//===-- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass ----*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that performs load / store related peephole // optimizations. This pass should be run after register allocation. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-ldst-opt" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMBaseInstrInfo.h" #include "ARMMachineFunctionInfo.h" #include "ARMRegisterInfo.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumLDMGened , "Number of ldm instructions generated"); STATISTIC(NumSTMGened , "Number of stm instructions generated"); STATISTIC(NumVLDMGened, "Number of vldm instructions generated"); STATISTIC(NumVSTMGened, "Number of vstm instructions generated"); STATISTIC(NumLdStMoved, "Number of load / store instructions moved"); STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation"); STATISTIC(NumSTRDFormed,"Number of strd created before allocation"); STATISTIC(NumLDRD2LDM, "Number of ldrd instructions turned back into ldm"); STATISTIC(NumSTRD2STM, "Number of strd instructions turned back into stm"); STATISTIC(NumLDRD2LDR, "Number of ldrd instructions turned back into ldr's"); STATISTIC(NumSTRD2STR, "Number of strd instructions turned back into str's"); /// ARMAllocLoadStoreOpt - Post- register allocation pass the combine /// load / store instructions to form ldm / stm instructions. namespace { struct ARMLoadStoreOpt : public MachineFunctionPass { static char ID; ARMLoadStoreOpt() : MachineFunctionPass(&ID) {} const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; ARMFunctionInfo *AFI; RegScavenger *RS; bool isThumb2; virtual bool runOnMachineFunction(MachineFunction &Fn); virtual const char *getPassName() const { return "ARM load / store optimization pass"; } private: struct MemOpQueueEntry { int Offset; unsigned Position; MachineBasicBlock::iterator MBBI; bool Merged; MemOpQueueEntry(int o, int p, MachineBasicBlock::iterator i) : Offset(o), Position(p), MBBI(i), Merged(false) {} }; typedef SmallVector MemOpQueue; typedef MemOpQueue::iterator MemOpQueueIter; bool MergeOps(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, int Offset, unsigned Base, bool BaseKill, int Opcode, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, DebugLoc dl, SmallVector, 8> &Regs); void MergeOpsUpdate(MachineBasicBlock &MBB, MemOpQueue &MemOps, unsigned memOpsBegin, unsigned memOpsEnd, unsigned insertAfter, int Offset, unsigned Base, bool BaseKill, int Opcode, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, DebugLoc dl, SmallVector &Merges); void MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex, unsigned Base, int Opcode, unsigned Size, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, MemOpQueue &MemOps, SmallVector &Merges); void AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps); bool FixInvalidRegPairOp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI); bool MergeBaseUpdateLoadStore(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const TargetInstrInfo *TII, bool &Advance, MachineBasicBlock::iterator &I); bool MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, bool &Advance, MachineBasicBlock::iterator &I); bool LoadStoreMultipleOpti(MachineBasicBlock &MBB); bool MergeReturnIntoLDM(MachineBasicBlock &MBB); }; char ARMLoadStoreOpt::ID = 0; } static int getLoadStoreMultipleOpcode(int Opcode) { switch (Opcode) { case ARM::LDR: NumLDMGened++; return ARM::LDM; case ARM::STR: NumSTMGened++; return ARM::STM; case ARM::t2LDRi8: case ARM::t2LDRi12: NumLDMGened++; return ARM::t2LDM; case ARM::t2STRi8: case ARM::t2STRi12: NumSTMGened++; return ARM::t2STM; case ARM::VLDRS: NumVLDMGened++; return ARM::VLDMS; case ARM::VSTRS: NumVSTMGened++; return ARM::VSTMS; case ARM::VLDRD: NumVLDMGened++; return ARM::VLDMD; case ARM::VSTRD: NumVSTMGened++; return ARM::VSTMD; default: llvm_unreachable("Unhandled opcode!"); } return 0; } static bool isT2i32Load(unsigned Opc) { return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8; } static bool isi32Load(unsigned Opc) { return Opc == ARM::LDR || isT2i32Load(Opc); } static bool isT2i32Store(unsigned Opc) { return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8; } static bool isi32Store(unsigned Opc) { return Opc == ARM::STR || isT2i32Store(Opc); } /// MergeOps - Create and insert a LDM or STM with Base as base register and /// registers in Regs as the register operands that would be loaded / stored. /// It returns true if the transformation is done. bool ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, int Offset, unsigned Base, bool BaseKill, int Opcode, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, DebugLoc dl, SmallVector, 8> &Regs) { // Only a single register to load / store. Don't bother. unsigned NumRegs = Regs.size(); if (NumRegs <= 1) return false; ARM_AM::AMSubMode Mode = ARM_AM::ia; bool isAM4 = isi32Load(Opcode) || isi32Store(Opcode); if (isAM4 && Offset == 4) { if (isThumb2) // Thumb2 does not support ldmib / stmib. return false; Mode = ARM_AM::ib; } else if (isAM4 && Offset == -4 * (int)NumRegs + 4) { if (isThumb2) // Thumb2 does not support ldmda / stmda. return false; Mode = ARM_AM::da; } else if (isAM4 && Offset == -4 * (int)NumRegs) { Mode = ARM_AM::db; } else if (Offset != 0) { // If starting offset isn't zero, insert a MI to materialize a new base. // But only do so if it is cost effective, i.e. merging more than two // loads / stores. if (NumRegs <= 2) return false; unsigned NewBase; if (isi32Load(Opcode)) // If it is a load, then just use one of the destination register to // use as the new base. NewBase = Regs[NumRegs-1].first; else { // Use the scratch register to use as a new base. NewBase = Scratch; if (NewBase == 0) return false; } int BaseOpc = !isThumb2 ? ARM::ADDri : ((Base == ARM::SP) ? ARM::t2ADDrSPi : ARM::t2ADDri); if (Offset < 0) { BaseOpc = !isThumb2 ? ARM::SUBri : ((Base == ARM::SP) ? ARM::t2SUBrSPi : ARM::t2SUBri); Offset = - Offset; } int ImmedOffset = isThumb2 ? ARM_AM::getT2SOImmVal(Offset) : ARM_AM::getSOImmVal(Offset); if (ImmedOffset == -1) // FIXME: Try t2ADDri12 or t2SUBri12? return false; // Probably not worth it then. BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase) .addReg(Base, getKillRegState(BaseKill)).addImm(Offset) .addImm(Pred).addReg(PredReg).addReg(0); Base = NewBase; BaseKill = true; // New base is always killed right its use. } bool isDPR = (Opcode == ARM::VLDRD || Opcode == ARM::VSTRD); bool isDef = (isi32Load(Opcode) || Opcode == ARM::VLDRS || Opcode == ARM::VLDRD); Opcode = getLoadStoreMultipleOpcode(Opcode); MachineInstrBuilder MIB = (isAM4) ? BuildMI(MBB, MBBI, dl, TII->get(Opcode)) .addReg(Base, getKillRegState(BaseKill)) .addImm(ARM_AM::getAM4ModeImm(Mode)).addImm(Pred).addReg(PredReg) : BuildMI(MBB, MBBI, dl, TII->get(Opcode)) .addReg(Base, getKillRegState(BaseKill)) .addImm(ARM_AM::getAM5Opc(Mode, isDPR ? NumRegs<<1 : NumRegs)) .addImm(Pred).addReg(PredReg); for (unsigned i = 0; i != NumRegs; ++i) MIB = MIB.addReg(Regs[i].first, getDefRegState(isDef) | getKillRegState(Regs[i].second)); return true; } // MergeOpsUpdate - call MergeOps and update MemOps and merges accordingly on // success. void ARMLoadStoreOpt:: MergeOpsUpdate(MachineBasicBlock &MBB, MemOpQueue &memOps, unsigned memOpsBegin, unsigned memOpsEnd, unsigned insertAfter, int Offset, unsigned Base, bool BaseKill, int Opcode, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, DebugLoc dl, SmallVector &Merges) { // First calculate which of the registers should be killed by the merged // instruction. SmallVector, 8> Regs; const unsigned insertPos = memOps[insertAfter].Position; for (unsigned i = memOpsBegin; i < memOpsEnd; ++i) { const MachineOperand &MO = memOps[i].MBBI->getOperand(0); unsigned Reg = MO.getReg(); bool isKill = MO.isKill(); // If we are inserting the merged operation after an unmerged operation that // uses the same register, make sure to transfer any kill flag. for (unsigned j = memOpsEnd, e = memOps.size(); !isKill && j != e; ++j) if (memOps[j].PositiongetOperand(0); if (MOJ.getReg() == Reg && MOJ.isKill()) isKill = true; } Regs.push_back(std::make_pair(Reg, isKill)); } // Try to do the merge. MachineBasicBlock::iterator Loc = memOps[insertAfter].MBBI; Loc++; if (!MergeOps(MBB, Loc, Offset, Base, BaseKill, Opcode, Pred, PredReg, Scratch, dl, Regs)) return; // Merge succeeded, update records. Merges.push_back(prior(Loc)); for (unsigned i = memOpsBegin; i < memOpsEnd; ++i) { // Remove kill flags from any unmerged memops that come before insertPos. if (Regs[i-memOpsBegin].second) for (unsigned j = memOpsEnd, e = memOps.size(); j != e; ++j) if (memOps[j].PositiongetOperand(0); if (MOJ.getReg() == Regs[i-memOpsBegin].first && MOJ.isKill()) MOJ.setIsKill(false); } MBB.erase(memOps[i].MBBI); memOps[i].Merged = true; } } /// MergeLDR_STR - Merge a number of load / store instructions into one or more /// load / store multiple instructions. void ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex, unsigned Base, int Opcode, unsigned Size, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, MemOpQueue &MemOps, SmallVector &Merges) { bool isAM4 = isi32Load(Opcode) || isi32Store(Opcode); int Offset = MemOps[SIndex].Offset; int SOffset = Offset; unsigned insertAfter = SIndex; MachineBasicBlock::iterator Loc = MemOps[SIndex].MBBI; DebugLoc dl = Loc->getDebugLoc(); const MachineOperand &PMO = Loc->getOperand(0); unsigned PReg = PMO.getReg(); unsigned PRegNum = PMO.isUndef() ? UINT_MAX : ARMRegisterInfo::getRegisterNumbering(PReg); unsigned Count = 1; for (unsigned i = SIndex+1, e = MemOps.size(); i != e; ++i) { int NewOffset = MemOps[i].Offset; const MachineOperand &MO = MemOps[i].MBBI->getOperand(0); unsigned Reg = MO.getReg(); unsigned RegNum = MO.isUndef() ? UINT_MAX : ARMRegisterInfo::getRegisterNumbering(Reg); // AM4 - register numbers in ascending order. // AM5 - consecutive register numbers in ascending order. // Can only do up to 16 double-word registers per insn. if (Reg != ARM::SP && NewOffset == Offset + (int)Size && ((isAM4 && RegNum > PRegNum) || ((Size < 8 || Count < 16) && RegNum == PRegNum+1))) { Offset += Size; PRegNum = RegNum; ++Count; } else { // Can't merge this in. Try merge the earlier ones first. MergeOpsUpdate(MBB, MemOps, SIndex, i, insertAfter, SOffset, Base, false, Opcode, Pred, PredReg, Scratch, dl, Merges); MergeLDR_STR(MBB, i, Base, Opcode, Size, Pred, PredReg, Scratch, MemOps, Merges); return; } if (MemOps[i].Position > MemOps[insertAfter].Position) insertAfter = i; } bool BaseKill = Loc->findRegisterUseOperandIdx(Base, true) != -1; MergeOpsUpdate(MBB, MemOps, SIndex, MemOps.size(), insertAfter, SOffset, Base, BaseKill, Opcode, Pred, PredReg, Scratch, dl, Merges); return; } static inline bool isMatchingDecrement(MachineInstr *MI, unsigned Base, unsigned Bytes, unsigned Limit, ARMCC::CondCodes Pred, unsigned PredReg){ unsigned MyPredReg = 0; if (!MI) return false; if (MI->getOpcode() != ARM::t2SUBri && MI->getOpcode() != ARM::t2SUBrSPi && MI->getOpcode() != ARM::t2SUBrSPi12 && MI->getOpcode() != ARM::tSUBspi && MI->getOpcode() != ARM::SUBri) return false; // Make sure the offset fits in 8 bits. if (Bytes <= 0 || (Limit && Bytes >= Limit)) return false; unsigned Scale = (MI->getOpcode() == ARM::tSUBspi) ? 4 : 1; // FIXME return (MI->getOperand(0).getReg() == Base && MI->getOperand(1).getReg() == Base && (MI->getOperand(2).getImm()*Scale) == Bytes && llvm::getInstrPredicate(MI, MyPredReg) == Pred && MyPredReg == PredReg); } static inline bool isMatchingIncrement(MachineInstr *MI, unsigned Base, unsigned Bytes, unsigned Limit, ARMCC::CondCodes Pred, unsigned PredReg){ unsigned MyPredReg = 0; if (!MI) return false; if (MI->getOpcode() != ARM::t2ADDri && MI->getOpcode() != ARM::t2ADDrSPi && MI->getOpcode() != ARM::t2ADDrSPi12 && MI->getOpcode() != ARM::tADDspi && MI->getOpcode() != ARM::ADDri) return false; if (Bytes <= 0 || (Limit && Bytes >= Limit)) // Make sure the offset fits in 8 bits. return false; unsigned Scale = (MI->getOpcode() == ARM::tADDspi) ? 4 : 1; // FIXME return (MI->getOperand(0).getReg() == Base && MI->getOperand(1).getReg() == Base && (MI->getOperand(2).getImm()*Scale) == Bytes && llvm::getInstrPredicate(MI, MyPredReg) == Pred && MyPredReg == PredReg); } static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) { switch (MI->getOpcode()) { default: return 0; case ARM::LDR: case ARM::STR: case ARM::t2LDRi8: case ARM::t2LDRi12: case ARM::t2STRi8: case ARM::t2STRi12: case ARM::VLDRS: case ARM::VSTRS: return 4; case ARM::VLDRD: case ARM::VSTRD: return 8; case ARM::LDM: case ARM::STM: case ARM::t2LDM: case ARM::t2STM: return (MI->getNumOperands() - 4) * 4; case ARM::VLDMS: case ARM::VSTMS: case ARM::VLDMD: case ARM::VSTMD: return ARM_AM::getAM5Offset(MI->getOperand(1).getImm()) * 4; } } static unsigned getUpdatingLSMultipleOpcode(unsigned Opc) { switch (Opc) { case ARM::LDM: return ARM::LDM_UPD; case ARM::STM: return ARM::STM_UPD; case ARM::t2LDM: return ARM::t2LDM_UPD; case ARM::t2STM: return ARM::t2STM_UPD; case ARM::VLDMS: return ARM::VLDMS_UPD; case ARM::VLDMD: return ARM::VLDMD_UPD; case ARM::VSTMS: return ARM::VSTMS_UPD; case ARM::VSTMD: return ARM::VSTMD_UPD; default: llvm_unreachable("Unhandled opcode!"); } return 0; } /// MergeBaseUpdateLSMultiple - Fold proceeding/trailing inc/dec of base /// register into the LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible: /// /// stmia rn, /// rn := rn + 4 * 3; /// => /// stmia rn!, /// /// rn := rn - 4 * 3; /// ldmia rn, /// => /// ldmdb rn!, bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, bool &Advance, MachineBasicBlock::iterator &I) { MachineInstr *MI = MBBI; unsigned Base = MI->getOperand(0).getReg(); bool BaseKill = MI->getOperand(0).isKill(); unsigned Bytes = getLSMultipleTransferSize(MI); unsigned PredReg = 0; ARMCC::CondCodes Pred = llvm::getInstrPredicate(MI, PredReg); int Opcode = MI->getOpcode(); DebugLoc dl = MI->getDebugLoc(); bool isAM4 = (Opcode == ARM::LDM || Opcode == ARM::t2LDM || Opcode == ARM::STM || Opcode == ARM::t2STM); bool DoMerge = false; ARM_AM::AMSubMode Mode = ARM_AM::ia; unsigned Offset = 0; if (isAM4) { // Can't use an updating ld/st if the base register is also a dest // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined. for (unsigned i = 3, e = MI->getNumOperands(); i != e; ++i) { if (MI->getOperand(i).getReg() == Base) return false; } Mode = ARM_AM::getAM4SubMode(MI->getOperand(1).getImm()); } else { // VLDM{D|S}, VSTM{D|S} addressing mode 5 ops. Mode = ARM_AM::getAM5SubMode(MI->getOperand(1).getImm()); Offset = ARM_AM::getAM5Offset(MI->getOperand(1).getImm()); } // Try merging with the previous instruction. if (MBBI != MBB.begin()) { MachineBasicBlock::iterator PrevMBBI = prior(MBBI); if (isAM4) { if (Mode == ARM_AM::ia && isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) { DoMerge = true; Mode = ARM_AM::db; } else if (isAM4 && Mode == ARM_AM::ib && isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) { DoMerge = true; Mode = ARM_AM::da; } } else { if (Mode == ARM_AM::ia && isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) { Mode = ARM_AM::db; DoMerge = true; } } if (DoMerge) MBB.erase(PrevMBBI); } // Try merging with the next instruction. if (!DoMerge && MBBI != MBB.end()) { MachineBasicBlock::iterator NextMBBI = llvm::next(MBBI); if (isAM4) { if ((Mode == ARM_AM::ia || Mode == ARM_AM::ib) && isMatchingIncrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) { DoMerge = true; } else if ((Mode == ARM_AM::da || Mode == ARM_AM::db) && isMatchingDecrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) { DoMerge = true; } } else { if (Mode == ARM_AM::ia && isMatchingIncrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) { DoMerge = true; } } if (DoMerge) { if (NextMBBI == I) { Advance = true; ++I; } MBB.erase(NextMBBI); } } if (!DoMerge) return false; unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode); MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(NewOpc)) .addReg(Base, getDefRegState(true)) // WB base register .addReg(Base, getKillRegState(BaseKill)); if (isAM4) { // [t2]LDM_UPD, [t2]STM_UPD MIB.addImm(ARM_AM::getAM4ModeImm(Mode)) .addImm(Pred).addReg(PredReg); } else { // VLDM[SD}_UPD, VSTM[SD]_UPD MIB.addImm(ARM_AM::getAM5Opc(Mode, Offset)) .addImm(Pred).addReg(PredReg); } // Transfer the rest of operands. for (unsigned OpNum = 4, e = MI->getNumOperands(); OpNum != e; ++OpNum) MIB.addOperand(MI->getOperand(OpNum)); // Transfer memoperands. (*MIB).setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); MBB.erase(MBBI); return true; } static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc) { switch (Opc) { case ARM::LDR: return ARM::LDR_PRE; case ARM::STR: return ARM::STR_PRE; case ARM::VLDRS: return ARM::VLDMS_UPD; case ARM::VLDRD: return ARM::VLDMD_UPD; case ARM::VSTRS: return ARM::VSTMS_UPD; case ARM::VSTRD: return ARM::VSTMD_UPD; case ARM::t2LDRi8: case ARM::t2LDRi12: return ARM::t2LDR_PRE; case ARM::t2STRi8: case ARM::t2STRi12: return ARM::t2STR_PRE; default: llvm_unreachable("Unhandled opcode!"); } return 0; } static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc) { switch (Opc) { case ARM::LDR: return ARM::LDR_POST; case ARM::STR: return ARM::STR_POST; case ARM::VLDRS: return ARM::VLDMS_UPD; case ARM::VLDRD: return ARM::VLDMD_UPD; case ARM::VSTRS: return ARM::VSTMS_UPD; case ARM::VSTRD: return ARM::VSTMD_UPD; case ARM::t2LDRi8: case ARM::t2LDRi12: return ARM::t2LDR_POST; case ARM::t2STRi8: case ARM::t2STRi12: return ARM::t2STR_POST; default: llvm_unreachable("Unhandled opcode!"); } return 0; } /// MergeBaseUpdateLoadStore - Fold proceeding/trailing inc/dec of base /// register into the LDR/STR/FLD{D|S}/FST{D|S} op when possible: bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const TargetInstrInfo *TII, bool &Advance, MachineBasicBlock::iterator &I) { MachineInstr *MI = MBBI; unsigned Base = MI->getOperand(1).getReg(); bool BaseKill = MI->getOperand(1).isKill(); unsigned Bytes = getLSMultipleTransferSize(MI); int Opcode = MI->getOpcode(); DebugLoc dl = MI->getDebugLoc(); bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS || Opcode == ARM::VSTRD || Opcode == ARM::VSTRS); bool isAM2 = (Opcode == ARM::LDR || Opcode == ARM::STR); if (isAM2 && ARM_AM::getAM2Offset(MI->getOperand(3).getImm()) != 0) return false; if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0) return false; if (isT2i32Load(Opcode) || isT2i32Store(Opcode)) if (MI->getOperand(2).getImm() != 0) return false; bool isLd = isi32Load(Opcode) || Opcode == ARM::VLDRS || Opcode == ARM::VLDRD; // Can't do the merge if the destination register is the same as the would-be // writeback register. if (isLd && MI->getOperand(0).getReg() == Base) return false; unsigned PredReg = 0; ARMCC::CondCodes Pred = llvm::getInstrPredicate(MI, PredReg); bool DoMerge = false; ARM_AM::AddrOpc AddSub = ARM_AM::add; unsigned NewOpc = 0; // AM2 - 12 bits, thumb2 - 8 bits. unsigned Limit = isAM5 ? 0 : (isAM2 ? 0x1000 : 0x100); // Try merging with the previous instruction. if (MBBI != MBB.begin()) { MachineBasicBlock::iterator PrevMBBI = prior(MBBI); if (isMatchingDecrement(PrevMBBI, Base, Bytes, Limit, Pred, PredReg)) { DoMerge = true; AddSub = ARM_AM::sub; } else if (!isAM5 && isMatchingIncrement(PrevMBBI, Base, Bytes, Limit,Pred,PredReg)) { DoMerge = true; } if (DoMerge) { NewOpc = getPreIndexedLoadStoreOpcode(Opcode); MBB.erase(PrevMBBI); } } // Try merging with the next instruction. if (!DoMerge && MBBI != MBB.end()) { MachineBasicBlock::iterator NextMBBI = llvm::next(MBBI); if (!isAM5 && isMatchingDecrement(NextMBBI, Base, Bytes, Limit, Pred, PredReg)) { DoMerge = true; AddSub = ARM_AM::sub; } else if (isMatchingIncrement(NextMBBI, Base, Bytes, Limit,Pred,PredReg)) { DoMerge = true; } if (DoMerge) { NewOpc = getPostIndexedLoadStoreOpcode(Opcode); if (NextMBBI == I) { Advance = true; ++I; } MBB.erase(NextMBBI); } } if (!DoMerge) return false; bool isDPR = NewOpc == ARM::VLDMD || NewOpc == ARM::VSTMD; unsigned Offset = 0; if (isAM5) Offset = ARM_AM::getAM5Opc(AddSub == ARM_AM::sub ? ARM_AM::db : ARM_AM::ia, (isDPR ? 2 : 1)); else if (isAM2) Offset = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift); else Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes; if (isAM5) { // VLDM[SD}_UPD, VSTM[SD]_UPD MachineOperand &MO = MI->getOperand(0); BuildMI(MBB, MBBI, dl, TII->get(NewOpc)) .addReg(Base, getDefRegState(true)) // WB base register .addReg(Base, getKillRegState(isLd ? BaseKill : false)) .addImm(Offset) .addImm(Pred).addReg(PredReg) .addReg(MO.getReg(), (isLd ? getDefRegState(true) : getKillRegState(MO.isKill()))); } else if (isLd) { if (isAM2) // LDR_PRE, LDR_POST, BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg()) .addReg(Base, RegState::Define) .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg); else // t2LDR_PRE, t2LDR_POST BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg()) .addReg(Base, RegState::Define) .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg); } else { MachineOperand &MO = MI->getOperand(0); if (isAM2) // STR_PRE, STR_POST BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base) .addReg(MO.getReg(), getKillRegState(MO.isKill())) .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg); else // t2STR_PRE, t2STR_POST BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base) .addReg(MO.getReg(), getKillRegState(MO.isKill())) .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg); } MBB.erase(MBBI); return true; } /// isMemoryOp - Returns true if instruction is a memory operations (that this /// pass is capable of operating on). static bool isMemoryOp(const MachineInstr *MI) { if (MI->hasOneMemOperand()) { const MachineMemOperand *MMO = *MI->memoperands_begin(); // Don't touch volatile memory accesses - we may be changing their order. if (MMO->isVolatile()) return false; // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is // not. if (MMO->getAlignment() < 4) return false; } // str could probably be eliminated entirely, but for now we just want // to avoid making a mess of it. // FIXME: Use str as a wildcard to enable better stm folding. if (MI->getNumOperands() > 0 && MI->getOperand(0).isReg() && MI->getOperand(0).isUndef()) return false; // Likewise don't mess with references to undefined addresses. if (MI->getNumOperands() > 1 && MI->getOperand(1).isReg() && MI->getOperand(1).isUndef()) return false; int Opcode = MI->getOpcode(); switch (Opcode) { default: break; case ARM::LDR: case ARM::STR: return MI->getOperand(1).isReg() && MI->getOperand(2).getReg() == 0; case ARM::VLDRS: case ARM::VSTRS: return MI->getOperand(1).isReg(); case ARM::VLDRD: case ARM::VSTRD: return MI->getOperand(1).isReg(); case ARM::t2LDRi8: case ARM::t2LDRi12: case ARM::t2STRi8: case ARM::t2STRi12: return MI->getOperand(1).isReg(); } return false; } /// AdvanceRS - Advance register scavenger to just before the earliest memory /// op that is being merged. void ARMLoadStoreOpt::AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps) { MachineBasicBlock::iterator Loc = MemOps[0].MBBI; unsigned Position = MemOps[0].Position; for (unsigned i = 1, e = MemOps.size(); i != e; ++i) { if (MemOps[i].Position < Position) { Position = MemOps[i].Position; Loc = MemOps[i].MBBI; } } if (Loc != MBB.begin()) RS->forward(prior(Loc)); } static int getMemoryOpOffset(const MachineInstr *MI) { int Opcode = MI->getOpcode(); bool isAM2 = Opcode == ARM::LDR || Opcode == ARM::STR; bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD; unsigned NumOperands = MI->getDesc().getNumOperands(); unsigned OffField = MI->getOperand(NumOperands-3).getImm(); if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 || Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 || Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) return OffField; int Offset = isAM2 ? ARM_AM::getAM2Offset(OffField) : (isAM3 ? ARM_AM::getAM3Offset(OffField) : ARM_AM::getAM5Offset(OffField) * 4); if (isAM2) { if (ARM_AM::getAM2Op(OffField) == ARM_AM::sub) Offset = -Offset; } else if (isAM3) { if (ARM_AM::getAM3Op(OffField) == ARM_AM::sub) Offset = -Offset; } else { if (ARM_AM::getAM5Op(OffField) == ARM_AM::sub) Offset = -Offset; } return Offset; } static void InsertLDR_STR(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, int OffImm, bool isDef, DebugLoc dl, unsigned NewOpc, unsigned Reg, bool RegDeadKill, bool RegUndef, unsigned BaseReg, bool BaseKill, bool BaseUndef, unsigned OffReg, bool OffKill, bool OffUndef, ARMCC::CondCodes Pred, unsigned PredReg, const TargetInstrInfo *TII, bool isT2) { int Offset = OffImm; if (!isT2) { if (OffImm < 0) Offset = ARM_AM::getAM2Opc(ARM_AM::sub, -OffImm, ARM_AM::no_shift); else Offset = ARM_AM::getAM2Opc(ARM_AM::add, OffImm, ARM_AM::no_shift); } if (isDef) { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill)) .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); if (!isT2) MIB.addReg(OffReg, getKillRegState(OffKill)|getUndefRegState(OffUndef)); MIB.addImm(Offset).addImm(Pred).addReg(PredReg); } else { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef)) .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); if (!isT2) MIB.addReg(OffReg, getKillRegState(OffKill)|getUndefRegState(OffUndef)); MIB.addImm(Offset).addImm(Pred).addReg(PredReg); } } bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI) { MachineInstr *MI = &*MBBI; unsigned Opcode = MI->getOpcode(); if (Opcode == ARM::LDRD || Opcode == ARM::STRD || Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) { unsigned EvenReg = MI->getOperand(0).getReg(); unsigned OddReg = MI->getOperand(1).getReg(); unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false); unsigned OddRegNum = TRI->getDwarfRegNum(OddReg, false); if ((EvenRegNum & 1) == 0 && (EvenRegNum + 1) == OddRegNum) return false; bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8; bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8; bool EvenDeadKill = isLd ? MI->getOperand(0).isDead() : MI->getOperand(0).isKill(); bool EvenUndef = MI->getOperand(0).isUndef(); bool OddDeadKill = isLd ? MI->getOperand(1).isDead() : MI->getOperand(1).isKill(); bool OddUndef = MI->getOperand(1).isUndef(); const MachineOperand &BaseOp = MI->getOperand(2); unsigned BaseReg = BaseOp.getReg(); bool BaseKill = BaseOp.isKill(); bool BaseUndef = BaseOp.isUndef(); unsigned OffReg = isT2 ? 0 : MI->getOperand(3).getReg(); bool OffKill = isT2 ? false : MI->getOperand(3).isKill(); bool OffUndef = isT2 ? false : MI->getOperand(3).isUndef(); int OffImm = getMemoryOpOffset(MI); unsigned PredReg = 0; ARMCC::CondCodes Pred = llvm::getInstrPredicate(MI, PredReg); if (OddRegNum > EvenRegNum && OffReg == 0 && OffImm == 0) { // Ascending register numbers and no offset. It's safe to change it to a // ldm or stm. unsigned NewOpc = (isLd) ? (isT2 ? ARM::t2LDM : ARM::LDM) : (isT2 ? ARM::t2STM : ARM::STM); if (isLd) { BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) .addReg(BaseReg, getKillRegState(BaseKill)) .addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia)) .addImm(Pred).addReg(PredReg) .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill)) .addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill)); ++NumLDRD2LDM; } else { BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) .addReg(BaseReg, getKillRegState(BaseKill)) .addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia)) .addImm(Pred).addReg(PredReg) .addReg(EvenReg, getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef)) .addReg(OddReg, getKillRegState(OddDeadKill) | getUndefRegState(OddUndef)); ++NumSTRD2STM; } } else { // Split into two instructions. assert((!isT2 || !OffReg) && "Thumb2 ldrd / strd does not encode offset register!"); unsigned NewOpc = (isLd) ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDR) : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STR); DebugLoc dl = MBBI->getDebugLoc(); // If this is a load and base register is killed, it may have been // re-defed by the load, make sure the first load does not clobber it. if (isLd && (BaseKill || OffKill) && (TRI->regsOverlap(EvenReg, BaseReg) || (OffReg && TRI->regsOverlap(EvenReg, OffReg)))) { assert(!TRI->regsOverlap(OddReg, BaseReg) && (!OffReg || !TRI->regsOverlap(OddReg, OffReg))); InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc, OddReg, OddDeadKill, false, BaseReg, false, BaseUndef, OffReg, false, OffUndef, Pred, PredReg, TII, isT2); InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc, EvenReg, EvenDeadKill, false, BaseReg, BaseKill, BaseUndef, OffReg, OffKill, OffUndef, Pred, PredReg, TII, isT2); } else { if (OddReg == EvenReg && EvenDeadKill) { // If the two source operands are the same, the kill marker is probably // on the first one. e.g. // t2STRDi8 %R5, %R5, %R9, 0, 14, %reg0 EvenDeadKill = false; OddDeadKill = true; } InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc, EvenReg, EvenDeadKill, EvenUndef, BaseReg, false, BaseUndef, OffReg, false, OffUndef, Pred, PredReg, TII, isT2); InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc, OddReg, OddDeadKill, OddUndef, BaseReg, BaseKill, BaseUndef, OffReg, OffKill, OffUndef, Pred, PredReg, TII, isT2); } if (isLd) ++NumLDRD2LDR; else ++NumSTRD2STR; } MBBI = prior(MBBI); MBB.erase(MI); } return false; } /// LoadStoreMultipleOpti - An optimization pass to turn multiple LDR / STR /// ops of the same base and incrementing offset into LDM / STM ops. bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) { unsigned NumMerges = 0; unsigned NumMemOps = 0; MemOpQueue MemOps; unsigned CurrBase = 0; int CurrOpc = -1; unsigned CurrSize = 0; ARMCC::CondCodes CurrPred = ARMCC::AL; unsigned CurrPredReg = 0; unsigned Position = 0; SmallVector Merges; RS->enterBasicBlock(&MBB); MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); while (MBBI != E) { if (FixInvalidRegPairOp(MBB, MBBI)) continue; bool Advance = false; bool TryMerge = false; bool Clobber = false; bool isMemOp = isMemoryOp(MBBI); if (isMemOp) { int Opcode = MBBI->getOpcode(); unsigned Size = getLSMultipleTransferSize(MBBI); unsigned Base = MBBI->getOperand(1).getReg(); unsigned PredReg = 0; ARMCC::CondCodes Pred = llvm::getInstrPredicate(MBBI, PredReg); int Offset = getMemoryOpOffset(MBBI); // Watch out for: // r4 := ldr [r5] // r5 := ldr [r5, #4] // r6 := ldr [r5, #8] // // The second ldr has effectively broken the chain even though it // looks like the later ldr(s) use the same base register. Try to // merge the ldr's so far, including this one. But don't try to // combine the following ldr(s). Clobber = (isi32Load(Opcode) && Base == MBBI->getOperand(0).getReg()); if (CurrBase == 0 && !Clobber) { // Start of a new chain. CurrBase = Base; CurrOpc = Opcode; CurrSize = Size; CurrPred = Pred; CurrPredReg = PredReg; MemOps.push_back(MemOpQueueEntry(Offset, Position, MBBI)); NumMemOps++; Advance = true; } else { if (Clobber) { TryMerge = true; Advance = true; } if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) { // No need to match PredReg. // Continue adding to the queue. if (Offset > MemOps.back().Offset) { MemOps.push_back(MemOpQueueEntry(Offset, Position, MBBI)); NumMemOps++; Advance = true; } else { for (MemOpQueueIter I = MemOps.begin(), E = MemOps.end(); I != E; ++I) { if (Offset < I->Offset) { MemOps.insert(I, MemOpQueueEntry(Offset, Position, MBBI)); NumMemOps++; Advance = true; break; } else if (Offset == I->Offset) { // Collision! This can't be merged! break; } } } } } } if (Advance) { ++Position; ++MBBI; if (MBBI == E) // Reach the end of the block, try merging the memory instructions. TryMerge = true; } else TryMerge = true; if (TryMerge) { if (NumMemOps > 1) { // Try to find a free register to use as a new base in case it's needed. // First advance to the instruction just before the start of the chain. AdvanceRS(MBB, MemOps); // Find a scratch register. unsigned Scratch = RS->FindUnusedReg(ARM::GPRRegisterClass); // Process the load / store instructions. RS->forward(prior(MBBI)); // Merge ops. Merges.clear(); MergeLDR_STR(MBB, 0, CurrBase, CurrOpc, CurrSize, CurrPred, CurrPredReg, Scratch, MemOps, Merges); // Try folding preceeding/trailing base inc/dec into the generated // LDM/STM ops. for (unsigned i = 0, e = Merges.size(); i < e; ++i) if (MergeBaseUpdateLSMultiple(MBB, Merges[i], Advance, MBBI)) ++NumMerges; NumMerges += Merges.size(); // Try folding preceeding/trailing base inc/dec into those load/store // that were not merged to form LDM/STM ops. for (unsigned i = 0; i != NumMemOps; ++i) if (!MemOps[i].Merged) if (MergeBaseUpdateLoadStore(MBB, MemOps[i].MBBI, TII,Advance,MBBI)) ++NumMerges; // RS may be pointing to an instruction that's deleted. RS->skipTo(prior(MBBI)); } else if (NumMemOps == 1) { // Try folding preceeding/trailing base inc/dec into the single // load/store. if (MergeBaseUpdateLoadStore(MBB, MemOps[0].MBBI, TII, Advance, MBBI)) { ++NumMerges; RS->forward(prior(MBBI)); } } CurrBase = 0; CurrOpc = -1; CurrSize = 0; CurrPred = ARMCC::AL; CurrPredReg = 0; if (NumMemOps) { MemOps.clear(); NumMemOps = 0; } // If iterator hasn't been advanced and this is not a memory op, skip it. // It can't start a new chain anyway. if (!Advance && !isMemOp && MBBI != E) { ++Position; ++MBBI; } } } return NumMerges > 0; } namespace { struct OffsetCompare { bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const { int LOffset = getMemoryOpOffset(LHS); int ROffset = getMemoryOpOffset(RHS); assert(LHS == RHS || LOffset != ROffset); return LOffset > ROffset; } }; } /// MergeReturnIntoLDM - If this is a exit BB, try merging the return ops /// ("bx lr" and "mov pc, lr") into the preceeding stack restore so it /// directly restore the value of LR into pc. /// ldmfd sp!, {..., lr} /// bx lr /// or /// ldmfd sp!, {..., lr} /// mov pc, lr /// => /// ldmfd sp!, {..., pc} bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) { if (MBB.empty()) return false; MachineBasicBlock::iterator MBBI = prior(MBB.end()); if (MBBI != MBB.begin() && (MBBI->getOpcode() == ARM::BX_RET || MBBI->getOpcode() == ARM::tBX_RET || MBBI->getOpcode() == ARM::MOVPCLR)) { MachineInstr *PrevMI = prior(MBBI); if (PrevMI->getOpcode() == ARM::LDM_UPD || PrevMI->getOpcode() == ARM::t2LDM_UPD) { MachineOperand &MO = PrevMI->getOperand(PrevMI->getNumOperands()-1); if (MO.getReg() != ARM::LR) return false; unsigned NewOpc = isThumb2 ? ARM::t2LDM_RET : ARM::LDM_RET; PrevMI->setDesc(TII->get(NewOpc)); MO.setReg(ARM::PC); MBB.erase(MBBI); return true; } } return false; } bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { const TargetMachine &TM = Fn.getTarget(); AFI = Fn.getInfo(); TII = TM.getInstrInfo(); TRI = TM.getRegisterInfo(); RS = new RegScavenger(); isThumb2 = AFI->isThumb2Function(); bool Modified = false; for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) { MachineBasicBlock &MBB = *MFI; Modified |= LoadStoreMultipleOpti(MBB); Modified |= MergeReturnIntoLDM(MBB); } delete RS; return Modified; } /// ARMPreAllocLoadStoreOpt - Pre- register allocation pass that move /// load / stores from consecutive locations close to make it more /// likely they will be combined later. namespace { struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{ static char ID; ARMPreAllocLoadStoreOpt() : MachineFunctionPass(&ID) {} const TargetData *TD; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; const ARMSubtarget *STI; MachineRegisterInfo *MRI; MachineFunction *MF; virtual bool runOnMachineFunction(MachineFunction &Fn); virtual const char *getPassName() const { return "ARM pre- register allocation load / store optimization pass"; } private: bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc, unsigned &EvenReg, unsigned &OddReg, unsigned &BaseReg, unsigned &OffReg, int &Offset, unsigned &PredReg, ARMCC::CondCodes &Pred, bool &isT2); bool RescheduleOps(MachineBasicBlock *MBB, SmallVector &Ops, unsigned Base, bool isLd, DenseMap &MI2LocMap); bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB); }; char ARMPreAllocLoadStoreOpt::ID = 0; } bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { TD = Fn.getTarget().getTargetData(); TII = Fn.getTarget().getInstrInfo(); TRI = Fn.getTarget().getRegisterInfo(); STI = &Fn.getTarget().getSubtarget(); MRI = &Fn.getRegInfo(); MF = &Fn; bool Modified = false; for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) Modified |= RescheduleLoadStoreInstrs(MFI); return Modified; } static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base, MachineBasicBlock::iterator I, MachineBasicBlock::iterator E, SmallPtrSet &MemOps, SmallSet &MemRegs, const TargetRegisterInfo *TRI) { // Are there stores / loads / calls between them? // FIXME: This is overly conservative. We should make use of alias information // some day. SmallSet AddedRegPressure; while (++I != E) { if (MemOps.count(&*I)) continue; const TargetInstrDesc &TID = I->getDesc(); if (TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects()) return false; if (isLd && TID.mayStore()) return false; if (!isLd) { if (TID.mayLoad()) return false; // It's not safe to move the first 'str' down. // str r1, [r0] // strh r5, [r0] // str r4, [r0, #+4] if (TID.mayStore()) return false; } for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) { MachineOperand &MO = I->getOperand(j); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (MO.isDef() && TRI->regsOverlap(Reg, Base)) return false; if (Reg != Base && !MemRegs.count(Reg)) AddedRegPressure.insert(Reg); } } // Estimate register pressure increase due to the transformation. if (MemRegs.size() <= 4) // Ok if we are moving small number of instructions. return true; return AddedRegPressure.size() <= MemRegs.size() * 2; } bool ARMPreAllocLoadStoreOpt::CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc, unsigned &EvenReg, unsigned &OddReg, unsigned &BaseReg, unsigned &OffReg, int &Offset, unsigned &PredReg, ARMCC::CondCodes &Pred, bool &isT2) { // Make sure we're allowed to generate LDRD/STRD. if (!STI->hasV5TEOps()) return false; // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD unsigned Scale = 1; unsigned Opcode = Op0->getOpcode(); if (Opcode == ARM::LDR) NewOpc = ARM::LDRD; else if (Opcode == ARM::STR) NewOpc = ARM::STRD; else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) { NewOpc = ARM::t2LDRDi8; Scale = 4; isT2 = true; } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) { NewOpc = ARM::t2STRDi8; Scale = 4; isT2 = true; } else return false; // Make sure the offset registers match. if (!isT2 && (Op0->getOperand(2).getReg() != Op1->getOperand(2).getReg())) return false; // Must sure the base address satisfies i64 ld / st alignment requirement. if (!Op0->hasOneMemOperand() || !(*Op0->memoperands_begin())->getValue() || (*Op0->memoperands_begin())->isVolatile()) return false; unsigned Align = (*Op0->memoperands_begin())->getAlignment(); Function *Func = MF->getFunction(); unsigned ReqAlign = STI->hasV6Ops() ? TD->getPrefTypeAlignment(Type::getInt64Ty(Func->getContext())) : 8; // Pre-v6 need 8-byte align if (Align < ReqAlign) return false; // Then make sure the immediate offset fits. int OffImm = getMemoryOpOffset(Op0); if (isT2) { if (OffImm < 0) { if (OffImm < -255) // Can't fall back to t2LDRi8 / t2STRi8. return false; } else { int Limit = (1 << 8) * Scale; if (OffImm >= Limit || (OffImm & (Scale-1))) return false; } Offset = OffImm; } else { ARM_AM::AddrOpc AddSub = ARM_AM::add; if (OffImm < 0) { AddSub = ARM_AM::sub; OffImm = - OffImm; } int Limit = (1 << 8) * Scale; if (OffImm >= Limit || (OffImm & (Scale-1))) return false; Offset = ARM_AM::getAM3Opc(AddSub, OffImm); } EvenReg = Op0->getOperand(0).getReg(); OddReg = Op1->getOperand(0).getReg(); if (EvenReg == OddReg) return false; BaseReg = Op0->getOperand(1).getReg(); if (!isT2) OffReg = Op0->getOperand(2).getReg(); Pred = llvm::getInstrPredicate(Op0, PredReg); dl = Op0->getDebugLoc(); return true; } bool ARMPreAllocLoadStoreOpt::RescheduleOps(MachineBasicBlock *MBB, SmallVector &Ops, unsigned Base, bool isLd, DenseMap &MI2LocMap) { bool RetVal = false; // Sort by offset (in reverse order). std::sort(Ops.begin(), Ops.end(), OffsetCompare()); // The loads / stores of the same base are in order. Scan them from first to // last and check for the followins: // 1. Any def of base. // 2. Any gaps. while (Ops.size() > 1) { unsigned FirstLoc = ~0U; unsigned LastLoc = 0; MachineInstr *FirstOp = 0; MachineInstr *LastOp = 0; int LastOffset = 0; unsigned LastOpcode = 0; unsigned LastBytes = 0; unsigned NumMove = 0; for (int i = Ops.size() - 1; i >= 0; --i) { MachineInstr *Op = Ops[i]; unsigned Loc = MI2LocMap[Op]; if (Loc <= FirstLoc) { FirstLoc = Loc; FirstOp = Op; } if (Loc >= LastLoc) { LastLoc = Loc; LastOp = Op; } unsigned Opcode = Op->getOpcode(); if (LastOpcode && Opcode != LastOpcode) break; int Offset = getMemoryOpOffset(Op); unsigned Bytes = getLSMultipleTransferSize(Op); if (LastBytes) { if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes)) break; } LastOffset = Offset; LastBytes = Bytes; LastOpcode = Opcode; if (++NumMove == 8) // FIXME: Tune this limit. break; } if (NumMove <= 1) Ops.pop_back(); else { SmallPtrSet MemOps; SmallSet MemRegs; for (int i = NumMove-1; i >= 0; --i) { MemOps.insert(Ops[i]); MemRegs.insert(Ops[i]->getOperand(0).getReg()); } // Be conservative, if the instructions are too far apart, don't // move them. We want to limit the increase of register pressure. bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this. if (DoMove) DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp, MemOps, MemRegs, TRI); if (!DoMove) { for (unsigned i = 0; i != NumMove; ++i) Ops.pop_back(); } else { // This is the new location for the loads / stores. MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp; while (InsertPos != MBB->end() && MemOps.count(InsertPos)) ++InsertPos; // If we are moving a pair of loads / stores, see if it makes sense // to try to allocate a pair of registers that can form register pairs. MachineInstr *Op0 = Ops.back(); MachineInstr *Op1 = Ops[Ops.size()-2]; unsigned EvenReg = 0, OddReg = 0; unsigned BaseReg = 0, OffReg = 0, PredReg = 0; ARMCC::CondCodes Pred = ARMCC::AL; bool isT2 = false; unsigned NewOpc = 0; int Offset = 0; DebugLoc dl; if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc, EvenReg, OddReg, BaseReg, OffReg, Offset, PredReg, Pred, isT2)) { Ops.pop_back(); Ops.pop_back(); // Form the pair instruction. if (isLd) { MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, TII->get(NewOpc)) .addReg(EvenReg, RegState::Define) .addReg(OddReg, RegState::Define) .addReg(BaseReg); if (!isT2) MIB.addReg(OffReg); MIB.addImm(Offset).addImm(Pred).addReg(PredReg); ++NumLDRDFormed; } else { MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, TII->get(NewOpc)) .addReg(EvenReg) .addReg(OddReg) .addReg(BaseReg); if (!isT2) MIB.addReg(OffReg); MIB.addImm(Offset).addImm(Pred).addReg(PredReg); ++NumSTRDFormed; } MBB->erase(Op0); MBB->erase(Op1); // Add register allocation hints to form register pairs. MRI->setRegAllocationHint(EvenReg, ARMRI::RegPairEven, OddReg); MRI->setRegAllocationHint(OddReg, ARMRI::RegPairOdd, EvenReg); } else { for (unsigned i = 0; i != NumMove; ++i) { MachineInstr *Op = Ops.back(); Ops.pop_back(); MBB->splice(InsertPos, MBB, Op); } } NumLdStMoved += NumMove; RetVal = true; } } } return RetVal; } bool ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) { bool RetVal = false; DenseMap MI2LocMap; DenseMap > Base2LdsMap; DenseMap > Base2StsMap; SmallVector LdBases; SmallVector StBases; unsigned Loc = 0; MachineBasicBlock::iterator MBBI = MBB->begin(); MachineBasicBlock::iterator E = MBB->end(); while (MBBI != E) { for (; MBBI != E; ++MBBI) { MachineInstr *MI = MBBI; const TargetInstrDesc &TID = MI->getDesc(); if (TID.isCall() || TID.isTerminator()) { // Stop at barriers. ++MBBI; break; } MI2LocMap[MI] = Loc++; if (!isMemoryOp(MI)) continue; unsigned PredReg = 0; if (llvm::getInstrPredicate(MI, PredReg) != ARMCC::AL) continue; int Opc = MI->getOpcode(); bool isLd = isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD; unsigned Base = MI->getOperand(1).getReg(); int Offset = getMemoryOpOffset(MI); bool StopHere = false; if (isLd) { DenseMap >::iterator BI = Base2LdsMap.find(Base); if (BI != Base2LdsMap.end()) { for (unsigned i = 0, e = BI->second.size(); i != e; ++i) { if (Offset == getMemoryOpOffset(BI->second[i])) { StopHere = true; break; } } if (!StopHere) BI->second.push_back(MI); } else { SmallVector MIs; MIs.push_back(MI); Base2LdsMap[Base] = MIs; LdBases.push_back(Base); } } else { DenseMap >::iterator BI = Base2StsMap.find(Base); if (BI != Base2StsMap.end()) { for (unsigned i = 0, e = BI->second.size(); i != e; ++i) { if (Offset == getMemoryOpOffset(BI->second[i])) { StopHere = true; break; } } if (!StopHere) BI->second.push_back(MI); } else { SmallVector MIs; MIs.push_back(MI); Base2StsMap[Base] = MIs; StBases.push_back(Base); } } if (StopHere) { // Found a duplicate (a base+offset combination that's seen earlier). // Backtrack. --Loc; break; } } // Re-schedule loads. for (unsigned i = 0, e = LdBases.size(); i != e; ++i) { unsigned Base = LdBases[i]; SmallVector &Lds = Base2LdsMap[Base]; if (Lds.size() > 1) RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap); } // Re-schedule stores. for (unsigned i = 0, e = StBases.size(); i != e; ++i) { unsigned Base = StBases[i]; SmallVector &Sts = Base2StsMap[Base]; if (Sts.size() > 1) RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap); } if (MBBI != E) { Base2LdsMap.clear(); Base2StsMap.clear(); LdBases.clear(); StBases.clear(); } } return RetVal; } /// createARMLoadStoreOptimizationPass - returns an instance of the load / store /// optimization pass. FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) { if (PreAlloc) return new ARMPreAllocLoadStoreOpt(); return new ARMLoadStoreOpt(); }