//===- DSGraph.h - Represent a collection of data structures ----*- C++ -*-===// // // This header defines the primative classes that make up a data structure // graph. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_DSGRAPH_H #define LLVM_ANALYSIS_DSGRAPH_H #include #include #include #include class Function; class CallInst; class Value; class GlobalValue; class Type; class DSNode; // Each node in the graph class DSGraph; // A graph for a function class DSNodeIterator; // Data structure graph traversal iterator //===----------------------------------------------------------------------===// /// DSNodeHandle - Implement a "handle" to a data structure node that takes care /// of all of the add/un'refing of the node to prevent the backpointers in the /// graph from getting out of date. This class represents a "pointer" in the /// graph, whose destination is an indexed offset into a node. /// class DSNodeHandle { DSNode *N; unsigned Offset; public: // Allow construction, destruction, and assignment... DSNodeHandle(DSNode *n = 0, unsigned offs = 0) : N(0), Offset(offs) { setNode(n); } DSNodeHandle(const DSNodeHandle &H) : N(0), Offset(H.Offset) { setNode(H.N); } ~DSNodeHandle() { setNode((DSNode*)0); } DSNodeHandle &operator=(const DSNodeHandle &H) { setNode(H.N); Offset = H.Offset; return *this; } bool operator<(const DSNodeHandle &H) const { // Allow sorting return N < H.N || (N == H.N && Offset < H.Offset); } bool operator>(const DSNodeHandle &H) const { return H < *this; } bool operator==(const DSNodeHandle &H) const { // Allow comparison return N == H.N && Offset == H.Offset; } bool operator!=(const DSNodeHandle &H) const { return !operator==(H); } // Allow explicit conversion to DSNode... DSNode *getNode() const { return N; } unsigned getOffset() const { return Offset; } inline void setNode(DSNode *N); // Defined inline later... void setOffset(unsigned O) { Offset = O; } void addEdgeTo(unsigned LinkNo, const DSNodeHandle &N); void addEdgeTo(const DSNodeHandle &N) { addEdgeTo(0, N); } /// mergeWith - Merge the logical node pointed to by 'this' with the node /// pointed to by 'N'. /// void mergeWith(const DSNodeHandle &N); // hasLink - Return true if there is a link at the specified offset... inline bool hasLink(unsigned Num) const; /// getLink - Treat this current node pointer as a pointer to a structure of /// some sort. This method will return the pointer a mem[this+Num] /// inline const DSNodeHandle *getLink(unsigned Num) const; inline DSNodeHandle *getLink(unsigned Num); inline void setLink(unsigned Num, const DSNodeHandle &NH); }; //===----------------------------------------------------------------------===// /// DSNode - Data structure node class /// /// This class represents an untyped memory object of Size bytes. It keeps /// track of any pointers that have been stored into the object as well as the /// different types represented in this object. /// class DSNode { /// Links - Contains one entry for every _distinct_ pointer field in the /// memory block. These are demand allocated and indexed by the MergeMap /// vector. /// std::vector Links; /// MergeMap - Maps from every byte in the object to a signed byte number. /// This map is neccesary due to the merging that is possible as part of the /// unification algorithm. To merge two distinct bytes of the object together /// into a single logical byte, the indexes for the two bytes are set to the /// same value. This fully general merging is capable of representing all /// manners of array merging if neccesary. /// /// This map is also used to map outgoing pointers to various byte offsets in /// this data structure node. If this value is >= 0, then it indicates that /// the numbered entry in the Links vector contains the outgoing edge for this /// byte offset. In this way, the Links vector can be demand allocated and /// byte elements of the node may be merged without needing a Link allocated /// for it. /// /// Initially, each each element of the MergeMap is assigned a unique negative /// number, which are then merged as the unification occurs. /// std::vector MergeMap; /// Referrers - Keep track of all of the node handles that point to this /// DSNode. These pointers may need to be updated to point to a different /// node if this node gets merged with it. /// std::vector Referrers; /// TypeRec - This structure is used to represent a single type that is held /// in a DSNode. struct TypeRec { const Type *Ty; // The type itself... unsigned Offset; // The offset in the node bool isArray; // Have we accessed an array of elements? TypeRec() : Ty(0), Offset(0), isArray(false) {} TypeRec(const Type *T, unsigned O) : Ty(T), Offset(O), isArray(false) {} bool operator<(const TypeRec &TR) const { // Sort first by offset! return Offset < TR.Offset || (Offset == TR.Offset && Ty < TR.Ty); } bool operator==(const TypeRec &TR) const { return Ty == TR.Ty && Offset == TR.Offset; } bool operator!=(const TypeRec &TR) const { return !operator==(TR); } }; /// TypeEntries - As part of the merging process of this algorithm, nodes of /// different types can be represented by this single DSNode. This vector is /// kept sorted. /// std::vector TypeEntries; /// Globals - The list of global values that are merged into this node. /// std::vector Globals; void operator=(const DSNode &); // DO NOT IMPLEMENT public: enum NodeTy { ShadowNode = 0, // Nothing is known about this node... ScalarNode = 1 << 0, // Scalar of the current function contains this value AllocaNode = 1 << 1, // This node was allocated with alloca NewNode = 1 << 2, // This node was allocated with malloc GlobalNode = 1 << 3, // This node was allocated by a global var decl Incomplete = 1 << 4, // This node may not be complete Modified = 1 << 5, // This node is modified in this context Read = 1 << 6, // This node is read in this context }; /// NodeType - A union of the above bits. "Shadow" nodes do not add any flags /// to the nodes in the data structure graph, so it is possible to have nodes /// with a value of 0 for their NodeType. Scalar and Alloca markers go away /// when function graphs are inlined. /// unsigned char NodeType; DSNode(enum NodeTy NT, const Type *T); DSNode(const DSNode &); ~DSNode() { #ifndef NDEBUG dropAllReferences(); // Only needed to satisfy assertion checks... assert(Referrers.empty() && "Referrers to dead node exist!"); #endif } // Iterator for graph interface... typedef DSNodeIterator iterator; typedef DSNodeIterator const_iterator; inline iterator begin() const; // Defined in DSGraphTraits.h inline iterator end() const; //===-------------------------------------------------- // Accessors /// getSize - Return the maximum number of bytes occupied by this object... /// unsigned getSize() const { return MergeMap.size(); } // getTypeEntries - Return the possible types and their offsets in this object const std::vector &getTypeEntries() const { return TypeEntries; } /// getReferrers - Return a list of the pointers to this node... /// const std::vector &getReferrers() const { return Referrers; } /// isModified - Return true if this node may be modified in this context /// bool isModified() const { return (NodeType & Modified) != 0; } /// isRead - Return true if this node may be read in this context /// bool isRead() const { return (NodeType & Read) != 0; } /// hasLink - Return true if this memory object has a link at the specified /// location. /// bool hasLink(unsigned i) const { assert(i < getSize() && "Field Link index is out of range!"); return MergeMap[i] >= 0; } DSNodeHandle *getLink(unsigned i) { if (hasLink(i)) return &Links[MergeMap[i]]; return 0; } const DSNodeHandle *getLink(unsigned i) const { if (hasLink(i)) return &Links[MergeMap[i]]; return 0; } int getMergeMapLabel(unsigned i) const { assert(i < MergeMap.size() && "MergeMap index out of range!"); return MergeMap[i]; } /// setLink - Set the link at the specified offset to the specified /// NodeHandle, replacing what was there. It is uncommon to use this method, /// instead one of the higher level methods should be used, below. /// void setLink(unsigned i, const DSNodeHandle &NH); /// addEdgeTo - Add an edge from the current node to the specified node. This /// can cause merging of nodes in the graph. /// void addEdgeTo(unsigned Offset, const DSNodeHandle &NH); /// mergeWith - Merge this node and the specified node, moving all links to /// and from the argument node into the current node, deleting the node /// argument. Offset indicates what offset the specified node is to be merged /// into the current node. /// /// The specified node may be a null pointer (in which case, nothing happens). /// void mergeWith(const DSNodeHandle &NH, unsigned Offset); /// mergeIndexes - If we discover that two indexes are equivalent and must be /// merged, this function is used to do the dirty work. /// void mergeIndexes(unsigned idx1, unsigned idx2) { assert(idx1 < getSize() && idx2 < getSize() && "Indexes out of range!"); signed char MV1 = MergeMap[idx1]; signed char MV2 = MergeMap[idx2]; if (MV1 != MV2) mergeMappedValues(MV1, MV2); } /// addGlobal - Add an entry for a global value to the Globals list. This /// also marks the node with the 'G' flag if it does not already have it. /// void addGlobal(GlobalValue *GV); const std::vector &getGlobals() const { return Globals; } std::vector &getGlobals() { return Globals; } void print(std::ostream &O, const DSGraph *G) const; void dump() const; void dropAllReferences() { Links.clear(); } /// remapLinks - Change all of the Links in the current node according to the /// specified mapping. void remapLinks(std::map &OldNodeMap); private: friend class DSNodeHandle; // addReferrer - Keep the referrer set up to date... void addReferrer(DSNodeHandle *H) { Referrers.push_back(H); } void removeReferrer(DSNodeHandle *H); /// rewriteMergeMap - Loop over the mergemap, replacing any references to the /// index From to be references to the index To. /// void rewriteMergeMap(signed char From, signed char To) { assert(From != To && "Cannot change something into itself!"); for (unsigned i = 0, e = MergeMap.size(); i != e; ++i) if (MergeMap[i] == From) MergeMap[i] = To; } /// mergeMappedValues - This is the higher level form of rewriteMergeMap. It /// is fully capable of merging links together if neccesary as well as simply /// rewriting the map entries. /// void mergeMappedValues(signed char V1, signed char V2); }; //===----------------------------------------------------------------------===// // Define inline DSNodeHandle functions that depend on the definition of DSNode // inline void DSNodeHandle::setNode(DSNode *n) { if (N) N->removeReferrer(this); N = n; if (N) N->addReferrer(this); } inline bool DSNodeHandle::hasLink(unsigned Num) const { assert(N && "DSNodeHandle does not point to a node yet!"); return N->hasLink(Num+Offset); } /// getLink - Treat this current node pointer as a pointer to a structure of /// some sort. This method will return the pointer a mem[this+Num] /// inline const DSNodeHandle *DSNodeHandle::getLink(unsigned Num) const { assert(N && "DSNodeHandle does not point to a node yet!"); return N->getLink(Num+Offset); } inline DSNodeHandle *DSNodeHandle::getLink(unsigned Num) { assert(N && "DSNodeHandle does not point to a node yet!"); return N->getLink(Num+Offset); } inline void DSNodeHandle::setLink(unsigned Num, const DSNodeHandle &NH) { assert(N && "DSNodeHandle does not point to a node yet!"); N->setLink(Num+Offset, NH); } /// addEdgeTo - Add an edge from the current node to the specified node. This /// can cause merging of nodes in the graph. /// inline void DSNodeHandle::addEdgeTo(unsigned LinkNo, const DSNodeHandle &Node) { assert(N && "DSNodeHandle does not point to a node yet!"); N->addEdgeTo(LinkNo+Offset, Node); } /// mergeWith - Merge the logical node pointed to by 'this' with the node /// pointed to by 'N'. /// inline void DSNodeHandle::mergeWith(const DSNodeHandle &Node) { assert(N && "DSNodeHandle does not point to a node yet!"); N->mergeWith(Node, Offset); } //===----------------------------------------------------------------------===// /// DSCallSite - Representation of a call site via its call instruction, /// the DSNode handle for the callee function (or function pointer), and /// the DSNode handles for the function arguments. /// /// One unusual aspect of this callsite record is the ResolvingCaller member. /// If this is non-null, then it indicates the function that allowed a call-site /// to finally be resolved. Because of indirect calls, this function may not /// actually be the function that contains the Call instruction itself. This is /// used by the BU and TD passes to communicate. /// class DSCallSite { CallInst *Inst; // Actual call site DSNodeHandle RetVal; // Returned value DSNodeHandle Callee; // The function node called std::vector CallArgs; // The pointer arguments Function *ResolvingCaller; // See comments above static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src, const std::map &NodeMap) { if (DSNode *N = Src.getNode()) { std::map::const_iterator I = NodeMap.find(N); assert(I != NodeMap.end() && "Not not in mapping!"); NH.setOffset(Src.getOffset()); NH.setNode(I->second); } } static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src, const std::map &NodeMap) { if (DSNode *N = Src.getNode()) { std::map::const_iterator I = NodeMap.find(N); assert(I != NodeMap.end() && "Not not in mapping!"); NH.setOffset(Src.getOffset()+I->second.getOffset()); NH.setNode(I->second.getNode()); } } DSCallSite(); // DO NOT IMPLEMENT public: /// Constructor. Note - This ctor destroys the argument vector passed in. On /// exit, the argument vector is empty. /// DSCallSite(CallInst &inst, const DSNodeHandle &rv, const DSNodeHandle &callee, std::vector &Args) : Inst(&inst), RetVal(rv), Callee(callee), ResolvingCaller(0) { Args.swap(CallArgs); } DSCallSite(const DSCallSite &DSCS) // Simple copy ctor : Inst(DSCS.Inst), RetVal(DSCS.RetVal), Callee(DSCS.Callee), CallArgs(DSCS.CallArgs), ResolvingCaller(DSCS.ResolvingCaller) {} /// Mapping copy constructor - This constructor takes a preexisting call site /// to copy plus a map that specifies how the links should be transformed. /// This is useful when moving a call site from one graph to another. /// template DSCallSite(const DSCallSite &FromCall, const MapTy &NodeMap) { Inst = FromCall.Inst; InitNH(RetVal, FromCall.RetVal, NodeMap); InitNH(Callee, FromCall.Callee, NodeMap); CallArgs.resize(FromCall.CallArgs.size()); for (unsigned i = 0, e = FromCall.CallArgs.size(); i != e; ++i) InitNH(CallArgs[i], FromCall.CallArgs[i], NodeMap); ResolvingCaller = FromCall.ResolvingCaller; } // Accessor functions... Function &getCaller() const; CallInst &getCallInst() const { return *Inst; } DSNodeHandle &getRetVal() { return RetVal; } DSNodeHandle &getCallee() { return Callee; } const DSNodeHandle &getRetVal() const { return RetVal; } const DSNodeHandle &getCallee() const { return Callee; } void setCallee(const DSNodeHandle &H) { Callee = H; } unsigned getNumPtrArgs() const { return CallArgs.size(); } Function *getResolvingCaller() const { return ResolvingCaller; } void setResolvingCaller(Function *F) { ResolvingCaller = F; } DSNodeHandle &getPtrArg(unsigned i) { assert(i < CallArgs.size() && "Argument to getPtrArgNode is out of range!"); return CallArgs[i]; } const DSNodeHandle &getPtrArg(unsigned i) const { assert(i < CallArgs.size() && "Argument to getPtrArgNode is out of range!"); return CallArgs[i]; } bool operator<(const DSCallSite &CS) const { if (RetVal < CS.RetVal) return true; if (RetVal > CS.RetVal) return false; if (Callee < CS.Callee) return true; if (Callee > CS.Callee) return false; return CallArgs < CS.CallArgs; } bool operator==(const DSCallSite &CS) const { return RetVal == CS.RetVal && Callee == CS.Callee && CallArgs == CS.CallArgs; } }; //===----------------------------------------------------------------------===// /// DSGraph - The graph that represents a function. /// class DSGraph { Function *Func; std::vector Nodes; DSNodeHandle RetNode; // Node that gets returned... std::map ValueMap; #if 0 // GlobalsGraph -- Reference to the common graph of globally visible objects. // This includes GlobalValues, New nodes, Cast nodes, and Calls. // GlobalDSGraph* GlobalsGraph; #endif // FunctionCalls - This vector maintains a single entry for each call // instruction in the current graph. Each call entry contains DSNodeHandles // that refer to the arguments that are passed into the function call. The // first entry in the vector is the scalar that holds the return value for the // call, the second is the function scalar being invoked, and the rest are // pointer arguments to the function. // std::vector FunctionCalls; void operator=(const DSGraph &); // DO NOT IMPLEMENT public: DSGraph() : Func(0) {} // Create a new, empty, DSGraph. DSGraph(Function &F); // Compute the local DSGraph // Copy ctor - If you want to capture the node mapping between the source and // destination graph, you may optionally do this by specifying a map to record // this into. DSGraph(const DSGraph &DSG); DSGraph(const DSGraph &DSG, std::map &BUNodeMap); ~DSGraph(); bool hasFunction() const { return Func != 0; } Function &getFunction() const { return *Func; } /// getNodes - Get a vector of all the nodes in the graph /// const std::vector &getNodes() const { return Nodes; } std::vector &getNodes() { return Nodes; } /// addNode - Add a new node to the graph. /// void addNode(DSNode *N) { Nodes.push_back(N); } /// getValueMap - Get a map that describes what the nodes the scalars in this /// function point to... /// std::map &getValueMap() { return ValueMap; } const std::map &getValueMap() const { return ValueMap;} std::vector &getFunctionCalls() { return FunctionCalls; } const std::vector &getFunctionCalls() const { return FunctionCalls; } /// getNodeForValue - Given a value that is used or defined in the body of the /// current function, return the DSNode that it points to. /// DSNodeHandle &getNodeForValue(Value *V) { return ValueMap[V]; } const DSNodeHandle &getRetNode() const { return RetNode; } DSNodeHandle &getRetNode() { return RetNode; } unsigned getGraphSize() const { return Nodes.size(); } void print(std::ostream &O) const; void dump() const; void writeGraphToFile(std::ostream &O, const std::string &GraphName) const; // maskNodeTypes - Apply a mask to all of the node types in the graph. This // is useful for clearing out markers like Scalar or Incomplete. // void maskNodeTypes(unsigned char Mask); void maskIncompleteMarkers() { maskNodeTypes(~DSNode::Incomplete); } // markIncompleteNodes - Traverse the graph, identifying nodes that may be // modified by other functions that have not been resolved yet. This marks // nodes that are reachable through three sources of "unknownness": // Global Variables, Function Calls, and Incoming Arguments // // For any node that may have unknown components (because something outside // the scope of current analysis may have modified it), the 'Incomplete' flag // is added to the NodeType. // void markIncompleteNodes(bool markFormalArgs = true); // removeTriviallyDeadNodes - After the graph has been constructed, this // method removes all unreachable nodes that are created because they got // merged with other nodes in the graph. // void removeTriviallyDeadNodes(bool KeepAllGlobals = false); // removeDeadNodes - Use a more powerful reachability analysis to eliminate // subgraphs that are unreachable. This often occurs because the data // structure doesn't "escape" into it's caller, and thus should be eliminated // from the caller's graph entirely. This is only appropriate to use when // inlining graphs. // void removeDeadNodes(bool KeepAllGlobals = false, bool KeepCalls = true); // cloneInto - Clone the specified DSGraph into the current graph, returning // the Return node of the graph. The translated ValueMap for the old function // is filled into the OldValMap member. // If StripScalars (StripAllocas) is set to true, Scalar (Alloca) markers // are removed from the graph as the graph is being cloned. // DSNodeHandle cloneInto(const DSGraph &G, std::map &OldValMap, std::map &OldNodeMap, bool StripScalars = false, bool StripAllocas = false); #if 0 // cloneGlobalInto - Clone the given global node (or the node for the given // GlobalValue) from the GlobalsGraph and all its target links (recursively). // DSNode* cloneGlobalInto(const DSNode* GNode); DSNode* cloneGlobalInto(GlobalValue* GV) { assert(!GV || (((DSGraph*) GlobalsGraph)->ValueMap[GV] != 0)); return GV? cloneGlobalInto(((DSGraph*) GlobalsGraph)->ValueMap[GV]) : 0; } #endif private: bool isNodeDead(DSNode *N); }; #endif