//===-- BBLiveVar.cpp - Live Variable Analysis for a BasicBlock -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is a wrapper class for BasicBlock which is used by live var analysis. // //===----------------------------------------------------------------------===// #include "BBLiveVar.h" #include "llvm/CodeGen/FunctionLiveVarInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/Support/CFG.h" #include "Support/SetOperations.h" /// BROKEN: Should not include sparc stuff directly into here #include "../../Target/Sparc/SparcInternals.h" // Only for PHI defn namespace llvm { BBLiveVar::BBLiveVar(const BasicBlock &bb, MachineBasicBlock &mbb, unsigned id) : BB(bb), MBB(mbb), POID(id) { InSetChanged = OutSetChanged = false; calcDefUseSets(); } //----------------------------------------------------------------------------- // calculates def and use sets for each BB // There are two passes over operands of a machine instruction. This is // because, we can have instructions like V = V + 1, since we no longer // assume single definition. //----------------------------------------------------------------------------- void BBLiveVar::calcDefUseSets() { // iterate over all the machine instructions in BB for (MachineBasicBlock::const_reverse_iterator MII = MBB.rbegin(), MIE = MBB.rend(); MII != MIE; ++MII) { const MachineInstr *MI = *MII; if (DEBUG_LV >= LV_DEBUG_Verbose) { std::cerr << " *Iterating over machine instr "; MI->dump(); std::cerr << "\n"; } // iterate over MI operands to find defs for (MachineInstr::const_val_op_iterator OpI = MI->begin(), OpE = MI->end(); OpI != OpE; ++OpI) if (OpI.isDef()) // add to Defs if this operand is a def addDef(*OpI); // do for implicit operands as well for (unsigned i = 0; i < MI->getNumImplicitRefs(); ++i) if (MI->getImplicitOp(i).isDef()) addDef(MI->getImplicitRef(i)); // iterate over MI operands to find uses for (MachineInstr::const_val_op_iterator OpI = MI->begin(), OpE = MI->end(); OpI != OpE; ++OpI) { const Value *Op = *OpI; if (isa(Op)) continue; // don't process labels if (OpI.isUse()) { // add to Uses only if this operand is a use // // *** WARNING: The following code for handling dummy PHI machine // instructions is untested. The previous code was broken and I // fixed it, but it turned out to be unused as long as Phi // elimination is performed during instruction selection. // // Put Phi operands in UseSet for the incoming edge, not node. // They must not "hide" later defs, and must be handled specially // during set propagation over the CFG. if (MI->getOpCode() == V9::PHI) { // for a phi node const Value *ArgVal = Op; const BasicBlock *PredBB = cast(*++OpI); // next ptr is BB PredToEdgeInSetMap[PredBB].insert(ArgVal); if (DEBUG_LV >= LV_DEBUG_Verbose) std::cerr << " - phi operand " << RAV(ArgVal) << " came from BB " << RAV(PredBB) << "\n"; } // if( IsPhi ) else { // It is not a Phi use: add to regular use set and remove later defs. addUse(Op); } } // if a use } // for all operands // do for implicit operands as well for (unsigned i = 0; i < MI->getNumImplicitRefs(); ++i) { assert(MI->getOpCode() != V9::PHI && "Phi cannot have implicit operands"); const Value *Op = MI->getImplicitRef(i); if (Op->getType() == Type::LabelTy) // don't process labels continue; if (MI->getImplicitOp(i).isUse()) addUse(Op); } } // for all machine instructions } //----------------------------------------------------------------------------- // To add an operand which is a def //----------------------------------------------------------------------------- void BBLiveVar::addDef(const Value *Op) { DefSet.insert(Op); // operand is a def - so add to def set InSet.erase(Op); // this definition kills any later uses InSetChanged = true; if (DEBUG_LV >= LV_DEBUG_Verbose) std::cerr << " +Def: " << RAV(Op) << "\n"; } //----------------------------------------------------------------------------- // To add an operand which is a use //----------------------------------------------------------------------------- void BBLiveVar::addUse(const Value *Op) { InSet.insert(Op); // An operand is a use - so add to use set DefSet.erase(Op); // remove if there is a def below this use InSetChanged = true; if (DEBUG_LV >= LV_DEBUG_Verbose) std::cerr << " Use: " << RAV(Op) << "\n"; } //----------------------------------------------------------------------------- // Applies the transfer function to a basic block to produce the InSet using // the OutSet. //----------------------------------------------------------------------------- bool BBLiveVar::applyTransferFunc() { // IMPORTANT: caller should check whether the OutSet changed // (else no point in calling) ValueSet OutMinusDef = set_difference(OutSet, DefSet); InSetChanged = set_union(InSet, OutMinusDef); OutSetChanged = false; // no change to OutSet since transf func applied return InSetChanged; } //----------------------------------------------------------------------------- // calculates Out set using In sets of the successors //----------------------------------------------------------------------------- bool BBLiveVar::setPropagate(ValueSet *OutSet, const ValueSet *InSet, const BasicBlock *PredBB) { bool Changed = false; // merge all members of InSet into OutSet of the predecessor for (ValueSet::const_iterator InIt = InSet->begin(), InE = InSet->end(); InIt != InE; ++InIt) if ((OutSet->insert(*InIt)).second) Changed = true; // //**** WARNING: The following code for handling dummy PHI machine // instructions is untested. See explanation above. // // then merge all members of the EdgeInSet for the predecessor into the OutSet const ValueSet& EdgeInSet = PredToEdgeInSetMap[PredBB]; for (ValueSet::const_iterator InIt = EdgeInSet.begin(), InE = EdgeInSet.end(); InIt != InE; ++InIt) if ((OutSet->insert(*InIt)).second) Changed = true; // //**** return Changed; } //----------------------------------------------------------------------------- // propagates in set to OutSets of PREDECESSORs //----------------------------------------------------------------------------- bool BBLiveVar::applyFlowFunc(hash_map &BBLiveVarInfo) { // IMPORTANT: caller should check whether inset changed // (else no point in calling) // If this BB changed any OutSets of preds whose POID is lower, than we need // another iteration... // bool needAnotherIt = false; for (pred_const_iterator PI = pred_begin(&BB), PE = pred_end(&BB); PI != PE ; ++PI) { BBLiveVar *PredLVBB = BBLiveVarInfo[*PI]; // do set union if (setPropagate(&PredLVBB->OutSet, &InSet, *PI)) { PredLVBB->OutSetChanged = true; // if the predec POID is lower than mine if (PredLVBB->getPOId() <= POID) needAnotherIt = true; } } // for return needAnotherIt; } // ----------------- Methods For Debugging (Printing) ----------------- void BBLiveVar::printAllSets() const { std::cerr << " Defs: "; printSet(DefSet); std::cerr << "\n"; std::cerr << " In: "; printSet(InSet); std::cerr << "\n"; std::cerr << " Out: "; printSet(OutSet); std::cerr << "\n"; } void BBLiveVar::printInOutSets() const { std::cerr << " In: "; printSet(InSet); std::cerr << "\n"; std::cerr << " Out: "; printSet(OutSet); std::cerr << "\n"; } } // End llvm namespace