op(0) {} bool operator==(const use_iterator &x) const { return Op == x.Op; } bool operator!=(const use_iterator &x) const { return !operator==(x); } /// atEnd - return true if this iterator is at the end of uses list. bool atEnd() const { return Op == 0; } // Iterator traversal: forward iteration only. use_iterator &operator++() { // Preincrement assert(Op && "Cannot increment end iterator!"); Op = Op->getNext(); return *this; } use_iterator operator++(int) { // Postincrement use_iterator tmp = *this; ++*this; return tmp; } /// Retrieve a pointer to the current user node. SDNode *operator*() const { assert(Op && "Cannot dereference end iterator!"); return Op->getUser(); } SDNode *operator->() const { return operator*(); } SDUse &getUse() const { return *Op; } /// getOperandNo - Retrieve the operand # of this use in its user. /// unsigned getOperandNo() const { assert(Op && "Cannot dereference end iterator!"); return (unsigned)(Op - Op->getUser()->OperandList); } }; /// use_begin/use_end - Provide iteration support to walk over all uses /// of an SDNode. use_iterator use_begin() const { return use_iterator(UseList); } static use_iterator use_end() { return use_iterator(0); } /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the /// indicated value. This method ignores uses of other values defined by this /// operation. bool hasNUsesOfValue(unsigned NUses, unsigned Value) const; /// hasAnyUseOfValue - Return true if there are any use of the indicated /// value. This method ignores uses of other values defined by this operation. bool hasAnyUseOfValue(unsigned Value) const; /// isOnlyUserOf - Return true if this node is the only use of N. /// bool isOnlyUserOf(SDNode *N) const; /// isOperandOf - Return true if this node is an operand of N. /// bool isOperandOf(SDNode *N) const; /// isPredecessorOf - Return true if this node is a predecessor of N. This /// node is either an operand of N or it can be reached by recursively /// traversing up the operands. /// NOTE: this is an expensive method. Use it carefully. bool isPredecessorOf(SDNode *N) const; /// getNumOperands - Return the number of values used by this operation. /// unsigned getNumOperands() const { return NumOperands; } /// getConstantOperandVal - Helper method returns the integer value of a /// ConstantSDNode operand. uint64_t getConstantOperandVal(unsigned Num) const; const SDValue &getOperand(unsigned Num) const { assert(Num < NumOperands && "Invalid child # of SDNode!"); return OperandList[Num]; } typedef SDUse* op_iterator; op_iterator op_begin() const { return OperandList; } op_iterator op_end() const { return OperandList+NumOperands; } SDVTList getVTList() const { SDVTList X = { ValueList, NumValues }; return X; } /// getFlaggedNode - If this node has a flag operand, return the node /// to which the flag operand points. Otherwise return NULL. SDNode *getFlaggedNode() const { if (getNumOperands() != 0 && getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag) return getOperand(getNumOperands()-1).getNode(); return 0; } // If this is a pseudo op, like copyfromreg, look to see if there is a // real target node flagged to it. If so, return the target node. const SDNode *getFlaggedMachineNode() const { const SDNode *FoundNode = this; // Climb up flag edges until a machine-opcode node is found, or the // end of the chain is reached. while (!FoundNode->isMachineOpcode()) { const SDNode *N = FoundNode->getFlaggedNode(); if (!N) break; FoundNode = N; } return FoundNode; } /// getNumValues - Return the number of values defined/returned by this /// operator. /// unsigned getNumValues() const { return NumValues; } /// getValueType - Return the type of a specified result. /// EVT getValueType(unsigned ResNo) const { assert(ResNo < NumValues && "Illegal result number!"); return ValueList[ResNo]; } /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)). /// unsigned getValueSizeInBits(unsigned ResNo) const { return getValueType(ResNo).getSizeInBits(); } typedef const EVT* value_iterator; value_iterator value_begin() const { return ValueList; } value_iterator value_end() const { return ValueList+NumValues; } /// getOperationName - Return the opcode of this operation for printing. /// std::string getOperationName(const SelectionDAG *G = 0) const; static const char* getIndexedModeName(ISD::MemIndexedMode AM); void print_types(raw_ostream &OS, const SelectionDAG *G) const; void print_details(raw_ostream &OS, const SelectionDAG *G) const; void print(raw_ostream &OS, const SelectionDAG *G = 0) const; void printr(raw_ostream &OS, const SelectionDAG *G = 0) const; /// printrFull - Print a SelectionDAG node and all children down to /// the leaves. The given SelectionDAG allows target-specific nodes /// to be printed in human-readable form. Unlike printr, this will /// print the whole DAG, including children that appear multiple /// times. /// void printrFull(raw_ostream &O, const SelectionDAG *G = 0) const; /// printrWithDepth - Print a SelectionDAG node and children up to /// depth "depth." The given SelectionDAG allows target-specific /// nodes to be printed in human-readable form. Unlike printr, this /// will print children that appear multiple times wherever they are /// used. /// void printrWithDepth(raw_ostream &O, const SelectionDAG *G = 0, unsigned depth = 100) const; /// dump - Dump this node, for debugging. void dump() const; /// dumpr - Dump (recursively) this node and its use-def subgraph. void dumpr() const; /// dump - Dump this node, for debugging. /// The given SelectionDAG allows target-specific nodes to be printed /// in human-readable form. void dump(const SelectionDAG *G) const; /// dumpr - Dump (recursively) this node and its use-def subgraph. /// The given SelectionDAG allows target-specific nodes to be printed /// in human-readable form. void dumpr(const SelectionDAG *G) const; /// dumprFull - printrFull to dbgs(). The given SelectionDAG allows /// target-specific nodes to be printed in human-readable form. /// Unlike dumpr, this will print the whole DAG, including children /// that appear multiple times. /// void dumprFull(const SelectionDAG *G = 0) const; /// dumprWithDepth - printrWithDepth to dbgs(). The given /// SelectionDAG allows target-specific nodes to be printed in /// human-readable form. Unlike dumpr, this will print children /// that appear multiple times wherever they are used. /// void dumprWithDepth(const SelectionDAG *G = 0, unsigned depth = 100) const; static bool classof(const SDNode *) { return true; } /// Profile - Gather unique data for the node. /// void Profile(FoldingSetNodeID &ID) const; /// addUse - This method should only be used by the SDUse class. /// void addUse(SDUse &U) { U.addToList(&UseList); } protected: static SDVTList getSDVTList(EVT VT) { SDVTList Ret = { getValueTypeList(VT), 1 }; return Ret; } SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops, unsigned NumOps) : NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false), SubclassData(0), NodeId(-1), OperandList(NumOps ? new SDUse[NumOps] : 0), ValueList(VTs.VTs), UseList(NULL), NumOperands(NumOps), NumValues(VTs.NumVTs), debugLoc(dl) { for (unsigned i = 0; i != NumOps; ++i) { OperandList[i].setUser(this); OperandList[i].setInitial(Ops[i]); } checkForCycles(this); } /// This constructor adds no operands itself; operands can be /// set later with InitOperands. SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs) : NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false), SubclassData(0), NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL), NumOperands(0), NumValues(VTs.NumVTs), debugLoc(dl) {} /// InitOperands - Initialize the operands list of this with 1 operand. void InitOperands(SDUse *Ops, const SDValue &Op0) { Ops[0].setUser(this); Ops[0].setInitial(Op0); NumOperands = 1; OperandList = Ops; checkForCycles(this); } /// InitOperands - Initialize the operands list of this with 2 operands. void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) { Ops[0].setUser(this); Ops[0].setInitial(Op0); Ops[1].setUser(this); Ops[1].setInitial(Op1); NumOperands = 2; OperandList = Ops; checkForCycles(this); } /// InitOperands - Initialize the operands list of this with 3 operands. void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1, const SDValue &Op2) { Ops[0].setUser(this); Ops[0].setInitial(Op0); Ops[1].setUser(this); Ops[1].setInitial(Op1); Ops[2].setUser(this); Ops[2].setInitial(Op2); NumOperands = 3; OperandList = Ops; checkForCycles(this); } /// InitOperands - Initialize the operands list of this with 4 operands. void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1, const SDValue &Op2, const SDValue &Op3) { Ops[0].setUser(this); Ops[0].setInitial(Op0); Ops[1].setUser(this); Ops[1].setInitial(Op1); Ops[2].setUser(this); Ops[2].setInitial(Op2); Ops[3].setUser(this); Ops[3].setInitial(Op3); NumOperands = 4; OperandList = Ops; checkForCycles(this); } /// InitOperands - Initialize the operands list of this with N operands. void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) { for (unsigned i = 0; i != N; ++i) { Ops[i].setUser(this); Ops[i].setInitial(Vals[i]); } NumOperands = N; OperandList = Ops; checkForCycles(this); } /// DropOperands - Release the operands and set this node to have /// zero operands. void DropOperands(); }; // Define inline functions from the SDValue class. inline unsigned SDValue::getOpcode() const { return Node->getOpcode(); } inline EVT SDValue::getValueType() const { return Node->getValueType(ResNo); } inline unsigned SDValue::getNumOperands() const { return Node->getNumOperands(); } inline const SDValue &SDValue::getOperand(unsigned i) const { return Node->getOperand(i); } inline uint64_t SDValue::getConstantOperandVal(unsigned i) const { return Node->getConstantOperandVal(i); } inline bool SDValue::isTargetOpcode() const { return Node->isTargetOpcode(); } inline bool SDValue::isTargetMemoryOpcode() const { return Node->isTargetMemoryOpcode(); } inline bool SDValue::isMachineOpcode() const { return Node->isMachineOpcode(); } inline unsigned SDValue::getMachineOpcode() const { return Node->getMachineOpcode(); } inline bool SDValue::use_empty() const { return !Node->hasAnyUseOfValue(ResNo); } inline bool SDValue::hasOneUse() const { return Node->hasNUsesOfValue(1, ResNo); } inline const DebugLoc SDValue::getDebugLoc() const { return Node->getDebugLoc(); } // Define inline functions from the SDUse class. inline void SDUse::set(const SDValue &V) { if (Val.getNode()) removeFromList(); Val = V; if (V.getNode()) V.getNode()->addUse(*this); } inline void SDUse::setInitial(const SDValue &V) { Val = V; V.getNode()->addUse(*this); } inline void SDUse::setNode(SDNode *N) { if (Val.getNode()) removeFromList(); Val.setNode(N); if (N) N->addUse(*this); } /// UnarySDNode - This class is used for single-operand SDNodes. This is solely /// to allow co-allocation of node operands with the node itself. class UnarySDNode : public SDNode { SDUse Op; public: UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X) : SDNode(Opc, dl, VTs) { InitOperands(&Op, X); } }; /// BinarySDNode - This class is used for two-operand SDNodes. This is solely /// to allow co-allocation of node operands with the node itself. class BinarySDNode : public SDNode { SDUse Ops[2]; public: BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y) : SDNode(Opc, dl, VTs) { InitOperands(Ops, X, Y); } }; /// TernarySDNode - This class is used for three-operand SDNodes. This is solely /// to allow co-allocation of node operands with the node itself. class TernarySDNode : public SDNode { SDUse Ops[3]; public: TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y, SDValue Z) : SDNode(Opc, dl, VTs) { InitOperands(Ops, X, Y, Z); } }; /// HandleSDNode - This class is used to form a handle around another node that /// is persistant and is updated across invocations of replaceAllUsesWith on its /// operand. This node should be directly created by end-users and not added to /// the AllNodes list. class HandleSDNode : public SDNode { SDUse Op; public: // FIXME: Remove the "noinline" attribute once is // fixed. #ifdef __GNUC__ explicit __attribute__((__noinline__)) HandleSDNode(SDValue X) #else explicit HandleSDNode(SDValue X) #endif : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(), getSDVTList(MVT::Other)) { InitOperands(&Op, X); } ~HandleSDNode(); const SDValue &getValue() const { return Op; } }; /// Abstact virtual class for operations for memory operations class MemSDNode : public SDNode { private: // MemoryVT - VT of in-memory value. EVT MemoryVT; protected: /// MMO - Memory reference information. MachineMemOperand *MMO; public: MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO); MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops, unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO); bool readMem() const { return MMO->isLoad(); } bool writeMem() const { return MMO->isStore(); } /// Returns alignment and volatility of the memory access unsigned getOriginalAlignment() const { return MMO->getBaseAlignment(); } unsigned getAlignment() const { return MMO->getAlignment(); } /// getRawSubclassData - Return the SubclassData value, which contains an /// encoding of the volatile flag, as well as bits used by subclasses. This /// function should only be used to compute a FoldingSetNodeID value. unsigned getRawSubclassData() const { return SubclassData; } // We access subclass data here so that we can check consistency // with MachineMemOperand information. bool isVolatile() const { return (SubclassData >> 5) & 1; } bool isNonTemporal() const { return (SubclassData >> 6) & 1; } /// Returns the SrcValue and offset that describes the location of the access const Value *getSrcValue() const { return MMO->getValue(); } int64_t getSrcValueOffset() const { return MMO->getOffset(); } /// getMemoryVT - Return the type of the in-memory value. EVT getMemoryVT() const { return MemoryVT; } /// getMemOperand - Return a MachineMemOperand object describing the memory /// reference performed by operation. MachineMemOperand *getMemOperand() const { return MMO; } /// refineAlignment - Update this MemSDNode's MachineMemOperand information /// to reflect the alignment of NewMMO, if it has a greater alignment. /// This must only be used when the new alignment applies to all users of /// this MachineMemOperand. void refineAlignment(const MachineMemOperand *NewMMO) { MMO->refineAlignment(NewMMO); } const SDValue &getChain() const { return getOperand(0); } const SDValue &getBasePtr() const { return getOperand(getOpcode() == ISD::STORE ? 2 : 1); } // Methods to support isa and dyn_cast static bool classof(const MemSDNode *) { return true; } static bool classof(const SDNode *N) { // For some targets, we lower some target intrinsics to a MemIntrinsicNode // with either an intrinsic or a target opcode. return N->getOpcode() == ISD::LOAD || N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::ATOMIC_CMP_SWAP || N->getOpcode() == ISD::ATOMIC_SWAP || N->getOpcode() == ISD::ATOMIC_LOAD_ADD || N->getOpcode() == ISD::ATOMIC_LOAD_SUB || N->getOpcode() == ISD::ATOMIC_LOAD_AND || N->getOpcode() == ISD::ATOMIC_LOAD_OR || N->getOpcode() == ISD::ATOMIC_LOAD_XOR || N->getOpcode() == ISD::ATOMIC_LOAD_NAND || N->getOpcode() == ISD::ATOMIC_LOAD_MIN || N->getOpcode() == ISD::ATOMIC_LOAD_MAX || N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || N->isTargetMemoryOpcode(); } }; /// AtomicSDNode - A SDNode reprenting atomic operations. /// class AtomicSDNode : public MemSDNode { SDUse Ops[4]; public: // Opc: opcode for atomic // VTL: value type list // Chain: memory chain for operaand // Ptr: address to update as a SDValue // Cmp: compare value // Swp: swap value // SrcVal: address to update as a Value (used for MemOperand) // Align: alignment of memory AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO) : MemSDNode(Opc, dl, VTL, MemVT, MMO) { assert(readMem() && "Atomic MachineMemOperand is not a load!"); assert(writeMem() && "Atomic MachineMemOperand is not a store!"); InitOperands(Ops, Chain, Ptr, Cmp, Swp); } AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO) : MemSDNode(Opc, dl, VTL, MemVT, MMO) { assert(readMem() && "Atomic MachineMemOperand is not a load!"); assert(writeMem() && "Atomic MachineMemOperand is not a store!"); InitOperands(Ops, Chain, Ptr, Val); } const SDValue &getBasePtr() const { return getOperand(1); } const SDValue &getVal() const { return getOperand(2); } bool isCompareAndSwap() const { unsigned Op = getOpcode(); return Op == ISD::ATOMIC_CMP_SWAP; } // Methods to support isa and dyn_cast static bool classof(const AtomicSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ATOMIC_CMP_SWAP || N->getOpcode() == ISD::ATOMIC_SWAP || N->getOpcode() == ISD::ATOMIC_LOAD_ADD || N->getOpcode() == ISD::ATOMIC_LOAD_SUB || N->getOpcode() == ISD::ATOMIC_LOAD_AND || N->getOpcode() == ISD::ATOMIC_LOAD_OR || N->getOpcode() == ISD::ATOMIC_LOAD_XOR || N->getOpcode() == ISD::ATOMIC_LOAD_NAND || N->getOpcode() == ISD::ATOMIC_LOAD_MIN || N->getOpcode() == ISD::ATOMIC_LOAD_MAX || N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || N->getOpcode() == ISD::ATOMIC_LOAD_UMAX; } }; /// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch /// memory and need an associated MachineMemOperand. Its opcode may be /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a /// value not less than FIRST_TARGET_MEMORY_OPCODE. class MemIntrinsicSDNode : public MemSDNode { public: MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops, unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO) : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) { } // Methods to support isa and dyn_cast static bool classof(const MemIntrinsicSDNode *) { return true; } static bool classof(const SDNode *N) { // We lower some target intrinsics to their target opcode // early a node with a target opcode can be of this class return N->getOpcode() == ISD::INTRINSIC_W_CHAIN || N->getOpcode() == ISD::INTRINSIC_VOID || N->isTargetMemoryOpcode(); } }; /// ShuffleVectorSDNode - This SDNode is used to implement the code generator /// support for the llvm IR shufflevector instruction. It combines elements /// from two input vectors into a new input vector, with the selection and /// ordering of elements determined by an array of integers, referred to as /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS. /// An index of -1 is treated as undef, such that the code generator may put /// any value in the corresponding element of the result. class ShuffleVectorSDNode : public SDNode { SDUse Ops[2]; // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and // is freed when the SelectionDAG object is destroyed. const int *Mask; protected: friend class SelectionDAG; ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2, const int *M) : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) { InitOperands(Ops, N1, N2); } public: void getMask(SmallVectorImpl &M) const { EVT VT = getValueType(0); M.clear(); for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) M.push_back(Mask[i]); } int getMaskElt(unsigned Idx) const { assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"); return Mask[Idx]; } bool isSplat() const { return isSplatMask(Mask, getValueType(0)); } int getSplatIndex() const { assert(isSplat() && "Cannot get splat index for non-splat!"); EVT VT = getValueType(0); for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { if (Mask[i] != -1) return Mask[i]; } return -1; } static bool isSplatMask(const int *Mask, EVT VT); static bool classof(const ShuffleVectorSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::VECTOR_SHUFFLE; } }; class ConstantSDNode : public SDNode { const ConstantInt *Value; friend class SelectionDAG; ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT) : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) { } public: const ConstantInt *getConstantIntValue() const { return Value; } const APInt &getAPIntValue() const { return Value->getValue(); } uint64_t getZExtValue() const { return Value->getZExtValue(); } int64_t getSExtValue() const { return Value->getSExtValue(); } bool isNullValue() const { return Value->isNullValue(); } bool isAllOnesValue() const { return Value->isAllOnesValue(); } static bool classof(const ConstantSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::Constant || N->getOpcode() == ISD::TargetConstant; } }; class ConstantFPSDNode : public SDNode { const ConstantFP *Value; friend class SelectionDAG; ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT) : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) { } public: const APFloat& getValueAPF() const { return Value->getValueAPF(); } const ConstantFP *getConstantFPValue() const { return Value; } /// isZero - Return true if the value is positive or negative zero. bool isZero() const { return Value->isZero(); } /// isNaN - Return true if the value is a NaN. bool isNaN() const { return Value->isNaN(); } /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. /// We leave the version with the double argument here because it's just so /// convenient to write "2.0" and the like. Without this function we'd /// have to duplicate its logic everywhere it's called. bool isExactlyValue(double V) const { bool ignored; // convert is not supported on this type if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) return false; APFloat Tmp(V); Tmp.convert(Value->getValueAPF().getSemantics(), APFloat::rmNearestTiesToEven, &ignored); return isExactlyValue(Tmp); } bool isExactlyValue(const APFloat& V) const; bool isValueValidForType(EVT VT, const APFloat& Val); static bool classof(const ConstantFPSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantFP || N->getOpcode() == ISD::TargetConstantFP; } }; class GlobalAddressSDNode : public SDNode { GlobalValue *TheGlobal; int64_t Offset; unsigned char TargetFlags; friend class SelectionDAG; GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT, int64_t o, unsigned char TargetFlags); public: GlobalValue *getGlobal() const { return TheGlobal; } int64_t getOffset() const { return Offset; } unsigned char getTargetFlags() const { return TargetFlags; } // Return the address space this GlobalAddress belongs to. unsigned getAddressSpace() const; static bool classof(const GlobalAddressSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::GlobalAddress || N->getOpcode() == ISD::TargetGlobalAddress || N->getOpcode() == ISD::GlobalTLSAddress || N->getOpcode() == ISD::TargetGlobalTLSAddress; } }; class FrameIndexSDNode : public SDNode { int FI; friend class SelectionDAG; FrameIndexSDNode(int fi, EVT VT, bool isTarg) : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) { } public: int getIndex() const { return FI; } static bool classof(const FrameIndexSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::FrameIndex || N->getOpcode() == ISD::TargetFrameIndex; } }; class JumpTableSDNode : public SDNode { int JTI; unsigned char TargetFlags; friend class SelectionDAG; JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF) : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) { } public: int getIndex() const { return JTI; } unsigned char getTargetFlags() const { return TargetFlags; } static bool classof(const JumpTableSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::JumpTable || N->getOpcode() == ISD::TargetJumpTable; } }; class ConstantPoolSDNode : public SDNode { union { Constant *ConstVal; MachineConstantPoolValue *MachineCPVal; } Val; int Offset; // It's a MachineConstantPoolValue if top bit is set. unsigned Alignment; // Minimum alignment requirement of CP (not log2 value). unsigned char TargetFlags; friend class SelectionDAG; ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align, unsigned char TF) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) { assert((int)Offset >= 0 && "Offset is too large"); Val.ConstVal = c; } ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o, unsigned Align, unsigned char TF) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) { assert((int)Offset >= 0 && "Offset is too large"); Val.MachineCPVal = v; Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1); } public: bool isMachineConstantPoolEntry() const { return (int)Offset < 0; } Constant *getConstVal() const { assert(!isMachineConstantPoolEntry() && "Wrong constantpool type"); return Val.ConstVal; } MachineConstantPoolValue *getMachineCPVal() const { assert(isMachineConstantPoolEntry() && "Wrong constantpool type"); return Val.MachineCPVal; } int getOffset() const { return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1)); } // Return the alignment of this constant pool object, which is either 0 (for // default alignment) or the desired value. unsigned getAlignment() const { return Alignment; } unsigned char getTargetFlags() const { return TargetFlags; } const Type *getType() const; static bool classof(const ConstantPoolSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantPool || N->getOpcode() == ISD::TargetConstantPool; } }; class BasicBlockSDNode : public SDNode { MachineBasicBlock *MBB; friend class SelectionDAG; /// Debug info is meaningful and potentially useful here, but we create /// blocks out of order when they're jumped to, which makes it a bit /// harder. Let's see if we need it first. explicit BasicBlockSDNode(MachineBasicBlock *mbb) : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(), getSDVTList(MVT::Other)), MBB(mbb) { } public: MachineBasicBlock *getBasicBlock() const { return MBB; } static bool classof(const BasicBlockSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::BasicBlock; } }; /// BuildVectorSDNode - A "pseudo-class" with methods for operating on /// BUILD_VECTORs. class BuildVectorSDNode : public SDNode { // These are constructed as SDNodes and then cast to BuildVectorSDNodes. explicit BuildVectorSDNode(); // Do not implement public: /// isConstantSplat - Check if this is a constant splat, and if so, find the /// smallest element size that splats the vector. If MinSplatBits is /// nonzero, the element size must be at least that large. Note that the /// splat element may be the entire vector (i.e., a one element vector). /// Returns the splat element value in SplatValue. Any undefined bits in /// that value are zero, and the corresponding bits in the SplatUndef mask /// are set. The SplatBitSize value is set to the splat element size in /// bits. HasAnyUndefs is set to true if any bits in the vector are /// undefined. isBigEndian describes the endianness of the target. bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits = 0, bool isBigEndian = false); static inline bool classof(const BuildVectorSDNode *) { return true; } static inline bool classof(const SDNode *N) { return N->getOpcode() == ISD::BUILD_VECTOR; } }; /// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is /// used when the SelectionDAG needs to make a simple reference to something /// in the LLVM IR representation. /// class SrcValueSDNode : public SDNode { const Value *V; friend class SelectionDAG; /// Create a SrcValue for a general value. explicit SrcValueSDNode(const Value *v) : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(), getSDVTList(MVT::Other)), V(v) {} public: /// getValue - return the contained Value. const Value *getValue() const { return V; } static bool classof(const SrcValueSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::SRCVALUE; } }; class RegisterSDNode : public SDNode { unsigned Reg; friend class SelectionDAG; RegisterSDNode(unsigned reg, EVT VT) : SDNode(ISD::Register, DebugLoc::getUnknownLoc(), getSDVTList(VT)), Reg(reg) { } public: unsigned getReg() const { return Reg; } static bool classof(const RegisterSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::Register; } }; class BlockAddressSDNode : public SDNode { BlockAddress *BA; unsigned char TargetFlags; friend class SelectionDAG; BlockAddressSDNode(unsigned NodeTy, EVT VT, BlockAddress *ba, unsigned char Flags) : SDNode(NodeTy, DebugLoc::getUnknownLoc(), getSDVTList(VT)), BA(ba), TargetFlags(Flags) { } public: BlockAddress *getBlockAddress() const { return BA; } unsigned char getTargetFlags() const { return TargetFlags; } static bool classof(const BlockAddressSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::BlockAddress || N->getOpcode() == ISD::TargetBlockAddress; } }; class LabelSDNode : public SDNode { SDUse Chain; unsigned LabelID; friend class SelectionDAG; LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id) : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) { InitOperands(&Chain, ch); } public: unsigned getLabelID() const { return LabelID; } static bool classof(const LabelSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::EH_LABEL; } }; class ExternalSymbolSDNode : public SDNode { const char *Symbol; unsigned char TargetFlags; friend class SelectionDAG; ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT) : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, DebugLoc::getUnknownLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) { } public: const char *getSymbol() const { return Symbol; } unsigned char getTargetFlags() const { return TargetFlags; } static bool classof(const ExternalSymbolSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ExternalSymbol || N->getOpcode() == ISD::TargetExternalSymbol; } }; class CondCodeSDNode : public SDNode { ISD::CondCode Condition; friend class SelectionDAG; explicit CondCodeSDNode(ISD::CondCode Cond) : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(), getSDVTList(MVT::Other)), Condition(Cond) { } public: ISD::CondCode get() const { return Condition; } static bool classof(const CondCodeSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::CONDCODE; } }; /// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the /// future and most targets don't support it. class CvtRndSatSDNode : public SDNode { ISD::CvtCode CvtCode; friend class SelectionDAG; explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops, unsigned NumOps, ISD::CvtCode Code) : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps), CvtCode(Code) { assert(NumOps == 5 && "wrong number of operations"); } public: ISD::CvtCode getCvtCode() const { return CvtCode; } static bool classof(const CvtRndSatSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::CONVERT_RNDSAT; } }; namespace ISD { struct ArgFlagsTy { private: static const uint64_t NoFlagSet = 0ULL; static const uint64_t ZExt = 1ULL<<0; ///< Zero extended static const uint64_t ZExtOffs = 0; static const uint64_t SExt = 1ULL<<1; ///< Sign extended static const uint64_t SExtOffs = 1; static const uint64_t InReg = 1ULL<<2; ///< Passed in register static const uint64_t InRegOffs = 2; static const uint64_t SRet = 1ULL<<3; ///< Hidden struct-ret ptr static const uint64_t SRetOffs = 3; static const uint64_t ByVal = 1ULL<<4; ///< Struct passed by value static const uint64_t ByValOffs = 4; static const uint64_t Nest = 1ULL<<5; ///< Nested fn static chain static const uint64_t NestOffs = 5; static const uint64_t ByValAlign = 0xFULL << 6; //< Struct alignment static const uint64_t ByValAlignOffs = 6; static const uint64_t Split = 1ULL << 10; static const uint64_t SplitOffs = 10; static const uint64_t OrigAlign = 0x1FULL<<27; static const uint64_t OrigAlignOffs = 27; static const uint64_t ByValSize = 0xffffffffULL << 32; //< Struct size static const uint64_t ByValSizeOffs = 32; static const uint64_t One = 1ULL; //< 1 of this type, for shifts uint64_t Flags; public: ArgFlagsTy() : Flags(0) { } bool isZExt() const { return Flags & ZExt; } void setZExt() { Flags |= One << ZExtOffs; } bool isSExt() const { return Flags & SExt; } void setSExt() { Flags |= One << SExtOffs; } bool isInReg() const { return Flags & InReg; } void setInReg() { Flags |= One << InRegOffs; } bool isSRet() const { return Flags & SRet; } void setSRet() { Flags |= One << SRetOffs; } bool isByVal() const { return Flags & ByVal; } void setByVal() { Flags |= One << ByValOffs; } bool isNest() const { return Flags & Nest; } void setNest() { Flags |= One << NestOffs; } unsigned getByValAlign() const { return (unsigned) ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2); } void setByValAlign(unsigned A) { Flags = (Flags & ~ByValAlign) | (uint64_t(Log2_32(A) + 1) << ByValAlignOffs); } bool isSplit() const { return Flags & Split; } void setSplit() { Flags |= One << SplitOffs; } unsigned getOrigAlign() const { return (unsigned) ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2); } void setOrigAlign(unsigned A) { Flags = (Flags & ~OrigAlign) | (uint64_t(Log2_32(A) + 1) << OrigAlignOffs); } unsigned getByValSize() const { return (unsigned)((Flags & ByValSize) >> ByValSizeOffs); } void setByValSize(unsigned S) { Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs); } /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4". std::string getArgFlagsString(); /// getRawBits - Represent the flags as a bunch of bits. uint64_t getRawBits() const { return Flags; } }; /// InputArg - This struct carries flags and type information about a /// single incoming (formal) argument or incoming (from the perspective /// of the caller) return value virtual register. /// struct InputArg { ArgFlagsTy Flags; EVT VT; bool Used; InputArg() : VT(MVT::Other), Used(false) {} InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used) : Flags(flags), VT(vt), Used(used) { assert(VT.isSimple() && "InputArg value type must be Simple!"); } }; /// OutputArg - This struct carries flags and a value for a /// single outgoing (actual) argument or outgoing (from the perspective /// of the caller) return value virtual register. /// struct OutputArg { ArgFlagsTy Flags; SDValue Val; bool IsFixed; OutputArg() : IsFixed(false) {} OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed) : Flags(flags), Val(val), IsFixed(isfixed) { assert(Val.getValueType().isSimple() && "OutputArg value type must be Simple!"); } }; } /// VTSDNode - This class is used to represent EVT's, which are used /// to parameterize some operations. class VTSDNode : public SDNode { EVT ValueType; friend class SelectionDAG; explicit VTSDNode(EVT VT) : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(), getSDVTList(MVT::Other)), ValueType(VT) { } public: EVT getVT() const { return ValueType; } static bool classof(const VTSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::VALUETYPE; } }; /// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode /// class LSBaseSDNode : public MemSDNode { //! Operand array for load and store /*! \note Moving this array to the base class captures more common functionality shared between LoadSDNode and StoreSDNode */ SDUse Ops[4]; public: LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands, unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO) : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) { SubclassData |= AM << 2; assert(getAddressingMode() == AM && "MemIndexedMode encoding error!"); InitOperands(Ops, Operands, numOperands); assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) && "Only indexed loads and stores have a non-undef offset operand"); } const SDValue &getOffset() const { return getOperand(getOpcode() == ISD::LOAD ? 2 : 3); } /// getAddressingMode - Return the addressing mode for this load or store: /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. ISD::MemIndexedMode getAddressingMode() const { return ISD::MemIndexedMode((SubclassData >> 2) & 7); } /// isIndexed - Return true if this is a pre/post inc/dec load/store. bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store. bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } static bool classof(const LSBaseSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::LOAD || N->getOpcode() == ISD::STORE; } }; /// LoadSDNode - This class is used to represent ISD::LOAD nodes. /// class LoadSDNode : public LSBaseSDNode { friend class SelectionDAG; LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT, MachineMemOperand *MMO) : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3, VTs, AM, MemVT, MMO) { SubclassData |= (unsigned short)ETy; assert(getExtensionType() == ETy && "LoadExtType encoding error!"); assert(readMem() && "Load MachineMemOperand is not a load!"); assert(!writeMem() && "Load MachineMemOperand is a store!"); } public: /// getExtensionType - Return whether this is a plain node, /// or one of the varieties of value-extending loads. ISD::LoadExtType getExtensionType() const { return ISD::LoadExtType(SubclassData & 3); } const SDValue &getBasePtr() const { return getOperand(1); } const SDValue &getOffset() const { return getOperand(2); } static bool classof(const LoadSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::LOAD; } }; /// StoreSDNode - This class is used to represent ISD::STORE nodes. /// class StoreSDNode : public LSBaseSDNode { friend class SelectionDAG; StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT, MachineMemOperand *MMO) : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4, VTs, AM, MemVT, MMO) { SubclassData |= (unsigned short)isTrunc; assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!"); assert(!readMem() && "Store MachineMemOperand is a load!"); assert(writeMem() && "Store MachineMemOperand is not a store!"); } public: /// isTruncatingStore - Return true if the op does a truncation before store. /// For integers this is the same as doing a TRUNCATE and storing the result. /// For floats, it is the same as doing an FP_ROUND and storing the result. bool isTruncatingStore() const { return SubclassData & 1; } const SDValue &getValue() const { return getOperand(1); } const SDValue &getBasePtr() const { return getOperand(2); } const SDValue &getOffset() const { return getOperand(3); } static bool classof(const StoreSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::STORE; } }; /// MachineSDNode - An SDNode that represents everything that will be needed /// to construct a MachineInstr. These nodes are created during the /// instruction selection proper phase. /// class MachineSDNode : public SDNode { public: typedef MachineMemOperand **mmo_iterator; private: friend class SelectionDAG; MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs) : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {} /// LocalOperands - Operands for this instruction, if they fit here. If /// they don't, this field is unused. SDUse LocalOperands[4]; /// MemRefs - Memory reference descriptions for this instruction. mmo_iterator MemRefs; mmo_iterator MemRefsEnd; public: mmo_iterator memoperands_begin() const { return MemRefs; } mmo_iterator memoperands_end() const { return MemRefsEnd; } bool memoperands_empty() const { return MemRefsEnd == MemRefs; } /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor /// list. This does not transfer ownership. void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { MemRefs = NewMemRefs; MemRefsEnd = NewMemRefsEnd; } static bool classof(const MachineSDNode *) { return true; } static bool classof(const SDNode *N) { return N->isMachineOpcode(); } }; class SDNodeIterator : public std::iterator { SDNode *Node; unsigned Operand; SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {} public: bool operator==(const SDNodeIterator& x) const { return Operand == x.Operand; } bool operator!=(const SDNodeIterator& x) const { return !operator==(x); } const SDNodeIterator &operator=(const SDNodeIterator &I) { assert(I.Node == Node && "Cannot assign iterators to two different nodes!"); Operand = I.Operand; return *this; } pointer operator*() const { return Node->getOperand(Operand).getNode(); } pointer operator->() const { return operator*(); } SDNodeIterator& operator++() { // Preincrement ++Operand; return *this; } SDNodeIterator operator++(int) { // Postincrement SDNodeIterator tmp = *this; ++*this; return tmp; } size_t operator-(SDNodeIterator Other) const { assert(Node == Other.Node && "Cannot compare iterators of two different nodes!"); return Operand - Other.Operand; } static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); } static SDNodeIterator end (SDNode *N) { return SDNodeIterator(N, N->getNumOperands()); } unsigned getOperand() const { return Operand; } const SDNode *getNode() const { return Node; } }; template <> struct GraphTraits { typedef SDNode NodeType; typedef SDNodeIterator ChildIteratorType; static inline NodeType *getEntryNode(SDNode *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return SDNodeIterator::begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return SDNodeIterator::end(N); } }; /// LargestSDNode - The largest SDNode class. /// typedef LoadSDNode LargestSDNode; /// MostAlignedSDNode - The SDNode class with the greatest alignment /// requirement. /// typedef GlobalAddressSDNode MostAlignedSDNode; namespace ISD { /// isNormalLoad - Returns true if the specified node is a non-extending /// and unindexed load. inline bool isNormalLoad(const SDNode *N) { const LoadSDNode *Ld = dyn_cast(N); return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD && Ld->getAddressingMode() == ISD::UNINDEXED; } /// isNON_EXTLoad - Returns true if the specified node is a non-extending /// load. inline bool isNON_EXTLoad(const SDNode *N) { return isa(N) && cast(N)->getExtensionType() == ISD::NON_EXTLOAD; } /// isEXTLoad - Returns true if the specified node is a EXTLOAD. /// inline bool isEXTLoad(const SDNode *N) { return isa(N) && cast(N)->getExtensionType() == ISD::EXTLOAD; } /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD. /// inline bool isSEXTLoad(const SDNode *N) { return isa(N) && cast(N)->getExtensionType() == ISD::SEXTLOAD; } /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD. /// inline bool isZEXTLoad(const SDNode *N) { return isa(N) && cast(N)->getExtensionType() == ISD::ZEXTLOAD; } /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load. /// inline bool isUNINDEXEDLoad(const SDNode *N) { return isa(N) && cast(N)->getAddressingMode() == ISD::UNINDEXED; } /// isNormalStore - Returns true if the specified node is a non-truncating /// and unindexed store. inline bool isNormalStore(const SDNode *N) { const StoreSDNode *St = dyn_cast(N); return St && !St->isTruncatingStore() && St->getAddressingMode() == ISD::UNINDEXED; } /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating /// store. inline bool isNON_TRUNCStore(const SDNode *N) { return isa(N) && !cast(N)->isTruncatingStore(); } /// isTRUNCStore - Returns true if the specified node is a truncating /// store. inline bool isTRUNCStore(const SDNode *N) { return isa(N) && cast(N)->isTruncatingStore(); } /// isUNINDEXEDStore - Returns true if the specified node is an /// unindexed store. inline bool isUNINDEXEDStore(const SDNode *N) { return isa(N) && cast(N)->getAddressingMode() == ISD::UNINDEXED; } } } // end llvm namespace #endif