//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format ARM assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asm-printer" #include "ARM.h" #include "ARMBuildAttrs.h" #include "ARMAddressingModes.h" #include "ARMConstantPoolValue.h" #include "AsmPrinter/ARMInstPrinter.h" #include "ARMMachineFunctionInfo.h" #include "ARMMCInstLower.h" #include "ARMTargetMachine.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; static cl::opt EnableMCInst("enable-arm-mcinst-printer", cl::Hidden, cl::desc("enable experimental asmprinter gunk in the arm backend")); namespace llvm { namespace ARM { enum DW_ISA { DW_ISA_ARM_thumb = 1, DW_ISA_ARM_arm = 2 }; } } namespace { class ARMAsmPrinter : public AsmPrinter { /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when printing asm code for different targets. const ARMSubtarget *Subtarget; /// AFI - Keep a pointer to ARMFunctionInfo for the current /// MachineFunction. ARMFunctionInfo *AFI; /// MCP - Keep a pointer to constantpool entries of the current /// MachineFunction. const MachineConstantPool *MCP; public: explicit ARMAsmPrinter(TargetMachine &TM, MCStreamer &Streamer) : AsmPrinter(TM, Streamer), AFI(NULL), MCP(NULL) { Subtarget = &TM.getSubtarget(); } virtual const char *getPassName() const { return "ARM Assembly Printer"; } void EmitJumpTable(const MachineInstr *MI); void EmitJump2Table(const MachineInstr *MI); void printInstructionThroughMCStreamer(const MachineInstr *MI); void printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O, const char *Modifier = 0); void printSOImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printSOImm2PartOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printSORegOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printAddrMode2Operand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printAddrMode2OffsetOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printAddrMode3Operand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printAddrMode3OffsetOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printAddrMode4Operand(const MachineInstr *MI, int OpNum,raw_ostream &O, const char *Modifier = 0); void printAddrMode5Operand(const MachineInstr *MI, int OpNum,raw_ostream &O, const char *Modifier = 0); void printAddrMode6Operand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printAddrMode6OffsetOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printAddrModePCOperand(const MachineInstr *MI, int OpNum, raw_ostream &O, const char *Modifier = 0); void printBitfieldInvMaskImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printMemBOption(const MachineInstr *MI, int OpNum, raw_ostream &O); void printShiftImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printThumbS4ImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printThumbITMask(const MachineInstr *MI, int OpNum, raw_ostream &O); void printThumbAddrModeRROperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printThumbAddrModeRI5Operand(const MachineInstr *MI, int OpNum, raw_ostream &O, unsigned Scale); void printThumbAddrModeS1Operand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printThumbAddrModeS2Operand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printThumbAddrModeS4Operand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printThumbAddrModeSPOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printT2SOOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printT2AddrModeImm12Operand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) {} void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printCPSOptionOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) {} void printMSRMaskOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) {} void printNegZeroOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) {} void printPredicateOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printMandatoryPredicateOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printSBitModifierOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printPCLabel(const MachineInstr *MI, int OpNum, raw_ostream &O); void printRegisterList(const MachineInstr *MI, int OpNum, raw_ostream &O); void printCPInstOperand(const MachineInstr *MI, int OpNum, raw_ostream &O, const char *Modifier); void printJTBlockOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printJT2BlockOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printTBAddrMode(const MachineInstr *MI, int OpNum, raw_ostream &O); void printNoHashImmediate(const MachineInstr *MI, int OpNum, raw_ostream &O); void printVFPf32ImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printVFPf64ImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); void printNEONModImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O); virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O); virtual bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O); void printInstruction(const MachineInstr *MI, raw_ostream &O); // autogen static const char *getRegisterName(unsigned RegNo); virtual void EmitInstruction(const MachineInstr *MI); bool runOnMachineFunction(MachineFunction &F); virtual void EmitConstantPool() {} // we emit constant pools customly! virtual void EmitFunctionEntryLabel(); void EmitStartOfAsmFile(Module &M); void EmitEndOfAsmFile(Module &M); MachineLocation getDebugValueLocation(const MachineInstr *MI) const { MachineLocation Location; assert (MI->getNumOperands() == 4 && "Invalid no. of machine operands!"); // Frame address. Currently handles register +- offset only. if (MI->getOperand(0).isReg() && MI->getOperand(1).isImm()) Location.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); else { DEBUG(dbgs() << "DBG_VALUE instruction ignored! " << *MI << "\n"); } return Location; } virtual unsigned getISAEncoding() { // ARM/Darwin adds ISA to the DWARF info for each function. if (!Subtarget->isTargetDarwin()) return 0; return Subtarget->isThumb() ? llvm::ARM::DW_ISA_ARM_thumb : llvm::ARM::DW_ISA_ARM_arm; } MCSymbol *GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2, const MachineBasicBlock *MBB) const; MCSymbol *GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const; MCSymbol *GetARMSJLJEHLabel(void) const; /// EmitMachineConstantPoolValue - Print a machine constantpool value to /// the .s file. virtual void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { SmallString<128> Str; raw_svector_ostream OS(Str); EmitMachineConstantPoolValue(MCPV, OS); OutStreamer.EmitRawText(OS.str()); } void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV, raw_ostream &O) { switch (TM.getTargetData()->getTypeAllocSize(MCPV->getType())) { case 1: O << MAI->getData8bitsDirective(0); break; case 2: O << MAI->getData16bitsDirective(0); break; case 4: O << MAI->getData32bitsDirective(0); break; default: assert(0 && "Unknown CPV size"); } ARMConstantPoolValue *ACPV = static_cast(MCPV); if (ACPV->isLSDA()) { O << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber(); } else if (ACPV->isBlockAddress()) { O << *GetBlockAddressSymbol(ACPV->getBlockAddress()); } else if (ACPV->isGlobalValue()) { const GlobalValue *GV = ACPV->getGV(); bool isIndirect = Subtarget->isTargetDarwin() && Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()); if (!isIndirect) O << *Mang->getSymbol(GV); else { // FIXME: Remove this when Darwin transition to @GOT like syntax. MCSymbol *Sym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); O << *Sym; MachineModuleInfoMachO &MMIMachO = MMI->getObjFileInfo(); MachineModuleInfoImpl::StubValueTy &StubSym = GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(Sym) : MMIMachO.getGVStubEntry(Sym); if (StubSym.getPointer() == 0) StubSym = MachineModuleInfoImpl:: StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage()); } } else { assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); O << *GetExternalSymbolSymbol(ACPV->getSymbol()); } if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")"; if (ACPV->getPCAdjustment() != 0) { O << "-(" << MAI->getPrivateGlobalPrefix() << "PC" << getFunctionNumber() << "_" << ACPV->getLabelId() << "+" << (unsigned)ACPV->getPCAdjustment(); if (ACPV->mustAddCurrentAddress()) O << "-."; O << ')'; } } }; } // end of anonymous namespace #include "ARMGenAsmWriter.inc" void ARMAsmPrinter::EmitFunctionEntryLabel() { if (AFI->isThumbFunction()) { OutStreamer.EmitRawText(StringRef("\t.code\t16")); if (!Subtarget->isTargetDarwin()) OutStreamer.EmitRawText(StringRef("\t.thumb_func")); else { // This needs to emit to a temporary string to get properly quoted // MCSymbols when they have spaces in them. SmallString<128> Tmp; raw_svector_ostream OS(Tmp); OS << "\t.thumb_func\t" << *CurrentFnSym; OutStreamer.EmitRawText(OS.str()); } } OutStreamer.EmitLabel(CurrentFnSym); } /// runOnMachineFunction - This uses the printInstruction() /// method to print assembly for each instruction. /// bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { AFI = MF.getInfo(); MCP = MF.getConstantPool(); return AsmPrinter::runOnMachineFunction(MF); } void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O, const char *Modifier) { const MachineOperand &MO = MI->getOperand(OpNum); unsigned TF = MO.getTargetFlags(); switch (MO.getType()) { default: assert(0 && ""); case MachineOperand::MO_Register: { unsigned Reg = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(Reg)); if (Modifier && strcmp(Modifier, "lane") == 0) { unsigned RegNum = getARMRegisterNumbering(Reg); unsigned DReg = TM.getRegisterInfo()->getMatchingSuperReg(Reg, RegNum & 1 ? ARM::ssub_1 : ARM::ssub_0, &ARM::DPR_VFP2RegClass); O << getRegisterName(DReg) << '[' << (RegNum & 1) << ']'; } else { assert(!MO.getSubReg() && "Subregs should be eliminated!"); O << getRegisterName(Reg); } break; } case MachineOperand::MO_Immediate: { int64_t Imm = MO.getImm(); O << '#'; if ((Modifier && strcmp(Modifier, "lo16") == 0) || (TF & ARMII::MO_LO16)) O << ":lower16:"; else if ((Modifier && strcmp(Modifier, "hi16") == 0) || (TF & ARMII::MO_HI16)) O << ":upper16:"; O << Imm; break; } case MachineOperand::MO_MachineBasicBlock: O << *MO.getMBB()->getSymbol(); return; case MachineOperand::MO_GlobalAddress: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); const GlobalValue *GV = MO.getGlobal(); if ((Modifier && strcmp(Modifier, "lo16") == 0) || (TF & ARMII::MO_LO16)) O << ":lower16:"; else if ((Modifier && strcmp(Modifier, "hi16") == 0) || (TF & ARMII::MO_HI16)) O << ":upper16:"; O << *Mang->getSymbol(GV); printOffset(MO.getOffset(), O); if (isCallOp && Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) O << "(PLT)"; break; } case MachineOperand::MO_ExternalSymbol: { bool isCallOp = Modifier && !strcmp(Modifier, "call"); O << *GetExternalSymbolSymbol(MO.getSymbolName()); if (isCallOp && Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) O << "(PLT)"; break; } case MachineOperand::MO_ConstantPoolIndex: O << *GetCPISymbol(MO.getIndex()); break; case MachineOperand::MO_JumpTableIndex: O << *GetJTISymbol(MO.getIndex()); break; } } static void printSOImm(raw_ostream &O, int64_t V, bool VerboseAsm, const MCAsmInfo *MAI) { // Break it up into two parts that make up a shifter immediate. V = ARM_AM::getSOImmVal(V); assert(V != -1 && "Not a valid so_imm value!"); unsigned Imm = ARM_AM::getSOImmValImm(V); unsigned Rot = ARM_AM::getSOImmValRot(V); // Print low-level immediate formation info, per // A5.1.3: "Data-processing operands - Immediate". if (Rot) { O << "#" << Imm << ", " << Rot; // Pretty printed version. if (VerboseAsm) { O << "\t" << MAI->getCommentString() << ' '; O << (int)ARM_AM::rotr32(Imm, Rot); } } else { O << "#" << Imm; } } /// printSOImmOperand - SOImm is 4-bit rotate amount in bits 8-11 with 8-bit /// immediate in bits 0-7. void ARMAsmPrinter::printSOImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isImm() && "Not a valid so_imm value!"); printSOImm(O, MO.getImm(), isVerbose(), MAI); } /// printSOImm2PartOperand - SOImm is broken into two pieces using a 'mov' /// followed by an 'orr' to materialize. void ARMAsmPrinter::printSOImm2PartOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isImm() && "Not a valid so_imm value!"); unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO.getImm()); unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO.getImm()); printSOImm(O, V1, isVerbose(), MAI); O << "\n\torr"; printPredicateOperand(MI, 2, O); O << "\t"; printOperand(MI, 0, O); O << ", "; printOperand(MI, 0, O); O << ", "; printSOImm(O, V2, isVerbose(), MAI); } // so_reg is a 4-operand unit corresponding to register forms of the A5.1 // "Addressing Mode 1 - Data-processing operands" forms. This includes: // REG 0 0 - e.g. R5 // REG REG 0,SH_OPC - e.g. R5, ROR R3 // REG 0 IMM,SH_OPC - e.g. R5, LSL #3 void ARMAsmPrinter::printSORegOperand(const MachineInstr *MI, int Op, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); const MachineOperand &MO3 = MI->getOperand(Op+2); O << getRegisterName(MO1.getReg()); // Print the shift opc. ARM_AM::ShiftOpc ShOpc = ARM_AM::getSORegShOp(MO3.getImm()); O << ", " << ARM_AM::getShiftOpcStr(ShOpc); if (MO2.getReg()) { O << ' ' << getRegisterName(MO2.getReg()); assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0); } else if (ShOpc != ARM_AM::rrx) { O << " #" << ARM_AM::getSORegOffset(MO3.getImm()); } } void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); const MachineOperand &MO3 = MI->getOperand(Op+2); if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right. printOperand(MI, Op, O); return; } O << "[" << getRegisterName(MO1.getReg()); if (!MO2.getReg()) { if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0. O << ", #" << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm())) << ARM_AM::getAM2Offset(MO3.getImm()); O << "]"; return; } O << ", " << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm())) << getRegisterName(MO2.getReg()); if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) O << ", " << ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO3.getImm())) << " #" << ShImm; O << "]"; } void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); if (!MO1.getReg()) { unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm()); O << "#" << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm())) << ImmOffs; return; } O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm())) << getRegisterName(MO1.getReg()); if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm())) O << ", " << ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO2.getImm())) << " #" << ShImm; } void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); const MachineOperand &MO3 = MI->getOperand(Op+2); assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); O << "[" << getRegisterName(MO1.getReg()); if (MO2.getReg()) { O << ", " << (char)ARM_AM::getAM3Op(MO3.getImm()) << getRegisterName(MO2.getReg()) << "]"; return; } if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) O << ", #" << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm())) << ImmOffs; O << "]"; } void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op, raw_ostream &O){ const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); if (MO1.getReg()) { O << (char)ARM_AM::getAM3Op(MO2.getImm()) << getRegisterName(MO1.getReg()); return; } unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm()); O << "#" << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm())) << ImmOffs; } void ARMAsmPrinter::printAddrMode4Operand(const MachineInstr *MI, int Op, raw_ostream &O, const char *Modifier) { const MachineOperand &MO2 = MI->getOperand(Op+1); ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm()); if (Modifier && strcmp(Modifier, "submode") == 0) { O << ARM_AM::getAMSubModeStr(Mode); } else if (Modifier && strcmp(Modifier, "wide") == 0) { ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm()); if (Mode == ARM_AM::ia) O << ".w"; } else { printOperand(MI, Op, O); } } void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op, raw_ostream &O, const char *Modifier) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right. printOperand(MI, Op, O); return; } assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); O << "[" << getRegisterName(MO1.getReg()); if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) { O << ", #" << ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm())) << ImmOffs*4; } O << "]"; } void ARMAsmPrinter::printAddrMode6Operand(const MachineInstr *MI, int Op, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); O << "[" << getRegisterName(MO1.getReg()); if (MO2.getImm()) { // FIXME: Both darwin as and GNU as violate ARM docs here. O << ", :" << (MO2.getImm() << 3); } O << "]"; } void ARMAsmPrinter::printAddrMode6OffsetOperand(const MachineInstr *MI, int Op, raw_ostream &O){ const MachineOperand &MO = MI->getOperand(Op); if (MO.getReg() == 0) O << "!"; else O << ", " << getRegisterName(MO.getReg()); } void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op, raw_ostream &O, const char *Modifier) { if (Modifier && strcmp(Modifier, "label") == 0) { printPCLabel(MI, Op+1, O); return; } const MachineOperand &MO1 = MI->getOperand(Op); assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); O << "[pc, " << getRegisterName(MO1.getReg()) << "]"; } void ARMAsmPrinter::printBitfieldInvMaskImmOperand(const MachineInstr *MI, int Op, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(Op); uint32_t v = ~MO.getImm(); int32_t lsb = CountTrailingZeros_32(v); int32_t width = (32 - CountLeadingZeros_32 (v)) - lsb; assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!"); O << "#" << lsb << ", #" << width; } void ARMAsmPrinter::printMemBOption(const MachineInstr *MI, int OpNum, raw_ostream &O) { unsigned val = MI->getOperand(OpNum).getImm(); O << ARM_MB::MemBOptToString(val); } void ARMAsmPrinter::printShiftImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { unsigned ShiftOp = MI->getOperand(OpNum).getImm(); ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp); switch (Opc) { case ARM_AM::no_shift: return; case ARM_AM::lsl: O << ", lsl #"; break; case ARM_AM::asr: O << ", asr #"; break; default: assert(0 && "unexpected shift opcode for shift immediate operand"); } O << ARM_AM::getSORegOffset(ShiftOp); } //===--------------------------------------------------------------------===// void ARMAsmPrinter::printThumbS4ImmOperand(const MachineInstr *MI, int Op, raw_ostream &O) { O << "#" << MI->getOperand(Op).getImm() * 4; } void ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op, raw_ostream &O) { // (3 - the number of trailing zeros) is the number of then / else. unsigned Mask = MI->getOperand(Op).getImm(); unsigned CondBit0 = Mask >> 4 & 1; unsigned NumTZ = CountTrailingZeros_32(Mask); assert(NumTZ <= 3 && "Invalid IT mask!"); for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) { bool T = ((Mask >> Pos) & 1) == CondBit0; if (T) O << 't'; else O << 'e'; } } void ARMAsmPrinter::printThumbAddrModeRROperand(const MachineInstr *MI, int Op, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); O << "[" << getRegisterName(MO1.getReg()); O << ", " << getRegisterName(MO2.getReg()) << "]"; } void ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op, raw_ostream &O, unsigned Scale) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); const MachineOperand &MO3 = MI->getOperand(Op+2); if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right. printOperand(MI, Op, O); return; } O << "[" << getRegisterName(MO1.getReg()); if (MO3.getReg()) O << ", " << getRegisterName(MO3.getReg()); else if (unsigned ImmOffs = MO2.getImm()) O << ", #" << ImmOffs * Scale; O << "]"; } void ARMAsmPrinter::printThumbAddrModeS1Operand(const MachineInstr *MI, int Op, raw_ostream &O) { printThumbAddrModeRI5Operand(MI, Op, O, 1); } void ARMAsmPrinter::printThumbAddrModeS2Operand(const MachineInstr *MI, int Op, raw_ostream &O) { printThumbAddrModeRI5Operand(MI, Op, O, 2); } void ARMAsmPrinter::printThumbAddrModeS4Operand(const MachineInstr *MI, int Op, raw_ostream &O) { printThumbAddrModeRI5Operand(MI, Op, O, 4); } void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(Op); const MachineOperand &MO2 = MI->getOperand(Op+1); O << "[" << getRegisterName(MO1.getReg()); if (unsigned ImmOffs = MO2.getImm()) O << ", #" << ImmOffs*4; O << "]"; } //===--------------------------------------------------------------------===// // Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2 // register with shift forms. // REG 0 0 - e.g. R5 // REG IMM, SH_OPC - e.g. R5, LSL #3 void ARMAsmPrinter::printT2SOOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); unsigned Reg = MO1.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(Reg)); O << getRegisterName(Reg); // Print the shift opc. assert(MO2.isImm() && "Not a valid t2_so_reg value!"); ARM_AM::ShiftOpc ShOpc = ARM_AM::getSORegShOp(MO2.getImm()); O << ", " << ARM_AM::getShiftOpcStr(ShOpc); if (ShOpc != ARM_AM::rrx) O << " #" << ARM_AM::getSORegOffset(MO2.getImm()); } void ARMAsmPrinter::printT2AddrModeImm12Operand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); O << "[" << getRegisterName(MO1.getReg()); unsigned OffImm = MO2.getImm(); if (OffImm) // Don't print +0. O << ", #" << OffImm; O << "]"; } void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); O << "[" << getRegisterName(MO1.getReg()); int32_t OffImm = (int32_t)MO2.getImm(); // Don't print +0. if (OffImm < 0) O << ", #-" << -OffImm; else if (OffImm > 0) O << ", #" << OffImm; O << "]"; } void ARMAsmPrinter::printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); O << "[" << getRegisterName(MO1.getReg()); int32_t OffImm = (int32_t)MO2.getImm() / 4; // Don't print +0. if (OffImm < 0) O << ", #-" << -OffImm * 4; else if (OffImm > 0) O << ", #" << OffImm * 4; O << "]"; } void ARMAsmPrinter::printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(OpNum); int32_t OffImm = (int32_t)MO1.getImm(); // Don't print +0. if (OffImm < 0) O << "#-" << -OffImm; else if (OffImm > 0) O << "#" << OffImm; } void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); const MachineOperand &MO3 = MI->getOperand(OpNum+2); O << "[" << getRegisterName(MO1.getReg()); assert(MO2.getReg() && "Invalid so_reg load / store address!"); O << ", " << getRegisterName(MO2.getReg()); unsigned ShAmt = MO3.getImm(); if (ShAmt) { assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!"); O << ", lsl #" << ShAmt; } O << "]"; } //===--------------------------------------------------------------------===// void ARMAsmPrinter::printPredicateOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm(); if (CC != ARMCC::AL) O << ARMCondCodeToString(CC); } void ARMAsmPrinter::printMandatoryPredicateOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm(); O << ARMCondCodeToString(CC); } void ARMAsmPrinter::printSBitModifierOperand(const MachineInstr *MI, int OpNum, raw_ostream &O){ unsigned Reg = MI->getOperand(OpNum).getReg(); if (Reg) { assert(Reg == ARM::CPSR && "Expect ARM CPSR register!"); O << 's'; } } void ARMAsmPrinter::printPCLabel(const MachineInstr *MI, int OpNum, raw_ostream &O) { int Id = (int)MI->getOperand(OpNum).getImm(); O << MAI->getPrivateGlobalPrefix() << "PC" << getFunctionNumber() << "_" << Id; } void ARMAsmPrinter::printRegisterList(const MachineInstr *MI, int OpNum, raw_ostream &O) { O << "{"; for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) { if (MI->getOperand(i).isImplicit()) continue; if ((int)i != OpNum) O << ", "; printOperand(MI, i, O); } O << "}"; } void ARMAsmPrinter::printCPInstOperand(const MachineInstr *MI, int OpNum, raw_ostream &O, const char *Modifier) { assert(Modifier && "This operand only works with a modifier!"); // There are two aspects to a CONSTANTPOOL_ENTRY operand, the label and the // data itself. if (!strcmp(Modifier, "label")) { unsigned ID = MI->getOperand(OpNum).getImm(); OutStreamer.EmitLabel(GetCPISymbol(ID)); } else { assert(!strcmp(Modifier, "cpentry") && "Unknown modifier for CPE"); unsigned CPI = MI->getOperand(OpNum).getIndex(); const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; if (MCPE.isMachineConstantPoolEntry()) { EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); } else { EmitGlobalConstant(MCPE.Val.ConstVal); } } } MCSymbol *ARMAsmPrinter:: GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2, const MachineBasicBlock *MBB) const { SmallString<60> Name; raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << '_' << uid2 << "_set_" << MBB->getNumber(); return OutContext.GetOrCreateSymbol(Name.str()); } MCSymbol *ARMAsmPrinter:: GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const { SmallString<60> Name; raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid << '_' << uid2; return OutContext.GetOrCreateSymbol(Name.str()); } MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel(void) const { SmallString<60> Name; raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "SJLJEH" << getFunctionNumber(); return OutContext.GetOrCreateSymbol(Name.str()); } void ARMAsmPrinter::printJTBlockOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { assert(!Subtarget->isThumb2() && "Thumb2 should use double-jump jumptables!"); const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); // Can't use EmitLabel until instprinter happens, label comes out in the wrong // order. O << "\n" << *JTISymbol << ":\n"; const char *JTEntryDirective = MAI->getData32bitsDirective(); const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; bool UseSet= MAI->hasSetDirective() && TM.getRelocationModel() == Reloc::PIC_; SmallPtrSet JTSets; for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; bool isNew = JTSets.insert(MBB); if (UseSet && isNew) { O << "\t.set\t" << *GetARMSetPICJumpTableLabel2(JTI, MO2.getImm(), MBB) << ',' << *MBB->getSymbol() << '-' << *JTISymbol << '\n'; } O << JTEntryDirective << ' '; if (UseSet) O << *GetARMSetPICJumpTableLabel2(JTI, MO2.getImm(), MBB); else if (TM.getRelocationModel() == Reloc::PIC_) O << *MBB->getSymbol() << '-' << *JTISymbol; else O << *MBB->getSymbol(); if (i != e-1) O << '\n'; } } void ARMAsmPrinter::printJT2BlockOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); // Can't use EmitLabel until instprinter happens, label comes out in the wrong // order. O << "\n" << *JTISymbol << ":\n"; const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; bool ByteOffset = false, HalfWordOffset = false; if (MI->getOpcode() == ARM::t2TBB) ByteOffset = true; else if (MI->getOpcode() == ARM::t2TBH) HalfWordOffset = true; for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; if (ByteOffset) O << MAI->getData8bitsDirective(); else if (HalfWordOffset) O << MAI->getData16bitsDirective(); if (ByteOffset || HalfWordOffset) O << '(' << *MBB->getSymbol() << "-" << *JTISymbol << ")/2"; else O << "\tb.w " << *MBB->getSymbol(); if (i != e-1) O << '\n'; } } void ARMAsmPrinter::printTBAddrMode(const MachineInstr *MI, int OpNum, raw_ostream &O) { O << "[pc, " << getRegisterName(MI->getOperand(OpNum).getReg()); if (MI->getOpcode() == ARM::t2TBH) O << ", lsl #1"; O << ']'; } void ARMAsmPrinter::printNoHashImmediate(const MachineInstr *MI, int OpNum, raw_ostream &O) { O << MI->getOperand(OpNum).getImm(); } void ARMAsmPrinter::printVFPf32ImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const ConstantFP *FP = MI->getOperand(OpNum).getFPImm(); O << '#' << FP->getValueAPF().convertToFloat(); if (isVerbose()) { O << "\t\t" << MAI->getCommentString() << ' '; WriteAsOperand(O, FP, /*PrintType=*/false); } } void ARMAsmPrinter::printVFPf64ImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { const ConstantFP *FP = MI->getOperand(OpNum).getFPImm(); O << '#' << FP->getValueAPF().convertToDouble(); if (isVerbose()) { O << "\t\t" << MAI->getCommentString() << ' '; WriteAsOperand(O, FP, /*PrintType=*/false); } } void ARMAsmPrinter::printNEONModImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) { unsigned EncodedImm = MI->getOperand(OpNum).getImm(); unsigned EltBits; uint64_t Val = ARM_AM::decodeNEONModImm(EncodedImm, EltBits); O << "#0x" << utohexstr(Val); } bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'a': // Print as a memory address. if (MI->getOperand(OpNum).isReg()) { O << "[" << getRegisterName(MI->getOperand(OpNum).getReg()) << "]"; return false; } // Fallthrough case 'c': // Don't print "#" before an immediate operand. if (!MI->getOperand(OpNum).isImm()) return true; printNoHashImmediate(MI, OpNum, O); return false; case 'P': // Print a VFP double precision register. case 'q': // Print a NEON quad precision register. printOperand(MI, OpNum, O); return false; case 'Q': case 'R': case 'H': report_fatal_error("llvm does not support 'Q', 'R', and 'H' modifiers!"); return true; } } printOperand(MI, OpNum, O); return false; } bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) return true; // Unknown modifier. const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isReg() && "unexpected inline asm memory operand"); O << "[" << getRegisterName(MO.getReg()) << "]"; return false; } void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { if (EnableMCInst) { printInstructionThroughMCStreamer(MI); return; } if (MI->getOpcode() == ARM::CONSTPOOL_ENTRY) EmitAlignment(2); SmallString<128> Str; raw_svector_ostream OS(Str); if (MI->getOpcode() == ARM::DBG_VALUE) { unsigned NOps = MI->getNumOperands(); assert(NOps==4); OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: "; // cast away const; DIetc do not take const operands for some reason. DIVariable V(const_cast(MI->getOperand(NOps-1).getMetadata())); OS << V.getName(); OS << " <- "; // Frame address. Currently handles register +- offset only. assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm()); OS << '['; printOperand(MI, 0, OS); OS << '+'; printOperand(MI, 1, OS); OS << ']'; OS << "+"; printOperand(MI, NOps-2, OS); } else if (MI->getOpcode() == ARM::MOVs) { // FIXME: Thumb variants? const MachineOperand &Dst = MI->getOperand(0); const MachineOperand &MO1 = MI->getOperand(1); const MachineOperand &MO2 = MI->getOperand(2); const MachineOperand &MO3 = MI->getOperand(3); OS << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm())); printSBitModifierOperand(MI, 6, OS); printPredicateOperand(MI, 4, OS); OS << '\t' << getRegisterName(Dst.getReg()) << ", " << getRegisterName(MO1.getReg()); if (ARM_AM::getSORegShOp(MO3.getImm()) != ARM_AM::rrx) { OS << ", "; if (MO2.getReg()) { OS << getRegisterName(MO2.getReg()); assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0); } else { OS << "#" << ARM_AM::getSORegOffset(MO3.getImm()); } } } else // A8.6.123 PUSH if ((MI->getOpcode() == ARM::STM_UPD || MI->getOpcode() == ARM::t2STM_UPD) && MI->getOperand(0).getReg() == ARM::SP && ARM_AM::getAM4SubMode(MI->getOperand(2).getImm()) == ARM_AM::db) { OS << '\t' << "push"; printPredicateOperand(MI, 3, OS); OS << '\t'; printRegisterList(MI, 5, OS); } else // A8.6.122 POP if ((MI->getOpcode() == ARM::LDM_UPD || MI->getOpcode() == ARM::t2LDM_UPD) && MI->getOperand(0).getReg() == ARM::SP && ARM_AM::getAM4SubMode(MI->getOperand(2).getImm()) == ARM_AM::ia) { OS << '\t' << "pop"; printPredicateOperand(MI, 3, OS); OS << '\t'; printRegisterList(MI, 5, OS); } else // A8.6.355 VPUSH if ((MI->getOpcode() == ARM::VSTMS_UPD || MI->getOpcode() ==ARM::VSTMD_UPD) && MI->getOperand(0).getReg() == ARM::SP && ARM_AM::getAM4SubMode(MI->getOperand(2).getImm()) == ARM_AM::db) { OS << '\t' << "vpush"; printPredicateOperand(MI, 3, OS); OS << '\t'; printRegisterList(MI, 5, OS); } else // A8.6.354 VPOP if ((MI->getOpcode() == ARM::VLDMS_UPD || MI->getOpcode() ==ARM::VLDMD_UPD) && MI->getOperand(0).getReg() == ARM::SP && ARM_AM::getAM4SubMode(MI->getOperand(2).getImm()) == ARM_AM::ia) { OS << '\t' << "vpop"; printPredicateOperand(MI, 3, OS); OS << '\t'; printRegisterList(MI, 5, OS); } else // TRAP and tTRAP need special handling for non-Darwin. The GNU binutils // don't (yet) support the 'trap' mnemonic. (Use decimal, not hex, to // be consistent with the MC instruction printer.) // FIXME: This really should be in AsmPrinter/ARMInstPrinter.cpp, not here. // Need a way to ask "isTargetDarwin()" there, first, though. if (MI->getOpcode() == ARM::TRAP && !Subtarget->isTargetDarwin()) { OS << "\t.long\t3892305662\t\t" << MAI->getCommentString() << "trap"; } else if (MI->getOpcode() == ARM::tTRAP && !Subtarget->isTargetDarwin()) { OS << "\t.short\t57086\t\t\t" << MAI->getCommentString() << " trap"; } else printInstruction(MI, OS); // Output the instruction to the stream OutStreamer.EmitRawText(OS.str()); // Make sure the instruction that follows TBB is 2-byte aligned. // FIXME: Constant island pass should insert an "ALIGN" instruction instead. if (MI->getOpcode() == ARM::t2TBB) EmitAlignment(1); } void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { if (Subtarget->isTargetDarwin()) { Reloc::Model RelocM = TM.getRelocationModel(); if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) { // Declare all the text sections up front (before the DWARF sections // emitted by AsmPrinter::doInitialization) so the assembler will keep // them together at the beginning of the object file. This helps // avoid out-of-range branches that are due a fundamental limitation of // the way symbol offsets are encoded with the current Darwin ARM // relocations. const TargetLoweringObjectFileMachO &TLOFMacho = static_cast( getObjFileLowering()); OutStreamer.SwitchSection(TLOFMacho.getTextSection()); OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection()); OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection()); if (RelocM == Reloc::DynamicNoPIC) { const MCSection *sect = OutContext.getMachOSection("__TEXT", "__symbol_stub4", MCSectionMachO::S_SYMBOL_STUBS, 12, SectionKind::getText()); OutStreamer.SwitchSection(sect); } else { const MCSection *sect = OutContext.getMachOSection("__TEXT", "__picsymbolstub4", MCSectionMachO::S_SYMBOL_STUBS, 16, SectionKind::getText()); OutStreamer.SwitchSection(sect); } const MCSection *StaticInitSect = OutContext.getMachOSection("__TEXT", "__StaticInit", MCSectionMachO::S_REGULAR | MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, SectionKind::getText()); OutStreamer.SwitchSection(StaticInitSect); } } // Use unified assembler syntax. OutStreamer.EmitRawText(StringRef("\t.syntax unified")); // Emit ARM Build Attributes if (Subtarget->isTargetELF()) { // CPU Type std::string CPUString = Subtarget->getCPUString(); if (CPUString != "generic") OutStreamer.EmitRawText("\t.cpu " + Twine(CPUString)); // FIXME: Emit FPU type if (Subtarget->hasVFP2()) OutStreamer.EmitRawText("\t.eabi_attribute " + Twine(ARMBuildAttrs::VFP_arch) + ", 2"); // Signal various FP modes. if (!UnsafeFPMath) { OutStreamer.EmitRawText("\t.eabi_attribute " + Twine(ARMBuildAttrs::ABI_FP_denormal) + ", 1"); OutStreamer.EmitRawText("\t.eabi_attribute " + Twine(ARMBuildAttrs::ABI_FP_exceptions) + ", 1"); } if (NoInfsFPMath && NoNaNsFPMath) OutStreamer.EmitRawText("\t.eabi_attribute " + Twine(ARMBuildAttrs::ABI_FP_number_model)+ ", 1"); else OutStreamer.EmitRawText("\t.eabi_attribute " + Twine(ARMBuildAttrs::ABI_FP_number_model)+ ", 3"); // 8-bytes alignment stuff. OutStreamer.EmitRawText("\t.eabi_attribute " + Twine(ARMBuildAttrs::ABI_align8_needed) + ", 1"); OutStreamer.EmitRawText("\t.eabi_attribute " + Twine(ARMBuildAttrs::ABI_align8_preserved) + ", 1"); // Hard float. Use both S and D registers and conform to AAPCS-VFP. if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard) { OutStreamer.EmitRawText("\t.eabi_attribute " + Twine(ARMBuildAttrs::ABI_HardFP_use) + ", 3"); OutStreamer.EmitRawText("\t.eabi_attribute " + Twine(ARMBuildAttrs::ABI_VFP_args) + ", 1"); } // FIXME: Should we signal R9 usage? } } void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { if (Subtarget->isTargetDarwin()) { // All darwin targets use mach-o. const TargetLoweringObjectFileMachO &TLOFMacho = static_cast(getObjFileLowering()); MachineModuleInfoMachO &MMIMacho = MMI->getObjFileInfo(); // Output non-lazy-pointers for external and common global variables. MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); if (!Stubs.empty()) { // Switch with ".non_lazy_symbol_pointer" directive. OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); EmitAlignment(2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { // L_foo$stub: OutStreamer.EmitLabel(Stubs[i].first); // .indirect_symbol _foo MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second; OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol); if (MCSym.getInt()) // External to current translation unit. OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/); else // Internal to current translation unit. // // When we place the LSDA into the TEXT section, the type info // pointers need to be indirect and pc-rel. We accomplish this by // using NLPs; however, sometimes the types are local to the file. // We need to fill in the value for the NLP in those cases. OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(), OutContext), 4/*size*/, 0/*addrspace*/); } Stubs.clear(); OutStreamer.AddBlankLine(); } Stubs = MMIMacho.GetHiddenGVStubList(); if (!Stubs.empty()) { OutStreamer.SwitchSection(getObjFileLowering().getDataSection()); EmitAlignment(2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { // L_foo$stub: OutStreamer.EmitLabel(Stubs[i].first); // .long _foo OutStreamer.EmitValue(MCSymbolRefExpr:: Create(Stubs[i].second.getPointer(), OutContext), 4/*size*/, 0/*addrspace*/); } Stubs.clear(); OutStreamer.AddBlankLine(); } // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never // generates code that does this, it is always safe to set. OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); } } //===----------------------------------------------------------------------===// static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, unsigned LabelId, MCContext &Ctx) { MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix) + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); return Label; } void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); int OpNum = 1; if (Opcode == ARM::BR_JTadd) OpNum = 2; else if (Opcode == ARM::BR_JTm) OpNum = 3; const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); // Emit a label for the jump table. MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); OutStreamer.EmitLabel(JTISymbol); // Emit each entry of the table. const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; // Construct an MCExpr for the entry. We want a value of the form: // (BasicBlockAddr - TableBeginAddr) // // For example, a table with entries jumping to basic blocks BB0 and BB1 // would look like: // LJTI_0_0: // .word (LBB0 - LJTI_0_0) // .word (LBB1 - LJTI_0_0) const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); if (TM.getRelocationModel() == Reloc::PIC_) Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol, OutContext), OutContext); OutStreamer.EmitValue(Expr, 4); } } void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1; const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); // Emit a label for the jump table. MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); OutStreamer.EmitLabel(JTISymbol); // Emit each entry of the table. const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; unsigned OffsetWidth = 4; if (MI->getOpcode() == ARM::t2TBB) OffsetWidth = 1; else if (MI->getOpcode() == ARM::t2TBH) OffsetWidth = 2; for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); // If this isn't a TBB or TBH, the entries are direct branch instructions. if (OffsetWidth == 4) { MCInst BrInst; BrInst.setOpcode(ARM::t2B); BrInst.addOperand(MCOperand::CreateExpr(MBBSymbolExpr)); OutStreamer.EmitInstruction(BrInst); continue; } // Otherwise it's an offset from the dispatch instruction. Construct an // MCExpr for the entry. We want a value of the form: // (BasicBlockAddr - TableBeginAddr) / 2 // // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 // would look like: // LJTI_0_0: // .byte (LBB0 - LJTI_0_0) / 2 // .byte (LBB1 - LJTI_0_0) / 2 const MCExpr *Expr = MCBinaryExpr::CreateSub(MBBSymbolExpr, MCSymbolRefExpr::Create(JTISymbol, OutContext), OutContext); Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext), OutContext); OutStreamer.EmitValue(Expr, OffsetWidth); } // Make sure the instruction that follows TBB is 2-byte aligned. // FIXME: Constant island pass should insert an "ALIGN" instruction instead. if (MI->getOpcode() == ARM::t2TBB) EmitAlignment(1); } void ARMAsmPrinter::printInstructionThroughMCStreamer(const MachineInstr *MI) { ARMMCInstLower MCInstLowering(OutContext, *Mang, *this); switch (MI->getOpcode()) { case ARM::t2MOVi32imm: assert(0 && "Should be lowered by thumb2it pass"); default: break; case ARM::tPICADD: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // add r0, pc // This adds the address of LPC0 to r0. // Emit the label. OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the add. MCInst AddInst; AddInst.setOpcode(ARM::tADDhirr); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); AddInst.addOperand(MCOperand::CreateReg(ARM::PC)); // Add predicate operands. AddInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); AddInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(AddInst); return; } case ARM::PICADD: { // FIXME: Remove asm string from td file. // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // add r0, pc, r0 // This adds the address of LPC0 to r0. // Emit the label. OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the add. MCInst AddInst; AddInst.setOpcode(ARM::ADDrr); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); AddInst.addOperand(MCOperand::CreateReg(ARM::PC)); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); // Add predicate operands. AddInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm())); AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg())); // Add 's' bit operand (always reg0 for this) AddInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(AddInst); return; } case ARM::PICSTR: case ARM::PICSTRB: case ARM::PICSTRH: case ARM::PICLDR: case ARM::PICLDRB: case ARM::PICLDRH: case ARM::PICLDRSB: case ARM::PICLDRSH: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // OP r0, [pc, r0] // The LCP0 label is referenced by a constant pool entry in order to get // a PC-relative address at the ldr instruction. // Emit the label. OutStreamer.EmitLabel(getPICLabel(MAI->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the load unsigned Opcode; switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected opcode!"); case ARM::PICSTR: Opcode = ARM::STR; break; case ARM::PICSTRB: Opcode = ARM::STRB; break; case ARM::PICSTRH: Opcode = ARM::STRH; break; case ARM::PICLDR: Opcode = ARM::LDR; break; case ARM::PICLDRB: Opcode = ARM::LDRB; break; case ARM::PICLDRH: Opcode = ARM::LDRH; break; case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; } MCInst LdStInst; LdStInst.setOpcode(Opcode); LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); LdStInst.addOperand(MCOperand::CreateReg(ARM::PC)); LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); LdStInst.addOperand(MCOperand::CreateImm(0)); // Add predicate operands. LdStInst.addOperand(MCOperand::CreateImm(MI->getOperand(3).getImm())); LdStInst.addOperand(MCOperand::CreateReg(MI->getOperand(4).getReg())); OutStreamer.EmitInstruction(LdStInst); return; } case ARM::CONSTPOOL_ENTRY: { // FIXME: Remove asm string from td file. /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool /// in the function. The first operand is the ID# for this instruction, the /// second is the index into the MachineConstantPool that this is, the third /// is the size in bytes of this constant pool entry. unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); EmitAlignment(2); OutStreamer.EmitLabel(GetCPISymbol(LabelId)); const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; if (MCPE.isMachineConstantPoolEntry()) EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); else EmitGlobalConstant(MCPE.Val.ConstVal); return; } case ARM::MOVi2pieces: { // FIXME: Remove asmstring from td file. // This is a hack that lowers as a two instruction sequence. unsigned DstReg = MI->getOperand(0).getReg(); unsigned ImmVal = (unsigned)MI->getOperand(1).getImm(); unsigned SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(ImmVal); unsigned SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(ImmVal); { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVi); TmpInst.addOperand(MCOperand::CreateReg(DstReg)); TmpInst.addOperand(MCOperand::CreateImm(SOImmValV1)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg())); TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::ORRri); TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // inreg TmpInst.addOperand(MCOperand::CreateImm(SOImmValV2)); // so_imm // Predicate. TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg())); TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out OutStreamer.EmitInstruction(TmpInst); } return; } case ARM::MOVi32imm: { // FIXME: Remove asmstring from td file. // This is a hack that lowers as a two instruction sequence. unsigned DstReg = MI->getOperand(0).getReg(); const MachineOperand &MO = MI->getOperand(1); MCOperand V1, V2; if (MO.isImm()) { unsigned ImmVal = (unsigned)MI->getOperand(1).getImm(); V1 = MCOperand::CreateImm(ImmVal & 65535); V2 = MCOperand::CreateImm(ImmVal >> 16); } else if (MO.isGlobal()) { MCSymbol *Symbol = MCInstLowering.GetGlobalAddressSymbol(MO.getGlobal()); const MCSymbolRefExpr *SymRef1 = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_ARM_LO16, OutContext); const MCSymbolRefExpr *SymRef2 = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_ARM_HI16, OutContext); V1 = MCOperand::CreateExpr(SymRef1); V2 = MCOperand::CreateExpr(SymRef2); } else { // FIXME: External symbol? MI->dump(); llvm_unreachable("cannot handle this operand"); } { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVi16); TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg TmpInst.addOperand(V1); // lower16(imm) // Predicate. TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg())); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVTi16); TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // srcreg TmpInst.addOperand(V2); // upper16(imm) // Predicate. TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg())); OutStreamer.EmitInstruction(TmpInst); } return; } case ARM::t2TBB: case ARM::t2TBH: case ARM::t2BR_JT: { // Lower and emit the instruction itself, then the jump table following it. MCInst TmpInst; MCInstLowering.Lower(MI, TmpInst); OutStreamer.EmitInstruction(TmpInst); EmitJump2Table(MI); return; } case ARM::tBR_JTr: case ARM::BR_JTr: case ARM::BR_JTm: case ARM::BR_JTadd: { // Lower and emit the instruction itself, then the jump table following it. MCInst TmpInst; MCInstLowering.Lower(MI, TmpInst); OutStreamer.EmitInstruction(TmpInst); EmitJumpTable(MI); return; } case ARM::TRAP: { // Non-Darwin binutils don't yet support the "trap" mnemonic. // FIXME: Remove this special case when they do. if (!Subtarget->isTargetDarwin()) { //.long 0xe7ffdefe ${:comment} trap uint32_t Val = 0xe7ffdefeUL; OutStreamer.AddComment("trap"); OutStreamer.EmitIntValue(Val, 4); return; } break; } case ARM::tTRAP: { // Non-Darwin binutils don't yet support the "trap" mnemonic. // FIXME: Remove this special case when they do. if (!Subtarget->isTargetDarwin()) { //.short 57086 ${:comment} trap uint16_t Val = 0xdefe; OutStreamer.AddComment("trap"); OutStreamer.EmitIntValue(Val, 2); return; } break; } case ARM::t2Int_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp_nofp: case ARM::tInt_eh_sjlj_setjmp: { // FIXME: Remove asmstring from td file. // Two incoming args: GPR:$src, GPR:$val // mov $val, pc // adds $val, #7 // str $val, [$src, #4] // movs r0, #0 // b 1f // movs r0, #1 // 1: unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ValReg = MI->getOperand(1).getReg(); MCSymbol *Label = GetARMSJLJEHLabel(); { MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVgpr2tgpr); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); // 's' bit operand TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR)); OutStreamer.AddComment("eh_setjmp begin"); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tADDi3); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); // 's' bit operand TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR)); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateImm(7)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tSTR); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); // The offset immediate is #4. The operand value is scaled by 4 for the // tSTR instruction. TmpInst.addOperand(MCOperand::CreateImm(1)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVi8); TmpInst.addOperand(MCOperand::CreateReg(ARM::R0)); TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR)); TmpInst.addOperand(MCOperand::CreateImm(0)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext); MCInst TmpInst; TmpInst.setOpcode(ARM::tB); TmpInst.addOperand(MCOperand::CreateExpr(SymbolExpr)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::tMOVi8); TmpInst.addOperand(MCOperand::CreateReg(ARM::R0)); TmpInst.addOperand(MCOperand::CreateReg(ARM::CPSR)); TmpInst.addOperand(MCOperand::CreateImm(1)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.AddComment("eh_setjmp end"); OutStreamer.EmitInstruction(TmpInst); } OutStreamer.EmitLabel(Label); return; } case ARM::Int_eh_sjlj_setjmp_nofp: case ARM::Int_eh_sjlj_setjmp: { // FIXME: Remove asmstring from td file. // Two incoming args: GPR:$src, GPR:$val // add $val, pc, #8 // str $val, [$src, #+4] // mov r0, #0 // add pc, pc, #0 // mov r0, #1 unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ValReg = MI->getOperand(1).getReg(); { MCInst TmpInst; TmpInst.setOpcode(ARM::ADDri); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateImm(8)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // 's' bit operand (always reg0 for this). TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.AddComment("eh_setjmp begin"); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::STR); TmpInst.addOperand(MCOperand::CreateReg(ValReg)); TmpInst.addOperand(MCOperand::CreateReg(SrcReg)); TmpInst.addOperand(MCOperand::CreateReg(0)); TmpInst.addOperand(MCOperand::CreateImm(4)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVi); TmpInst.addOperand(MCOperand::CreateReg(ARM::R0)); TmpInst.addOperand(MCOperand::CreateImm(0)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // 's' bit operand (always reg0 for this). TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::ADDri); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateImm(0)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // 's' bit operand (always reg0 for this). TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.EmitInstruction(TmpInst); } { MCInst TmpInst; TmpInst.setOpcode(ARM::MOVi); TmpInst.addOperand(MCOperand::CreateReg(ARM::R0)); TmpInst.addOperand(MCOperand::CreateImm(1)); // Predicate. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // 's' bit operand (always reg0 for this). TmpInst.addOperand(MCOperand::CreateReg(0)); OutStreamer.AddComment("eh_setjmp end"); OutStreamer.EmitInstruction(TmpInst); } return; } } MCInst TmpInst; MCInstLowering.Lower(MI, TmpInst); OutStreamer.EmitInstruction(TmpInst); } //===----------------------------------------------------------------------===// // Target Registry Stuff //===----------------------------------------------------------------------===// static MCInstPrinter *createARMMCInstPrinter(const Target &T, unsigned SyntaxVariant, const MCAsmInfo &MAI) { if (SyntaxVariant == 0) return new ARMInstPrinter(MAI); return 0; } // Force static initialization. extern "C" void LLVMInitializeARMAsmPrinter() { RegisterAsmPrinter X(TheARMTarget); RegisterAsmPrinter Y(TheThumbTarget); TargetRegistry::RegisterMCInstPrinter(TheARMTarget, createARMMCInstPrinter); TargetRegistry::RegisterMCInstPrinter(TheThumbTarget, createARMMCInstPrinter); }