//===-- NVPTXAsmPrinter.h - NVPTX LLVM assembly writer --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to NVPTX assembly language. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_NVPTX_NVPTXASMPRINTER_H #define LLVM_LIB_TARGET_NVPTX_NVPTXASMPRINTER_H #include "NVPTX.h" #include "NVPTXSubtarget.h" #include "NVPTXTargetMachine.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Target/TargetMachine.h" #include // The ptx syntax and format is very different from that usually seem in a .s // file, // therefore we are not able to use the MCAsmStreamer interface here. // // We are handcrafting the output method here. // // A better approach is to clone the MCAsmStreamer to a MCPTXAsmStreamer // (subclass of MCStreamer). namespace llvm { class LineReader { private: unsigned theCurLine; std::ifstream fstr; char buff[512]; std::string theFileName; SmallVector lineOffset; public: LineReader(std::string filename) { theCurLine = 0; fstr.open(filename.c_str()); theFileName = filename; } std::string fileName() { return theFileName; } ~LineReader() { fstr.close(); } std::string readLine(unsigned line); }; class LLVM_LIBRARY_VISIBILITY NVPTXAsmPrinter : public AsmPrinter { class AggBuffer { // Used to buffer the emitted string for initializing global // aggregates. // // Normally an aggregate (array, vector or structure) is emitted // as a u8[]. However, if one element/field of the aggregate // is a non-NULL address, then the aggregate is emitted as u32[] // or u64[]. // // We first layout the aggregate in 'buffer' in bytes, except for // those symbol addresses. For the i-th symbol address in the //aggregate, its corresponding 4-byte or 8-byte elements in 'buffer' // are filled with 0s. symbolPosInBuffer[i-1] records its position // in 'buffer', and Symbols[i-1] records the Value*. // // Once we have this AggBuffer setup, we can choose how to print // it out. public: unsigned numSymbols; // number of symbol addresses private: const unsigned size; // size of the buffer in bytes std::vector buffer; // the buffer SmallVector symbolPosInBuffer; SmallVector Symbols; unsigned curpos; raw_ostream &O; NVPTXAsmPrinter &AP; bool EmitGeneric; public: AggBuffer(unsigned _size, raw_ostream &_O, NVPTXAsmPrinter &_AP) : size(_size), buffer(_size), O(_O), AP(_AP) { curpos = 0; numSymbols = 0; EmitGeneric = AP.EmitGeneric; } unsigned addBytes(unsigned char *Ptr, int Num, int Bytes) { assert((curpos + Num) <= size); assert((curpos + Bytes) <= size); for (int i = 0; i < Num; ++i) { buffer[curpos] = Ptr[i]; curpos++; } for (int i = Num; i < Bytes; ++i) { buffer[curpos] = 0; curpos++; } return curpos; } unsigned addZeros(int Num) { assert((curpos + Num) <= size); for (int i = 0; i < Num; ++i) { buffer[curpos] = 0; curpos++; } return curpos; } void addSymbol(const Value *GVar) { symbolPosInBuffer.push_back(curpos); Symbols.push_back(GVar); numSymbols++; } void print() { if (numSymbols == 0) { // print out in bytes for (unsigned i = 0; i < size; i++) { if (i) O << ", "; O << (unsigned int) buffer[i]; } } else { // print out in 4-bytes or 8-bytes unsigned int pos = 0; unsigned int nSym = 0; unsigned int nextSymbolPos = symbolPosInBuffer[nSym]; unsigned int nBytes = 4; if (AP.nvptxSubtarget.is64Bit()) nBytes = 8; for (pos = 0; pos < size; pos += nBytes) { if (pos) O << ", "; if (pos == nextSymbolPos) { const Value *v = Symbols[nSym]; if (const GlobalValue *GVar = dyn_cast(v)) { MCSymbol *Name = AP.getSymbol(GVar); PointerType *PTy = dyn_cast(GVar->getType()); bool IsNonGenericPointer = false; if (PTy && PTy->getAddressSpace() != 0) { IsNonGenericPointer = true; } if (EmitGeneric && !isa(v) && !IsNonGenericPointer) { O << "generic("; O << *Name; O << ")"; } else { O << *Name; } } else if (const ConstantExpr *Cexpr = dyn_cast(v)) { O << *AP.lowerConstant(Cexpr); } else llvm_unreachable("symbol type unknown"); nSym++; if (nSym >= numSymbols) nextSymbolPos = size + 1; else nextSymbolPos = symbolPosInBuffer[nSym]; } else if (nBytes == 4) O << *(unsigned int *)(&buffer[pos]); else O << *(unsigned long long *)(&buffer[pos]); } } } }; friend class AggBuffer; void emitSrcInText(StringRef filename, unsigned line); private: const char *getPassName() const override { return "NVPTX Assembly Printer"; } const Function *F; std::string CurrentFnName; void EmitBasicBlockStart(const MachineBasicBlock &MBB) const override; void EmitFunctionEntryLabel() override; void EmitFunctionBodyStart() override; void EmitFunctionBodyEnd() override; void emitImplicitDef(const MachineInstr *MI) const override; void EmitInstruction(const MachineInstr *) override; void lowerToMCInst(const MachineInstr *MI, MCInst &OutMI); bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp); MCOperand GetSymbolRef(const MCSymbol *Symbol); unsigned encodeVirtualRegister(unsigned Reg); void EmitAlignment(unsigned NumBits, const GlobalValue *GV = nullptr) const {} void printVecModifiedImmediate(const MachineOperand &MO, const char *Modifier, raw_ostream &O); void printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O, const char *Modifier = nullptr); void printImplicitDef(const MachineInstr *MI, raw_ostream &O) const; void printModuleLevelGV(const GlobalVariable *GVar, raw_ostream &O, bool = false); void printParamName(int paramIndex, raw_ostream &O); void printParamName(Function::const_arg_iterator I, int paramIndex, raw_ostream &O); void emitGlobals(const Module &M); void emitHeader(Module &M, raw_ostream &O); void emitKernelFunctionDirectives(const Function &F, raw_ostream &O) const; void emitVirtualRegister(unsigned int vr, raw_ostream &); void emitFunctionExternParamList(const MachineFunction &MF); void emitFunctionParamList(const Function *, raw_ostream &O); void emitFunctionParamList(const MachineFunction &MF, raw_ostream &O); void setAndEmitFunctionVirtualRegisters(const MachineFunction &MF); void emitFunctionTempData(const MachineFunction &MF, unsigned &FrameSize); bool isImageType(const Type *Ty); void printReturnValStr(const Function *, raw_ostream &O); void printReturnValStr(const MachineFunction &MF, raw_ostream &O); bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &) override; void printOperand(const MachineInstr *MI, int opNum, raw_ostream &O, const char *Modifier = nullptr); bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &) override; protected: bool doInitialization(Module &M) override; bool doFinalization(Module &M) override; private: std::string CurrentBankselLabelInBasicBlock; bool GlobalsEmitted; // This is specific per MachineFunction. const MachineRegisterInfo *MRI; // The contents are specific for each // MachineFunction. But the size of the // array is not. typedef DenseMap VRegMap; typedef DenseMap VRegRCMap; VRegRCMap VRegMapping; // cache the subtarget here. const NVPTXSubtarget &nvptxSubtarget; // Build the map between type name and ID based on module's type // symbol table. std::map TypeNameMap; // List of variables demoted to a function scope. std::map > localDecls; // To record filename to ID mapping std::map filenameMap; void recordAndEmitFilenames(Module &); void emitPTXGlobalVariable(const GlobalVariable *GVar, raw_ostream &O); void emitPTXAddressSpace(unsigned int AddressSpace, raw_ostream &O) const; std::string getPTXFundamentalTypeStr(const Type *Ty, bool = true) const; void printScalarConstant(const Constant *CPV, raw_ostream &O); void printFPConstant(const ConstantFP *Fp, raw_ostream &O); void bufferLEByte(const Constant *CPV, int Bytes, AggBuffer *aggBuffer); void bufferAggregateConstant(const Constant *CV, AggBuffer *aggBuffer); void printOperandProper(const MachineOperand &MO); void emitLinkageDirective(const GlobalValue *V, raw_ostream &O); void emitDeclarations(const Module &, raw_ostream &O); void emitDeclaration(const Function *, raw_ostream &O); static const char *getRegisterName(unsigned RegNo); void emitDemotedVars(const Function *, raw_ostream &); bool lowerImageHandleOperand(const MachineInstr *MI, unsigned OpNo, MCOperand &MCOp); void lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp); bool isLoopHeaderOfNoUnroll(const MachineBasicBlock &MBB) const; LineReader *reader; LineReader *getReader(std::string); // Used to control the need to emit .generic() in the initializer of // module scope variables. // Although ptx supports the hybrid mode like the following, // .global .u32 a; // .global .u32 b; // .global .u32 addr[] = {a, generic(b)} // we have difficulty representing the difference in the NVVM IR. // // Since the address value should always be generic in CUDA C and always // be specific in OpenCL, we use this simple control here. // bool EmitGeneric; public: NVPTXAsmPrinter(TargetMachine &TM, std::unique_ptr Streamer) : AsmPrinter(TM, std::move(Streamer)), nvptxSubtarget(TM.getSubtarget()) { CurrentBankselLabelInBasicBlock = ""; reader = nullptr; EmitGeneric = (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA); } ~NVPTXAsmPrinter() { if (!reader) delete reader; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AsmPrinter::getAnalysisUsage(AU); } bool ignoreLoc(const MachineInstr &); std::string getVirtualRegisterName(unsigned) const; DebugLoc prevDebugLoc; void emitLineNumberAsDotLoc(const MachineInstr &); }; } // end of namespace #endif