//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the default implementation of the Alias Analysis interface // that simply implements a few identities (two different globals cannot alias, // etc), but otherwise does no analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Passes.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/ManagedStatic.h" #include using namespace llvm; namespace { /// NoAA - This class implements the -no-aa pass, which always returns "I /// don't know" for alias queries. NoAA is unlike other alias analysis /// implementations, in that it does not chain to a previous analysis. As /// such it doesn't follow many of the rules that other alias analyses must. /// struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis { virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } virtual void initializePass() { TD = &getAnalysis(); } virtual AliasResult alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { return MayAlias; } virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS, std::vector *Info) { return UnknownModRefBehavior; } virtual void getArgumentAccesses(Function *F, CallSite CS, std::vector &Info) { assert(0 && "This method may not be called on this function!"); } virtual void getMustAliases(Value *P, std::vector &RetVals) { } virtual bool pointsToConstantMemory(const Value *P) { return false; } virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) { return ModRef; } virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) { return ModRef; } virtual bool hasNoModRefInfoForCalls() const { return true; } virtual void deleteValue(Value *V) {} virtual void copyValue(Value *From, Value *To) {} }; // Register this pass... RegisterPass U("no-aa", "No Alias Analysis (always returns 'may' alias)"); // Declare that we implement the AliasAnalysis interface RegisterAnalysisGroup V(U); } // End of anonymous namespace ImmutablePass *llvm::createNoAAPass() { return new NoAA(); } namespace { /// BasicAliasAnalysis - This is the default alias analysis implementation. /// Because it doesn't chain to a previous alias analysis (like -no-aa), it /// derives from the NoAA class. struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA { AliasResult alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size); ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) { return NoAA::getModRefInfo(CS1,CS2); } /// hasNoModRefInfoForCalls - We can provide mod/ref information against /// non-escaping allocations. virtual bool hasNoModRefInfoForCalls() const { return false; } /// pointsToConstantMemory - Chase pointers until we find a (constant /// global) or not. bool pointsToConstantMemory(const Value *P); virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS, std::vector *Info); private: // CheckGEPInstructions - Check two GEP instructions with known // must-aliasing base pointers. This checks to see if the index expressions // preclude the pointers from aliasing... AliasResult CheckGEPInstructions(const Type* BasePtr1Ty, std::vector &GEP1Ops, unsigned G1Size, const Type *BasePtr2Ty, std::vector &GEP2Ops, unsigned G2Size); }; // Register this pass... RegisterPass X("basicaa", "Basic Alias Analysis (default AA impl)"); // Declare that we implement the AliasAnalysis interface RegisterAnalysisGroup Y(X); } // End of anonymous namespace ImmutablePass *llvm::createBasicAliasAnalysisPass() { return new BasicAliasAnalysis(); } // getUnderlyingObject - This traverses the use chain to figure out what object // the specified value points to. If the value points to, or is derived from, a // unique object or an argument, return it. static const Value *getUnderlyingObject(const Value *V) { if (!isa(V->getType())) return 0; // If we are at some type of object, return it. GlobalValues and Allocations // have unique addresses. if (isa(V) || isa(V) || isa(V)) return V; // Traverse through different addressing mechanisms... if (const Instruction *I = dyn_cast(V)) { if (isa(I) || isa(I)) return getUnderlyingObject(I->getOperand(0)); } else if (const ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() == Instruction::BitCast || CE->getOpcode() == Instruction::GetElementPtr) return getUnderlyingObject(CE->getOperand(0)); } return 0; } static const User *isGEP(const Value *V) { if (isa(V) || (isa(V) && cast(V)->getOpcode() == Instruction::GetElementPtr)) return cast(V); return 0; } static const Value *GetGEPOperands(const Value *V, std::vector &GEPOps){ assert(GEPOps.empty() && "Expect empty list to populate!"); GEPOps.insert(GEPOps.end(), cast(V)->op_begin()+1, cast(V)->op_end()); // Accumulate all of the chained indexes into the operand array V = cast(V)->getOperand(0); while (const User *G = isGEP(V)) { if (!isa(GEPOps[0]) || isa(GEPOps[0]) || !cast(GEPOps[0])->isNullValue()) break; // Don't handle folding arbitrary pointer offsets yet... GEPOps.erase(GEPOps.begin()); // Drop the zero index GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end()); V = G->getOperand(0); } return V; } /// pointsToConstantMemory - Chase pointers until we find a (constant /// global) or not. bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) { if (const Value *V = getUnderlyingObject(P)) if (const GlobalVariable *GV = dyn_cast(V)) return GV->isConstant(); return false; } // Determine if an AllocationInst instruction escapes from the function it is // contained in. If it does not escape, there is no way for another function to // mod/ref it. We do this by looking at its uses and determining if the uses // can escape (recursively). static bool AddressMightEscape(const Value *V) { for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) { const Instruction *I = cast(*UI); switch (I->getOpcode()) { case Instruction::Load: break; //next use. case Instruction::Store: if (I->getOperand(0) == V) return true; // Escapes if the pointer is stored. break; // next use. case Instruction::GetElementPtr: if (AddressMightEscape(I)) return true; case Instruction::BitCast: if (!isa(I->getType())) return true; if (AddressMightEscape(I)) return true; break; // next use case Instruction::Ret: // If returned, the address will escape to calling functions, but no // callees could modify it. break; // next use default: return true; } } return false; } // getModRefInfo - Check to see if the specified callsite can clobber the // specified memory object. Since we only look at local properties of this // function, we really can't say much about this query. We do, however, use // simple "address taken" analysis on local objects. // AliasAnalysis::ModRefResult BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { if (!isa(P)) if (const AllocationInst *AI = dyn_cast_or_null(getUnderlyingObject(P))) { // Okay, the pointer is to a stack allocated object. If we can prove that // the pointer never "escapes", then we know the call cannot clobber it, // because it simply can't get its address. if (!AddressMightEscape(AI)) return NoModRef; // If this is a tail call and P points to a stack location, we know that // the tail call cannot access or modify the local stack. if (CallInst *CI = dyn_cast(CS.getInstruction())) if (CI->isTailCall() && isa(AI)) return NoModRef; } // The AliasAnalysis base class has some smarts, lets use them. return AliasAnalysis::getModRefInfo(CS, P, Size); } // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such // as array references. Note that this function is heavily tail recursive. // Hopefully we have a smart C++ compiler. :) // AliasAnalysis::AliasResult BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { // Strip off any constant expression casts if they exist if (const ConstantExpr *CE = dyn_cast(V1)) if (CE->isCast() && isa(CE->getOperand(0)->getType())) V1 = CE->getOperand(0); if (const ConstantExpr *CE = dyn_cast(V2)) if (CE->isCast() && isa(CE->getOperand(0)->getType())) V2 = CE->getOperand(0); // Are we checking for alias of the same value? if (V1 == V2) return MustAlias; if ((!isa(V1->getType()) || !isa(V2->getType())) && V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty) return NoAlias; // Scalars cannot alias each other // Strip off cast instructions... if (const BitCastInst *I = dyn_cast(V1)) if (isa(I->getOperand(0)->getType())) return alias(I->getOperand(0), V1Size, V2, V2Size); if (const BitCastInst *I = dyn_cast(V2)) if (isa(I->getOperand(0)->getType())) return alias(V1, V1Size, I->getOperand(0), V2Size); // Figure out what objects these things are pointing to if we can... const Value *O1 = getUnderlyingObject(V1); const Value *O2 = getUnderlyingObject(V2); // Pointing at a discernible object? if (O1) { if (O2) { if (isa(O1)) { // Incoming argument cannot alias locally allocated object! if (isa(O2)) return NoAlias; // Otherwise, nothing is known... } else if (isa(O2)) { // Incoming argument cannot alias locally allocated object! if (isa(O1)) return NoAlias; // Otherwise, nothing is known... } else if (O1 != O2) { // If they are two different objects, we know that we have no alias... return NoAlias; } // If they are the same object, they we can look at the indexes. If they // index off of the object is the same for both pointers, they must alias. // If they are provably different, they must not alias. Otherwise, we // can't tell anything. } if (!isa(O1) && isa(V2)) return NoAlias; // Unique values don't alias null if (isa(O1) || (isa(O1) && !cast(O1)->isArrayAllocation())) if (cast(O1->getType())->getElementType()->isSized()) { // If the size of the other access is larger than the total size of the // global/alloca/malloc, it cannot be accessing the global (it's // undefined to load or store bytes before or after an object). const Type *ElTy = cast(O1->getType())->getElementType(); unsigned GlobalSize = getTargetData().getTypeSize(ElTy); if (GlobalSize < V2Size && V2Size != ~0U) return NoAlias; } } if (O2) { if (!isa(O2) && isa(V1)) return NoAlias; // Unique values don't alias null if (isa(O2) || (isa(O2) && !cast(O2)->isArrayAllocation())) if (cast(O2->getType())->getElementType()->isSized()) { // If the size of the other access is larger than the total size of the // global/alloca/malloc, it cannot be accessing the object (it's // undefined to load or store bytes before or after an object). const Type *ElTy = cast(O2->getType())->getElementType(); unsigned GlobalSize = getTargetData().getTypeSize(ElTy); if (GlobalSize < V1Size && V1Size != ~0U) return NoAlias; } } // If we have two gep instructions with must-alias'ing base pointers, figure // out if the indexes to the GEP tell us anything about the derived pointer. // Note that we also handle chains of getelementptr instructions as well as // constant expression getelementptrs here. // if (isGEP(V1) && isGEP(V2)) { // Drill down into the first non-gep value, to test for must-aliasing of // the base pointers. const Value *BasePtr1 = V1, *BasePtr2 = V2; do { BasePtr1 = cast(BasePtr1)->getOperand(0); } while (isGEP(BasePtr1) && cast(BasePtr1)->getOperand(1) == Constant::getNullValue(cast(BasePtr1)->getOperand(1)->getType())); do { BasePtr2 = cast(BasePtr2)->getOperand(0); } while (isGEP(BasePtr2) && cast(BasePtr2)->getOperand(1) == Constant::getNullValue(cast(BasePtr2)->getOperand(1)->getType())); // Do the base pointers alias? AliasResult BaseAlias = alias(BasePtr1, V1Size, BasePtr2, V2Size); if (BaseAlias == NoAlias) return NoAlias; if (BaseAlias == MustAlias) { // If the base pointers alias each other exactly, check to see if we can // figure out anything about the resultant pointers, to try to prove // non-aliasing. // Collect all of the chained GEP operands together into one simple place std::vector GEP1Ops, GEP2Ops; BasePtr1 = GetGEPOperands(V1, GEP1Ops); BasePtr2 = GetGEPOperands(V2, GEP2Ops); // If GetGEPOperands were able to fold to the same must-aliased pointer, // do the comparison. if (BasePtr1 == BasePtr2) { AliasResult GAlias = CheckGEPInstructions(BasePtr1->getType(), GEP1Ops, V1Size, BasePtr2->getType(), GEP2Ops, V2Size); if (GAlias != MayAlias) return GAlias; } } } // Check to see if these two pointers are related by a getelementptr // instruction. If one pointer is a GEP with a non-zero index of the other // pointer, we know they cannot alias. // if (isGEP(V2)) { std::swap(V1, V2); std::swap(V1Size, V2Size); } if (V1Size != ~0U && V2Size != ~0U) if (isGEP(V1)) { std::vector GEPOperands; const Value *BasePtr = GetGEPOperands(V1, GEPOperands); AliasResult R = alias(BasePtr, V1Size, V2, V2Size); if (R == MustAlias) { // If there is at least one non-zero constant index, we know they cannot // alias. bool ConstantFound = false; bool AllZerosFound = true; for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i) if (const Constant *C = dyn_cast(GEPOperands[i])) { if (!C->isNullValue()) { ConstantFound = true; AllZerosFound = false; break; } } else { AllZerosFound = false; } // If we have getelementptr , 0, 0, 0, 0, ... and V2 must aliases // the ptr, the end result is a must alias also. if (AllZerosFound) return MustAlias; if (ConstantFound) { if (V2Size <= 1 && V1Size <= 1) // Just pointer check? return NoAlias; // Otherwise we have to check to see that the distance is more than // the size of the argument... build an index vector that is equal to // the arguments provided, except substitute 0's for any variable // indexes we find... if (cast( BasePtr->getType())->getElementType()->isSized()) { for (unsigned i = 0; i != GEPOperands.size(); ++i) if (!isa(GEPOperands[i])) GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType()); int64_t Offset = getTargetData().getIndexedOffset(BasePtr->getType(), GEPOperands); if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size) return NoAlias; } } } } return MayAlias; } // This function is used to determin if the indices of two GEP instructions are // equal. V1 and V2 are the indices. static bool IndexOperandsEqual(Value *V1, Value *V2) { if (V1->getType() == V2->getType()) return V1 == V2; if (Constant *C1 = dyn_cast(V1)) if (Constant *C2 = dyn_cast(V2)) { // Sign extend the constants to long types, if necessary if (C1->getType() != Type::Int64Ty) C1 = ConstantExpr::getSExt(C1, Type::Int64Ty); if (C2->getType() != Type::Int64Ty) C2 = ConstantExpr::getSExt(C2, Type::Int64Ty); return C1 == C2; } return false; } /// CheckGEPInstructions - Check two GEP instructions with known must-aliasing /// base pointers. This checks to see if the index expressions preclude the /// pointers from aliasing... AliasAnalysis::AliasResult BasicAliasAnalysis::CheckGEPInstructions( const Type* BasePtr1Ty, std::vector &GEP1Ops, unsigned G1S, const Type *BasePtr2Ty, std::vector &GEP2Ops, unsigned G2S) { // We currently can't handle the case when the base pointers have different // primitive types. Since this is uncommon anyway, we are happy being // extremely conservative. if (BasePtr1Ty != BasePtr2Ty) return MayAlias; const PointerType *GEPPointerTy = cast(BasePtr1Ty); // Find the (possibly empty) initial sequence of equal values... which are not // necessarily constants. unsigned NumGEP1Operands = GEP1Ops.size(), NumGEP2Operands = GEP2Ops.size(); unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands); unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands); unsigned UnequalOper = 0; while (UnequalOper != MinOperands && IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) { // Advance through the type as we go... ++UnequalOper; if (const CompositeType *CT = dyn_cast(BasePtr1Ty)) BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]); else { // If all operands equal each other, then the derived pointers must // alias each other... BasePtr1Ty = 0; assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands && "Ran out of type nesting, but not out of operands?"); return MustAlias; } } // If we have seen all constant operands, and run out of indexes on one of the // getelementptrs, check to see if the tail of the leftover one is all zeros. // If so, return mustalias. if (UnequalOper == MinOperands) { if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops); bool AllAreZeros = true; for (unsigned i = UnequalOper; i != MaxOperands; ++i) if (!isa(GEP1Ops[i]) || !cast(GEP1Ops[i])->isNullValue()) { AllAreZeros = false; break; } if (AllAreZeros) return MustAlias; } // So now we know that the indexes derived from the base pointers, // which are known to alias, are different. We can still determine a // no-alias result if there are differing constant pairs in the index // chain. For example: // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S)) // // We have to be careful here about array accesses. In particular, consider: // A[1][0] vs A[0][i] // In this case, we don't *know* that the array will be accessed in bounds: // the index could even be negative. Because of this, we have to // conservatively *give up* and return may alias. We disregard differing // array subscripts that are followed by a variable index without going // through a struct. // unsigned SizeMax = std::max(G1S, G2S); if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work. // Scan for the first operand that is constant and unequal in the // two getelementptrs... unsigned FirstConstantOper = UnequalOper; for (; FirstConstantOper != MinOperands; ++FirstConstantOper) { const Value *G1Oper = GEP1Ops[FirstConstantOper]; const Value *G2Oper = GEP2Ops[FirstConstantOper]; if (G1Oper != G2Oper) // Found non-equal constant indexes... if (Constant *G1OC = dyn_cast(const_cast(G1Oper))) if (Constant *G2OC = dyn_cast(const_cast(G2Oper))){ if (G1OC->getType() != G2OC->getType()) { // Sign extend both operands to long. if (G1OC->getType() != Type::Int64Ty) G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty); if (G2OC->getType() != Type::Int64Ty) G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty); GEP1Ops[FirstConstantOper] = G1OC; GEP2Ops[FirstConstantOper] = G2OC; } if (G1OC != G2OC) { // Handle the "be careful" case above: if this is an array/packed // subscript, scan for a subsequent variable array index. if (isa(BasePtr1Ty)) { const Type *NextTy = cast(BasePtr1Ty)->getElementType(); bool isBadCase = false; for (unsigned Idx = FirstConstantOper+1; Idx != MinOperands && isa(NextTy); ++Idx) { const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx]; if (!isa(V1) || !isa(V2)) { isBadCase = true; break; } NextTy = cast(NextTy)->getElementType(); } if (isBadCase) G1OC = 0; } // Make sure they are comparable (ie, not constant expressions), and // make sure the GEP with the smaller leading constant is GEP1. if (G1OC) { Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT, G1OC, G2OC); if (ConstantBool *CV = dyn_cast(Compare)) { if (CV->getValue()) // If they are comparable and G2 > G1 std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2 break; } } } } BasePtr1Ty = cast(BasePtr1Ty)->getTypeAtIndex(G1Oper); } // No shared constant operands, and we ran out of common operands. At this // point, the GEP instructions have run through all of their operands, and we // haven't found evidence that there are any deltas between the GEP's. // However, one GEP may have more operands than the other. If this is the // case, there may still be hope. Check this now. if (FirstConstantOper == MinOperands) { // Make GEP1Ops be the longer one if there is a longer one. if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops); // Is there anything to check? if (GEP1Ops.size() > MinOperands) { for (unsigned i = FirstConstantOper; i != MaxOperands; ++i) if (isa(GEP1Ops[i]) && !cast(GEP1Ops[i])->isNullValue()) { // Yup, there's a constant in the tail. Set all variables to // constants in the GEP instruction to make it suiteable for // TargetData::getIndexedOffset. for (i = 0; i != MaxOperands; ++i) if (!isa(GEP1Ops[i])) GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType()); // Okay, now get the offset. This is the relative offset for the full // instruction. const TargetData &TD = getTargetData(); int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops); // Now crop off any constants from the end... GEP1Ops.resize(MinOperands); int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops); // If the tail provided a bit enough offset, return noalias! if ((uint64_t)(Offset2-Offset1) >= SizeMax) return NoAlias; } } // Couldn't find anything useful. return MayAlias; } // If there are non-equal constants arguments, then we can figure // out a minimum known delta between the two index expressions... at // this point we know that the first constant index of GEP1 is less // than the first constant index of GEP2. // Advance BasePtr[12]Ty over this first differing constant operand. BasePtr2Ty = cast(BasePtr1Ty)-> getTypeAtIndex(GEP2Ops[FirstConstantOper]); BasePtr1Ty = cast(BasePtr1Ty)-> getTypeAtIndex(GEP1Ops[FirstConstantOper]); // We are going to be using TargetData::getIndexedOffset to determine the // offset that each of the GEP's is reaching. To do this, we have to convert // all variable references to constant references. To do this, we convert the // initial sequence of array subscripts into constant zeros to start with. const Type *ZeroIdxTy = GEPPointerTy; for (unsigned i = 0; i != FirstConstantOper; ++i) { if (!isa(ZeroIdxTy)) GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty); if (const CompositeType *CT = dyn_cast(ZeroIdxTy)) ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]); } // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok // Loop over the rest of the operands... for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) { const Value *Op1 = i < GEP1Ops.size() ? GEP1Ops[i] : 0; const Value *Op2 = i < GEP2Ops.size() ? GEP2Ops[i] : 0; // If they are equal, use a zero index... if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) { if (!isa(Op1)) GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType()); // Otherwise, just keep the constants we have. } else { if (Op1) { if (const ConstantInt *Op1C = dyn_cast(Op1)) { // If this is an array index, make sure the array element is in range. if (const ArrayType *AT = dyn_cast(BasePtr1Ty)) { if (Op1C->getZExtValue() >= AT->getNumElements()) return MayAlias; // Be conservative with out-of-range accesses } else if (const PackedType *PT = dyn_cast(BasePtr1Ty)) { if (Op1C->getZExtValue() >= PT->getNumElements()) return MayAlias; // Be conservative with out-of-range accesses } } else { // GEP1 is known to produce a value less than GEP2. To be // conservatively correct, we must assume the largest possible // constant is used in this position. This cannot be the initial // index to the GEP instructions (because we know we have at least one // element before this one with the different constant arguments), so // we know that the current index must be into either a struct or // array. Because we know it's not constant, this cannot be a // structure index. Because of this, we can calculate the maximum // value possible. // if (const ArrayType *AT = dyn_cast(BasePtr1Ty)) GEP1Ops[i] = ConstantInt::get(Type::Int64Ty, AT->getNumElements()-1); else if (const PackedType *PT = dyn_cast(BasePtr1Ty)) GEP1Ops[i] = ConstantInt::get(Type::Int64Ty, PT->getNumElements()-1); } } if (Op2) { if (const ConstantInt *Op2C = dyn_cast(Op2)) { // If this is an array index, make sure the array element is in range. if (const ArrayType *AT = dyn_cast(BasePtr1Ty)) { if (Op2C->getZExtValue() >= AT->getNumElements()) return MayAlias; // Be conservative with out-of-range accesses } else if (const PackedType *PT = dyn_cast(BasePtr1Ty)) { if (Op2C->getZExtValue() >= PT->getNumElements()) return MayAlias; // Be conservative with out-of-range accesses } } else { // Conservatively assume the minimum value for this index GEP2Ops[i] = Constant::getNullValue(Op2->getType()); } } } if (BasePtr1Ty && Op1) { if (const CompositeType *CT = dyn_cast(BasePtr1Ty)) BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]); else BasePtr1Ty = 0; } if (BasePtr2Ty && Op2) { if (const CompositeType *CT = dyn_cast(BasePtr2Ty)) BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]); else BasePtr2Ty = 0; } } if (GEPPointerTy->getElementType()->isSized()) { int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops); int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops); assert(Offset1= SizeMax) { //cerr << "Determined that these two GEP's don't alias [" // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2; return NoAlias; } } return MayAlias; } namespace { struct StringCompare { bool operator()(const char *LHS, const char *RHS) { return strcmp(LHS, RHS) < 0; } }; } // Note that this list cannot contain libm functions (such as acos and sqrt) // that set errno on a domain or other error. static const char *DoesntAccessMemoryFns[] = { "abs", "labs", "llabs", "imaxabs", "fabs", "fabsf", "fabsl", "trunc", "truncf", "truncl", "ldexp", "atan", "atanf", "atanl", "atan2", "atan2f", "atan2l", "cbrt", "cos", "cosf", "cosl", "exp", "expf", "expl", "hypot", "sin", "sinf", "sinl", "tan", "tanf", "tanl", "tanh", "tanhf", "tanhl", "floor", "floorf", "floorl", "ceil", "ceilf", "ceill", // ctype.h "isalnum", "isalpha", "iscntrl", "isdigit", "isgraph", "islower", "isprint" "ispunct", "isspace", "isupper", "isxdigit", "tolower", "toupper", // wctype.h" "iswalnum", "iswalpha", "iswcntrl", "iswdigit", "iswgraph", "iswlower", "iswprint", "iswpunct", "iswspace", "iswupper", "iswxdigit", "iswctype", "towctrans", "towlower", "towupper", "btowc", "wctob", "isinf", "isnan", "finite", // C99 math functions "copysign", "copysignf", "copysignd", "nexttoward", "nexttowardf", "nexttowardd", "nextafter", "nextafterf", "nextafterd", // ISO C99: "__signbit", "__signbitf", "__signbitl", }; static const char *OnlyReadsMemoryFns[] = { "atoi", "atol", "atof", "atoll", "atoq", "a64l", "bcmp", "memcmp", "memchr", "memrchr", "wmemcmp", "wmemchr", // Strings "strcmp", "strcasecmp", "strcoll", "strncmp", "strncasecmp", "strchr", "strcspn", "strlen", "strpbrk", "strrchr", "strspn", "strstr", "index", "rindex", // Wide char strings "wcschr", "wcscmp", "wcscoll", "wcscspn", "wcslen", "wcsncmp", "wcspbrk", "wcsrchr", "wcsspn", "wcsstr", // glibc "alphasort", "alphasort64", "versionsort", "versionsort64", // C99 "nan", "nanf", "nand", // File I/O "feof", "ferror", "fileno", "feof_unlocked", "ferror_unlocked", "fileno_unlocked" }; static ManagedStatic > NoMemoryTable; static ManagedStatic > OnlyReadsMemoryTable; AliasAnalysis::ModRefBehavior BasicAliasAnalysis::getModRefBehavior(Function *F, CallSite CS, std::vector *Info) { if (!F->isExternal()) return UnknownModRefBehavior; static bool Initialized = false; if (!Initialized) { NoMemoryTable->insert(NoMemoryTable->end(), DoesntAccessMemoryFns, DoesntAccessMemoryFns+ sizeof(DoesntAccessMemoryFns)/sizeof(DoesntAccessMemoryFns[0])); OnlyReadsMemoryTable->insert(OnlyReadsMemoryTable->end(), OnlyReadsMemoryFns, OnlyReadsMemoryFns+ sizeof(OnlyReadsMemoryFns)/sizeof(OnlyReadsMemoryFns[0])); #define GET_MODREF_BEHAVIOR #include "llvm/Intrinsics.gen" #undef GET_MODREF_BEHAVIOR // Sort the table the first time through. std::sort(NoMemoryTable->begin(), NoMemoryTable->end(), StringCompare()); std::sort(OnlyReadsMemoryTable->begin(), OnlyReadsMemoryTable->end(), StringCompare()); Initialized = true; } std::vector::iterator Ptr = std::lower_bound(NoMemoryTable->begin(), NoMemoryTable->end(), F->getName().c_str(), StringCompare()); if (Ptr != NoMemoryTable->end() && *Ptr == F->getName()) return DoesNotAccessMemory; Ptr = std::lower_bound(OnlyReadsMemoryTable->begin(), OnlyReadsMemoryTable->end(), F->getName().c_str(), StringCompare()); if (Ptr != OnlyReadsMemoryTable->end() && *Ptr == F->getName()) return OnlyReadsMemory; return UnknownModRefBehavior; } // Make sure that anything that uses AliasAnalysis pulls in this file... DEFINING_FILE_FOR(BasicAliasAnalysis)