//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops // and generates target-independent LLVM-IR. Legalization of the IR is done // in the codegen. However, the vectorizes uses (will use) the codegen // interfaces to generate IR that is likely to result in an optimal binary. // // The loop vectorizer combines consecutive loop iteration into a single // 'wide' iteration. After this transformation the index is incremented // by the SIMD vector width, and not by one. // // This pass has three parts: // 1. The main loop pass that drives the different parts. // 2. LoopVectorizationLegality - A unit that checks for the legality // of the vectorization. // 3. SingleBlockLoopVectorizer - A unit that performs the actual // widening of instructions. // 4. LoopVectorizationCostModel - A unit that checks for the profitability // of vectorization. It decides on the optimal vector width, which // can be one, if vectorization is not profitable. //===----------------------------------------------------------------------===// // // The reduction-variable vectorization is based on the paper: // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. // // Variable uniformity checks are inspired by: // Karrenberg, R. and Hack, S. Whole Function Vectorization. // // Other ideas/concepts are from: // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. // //===----------------------------------------------------------------------===// #define LV_NAME "loop-vectorize" #define DEBUG_TYPE LV_NAME #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Value.h" #include "llvm/Function.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/TargetTransformInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/DataLayout.h" #include "llvm/Transforms/Utils/Local.h" #include using namespace llvm; static cl::opt VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, cl::desc("Set the default vectorization width. Zero is autoselect.")); namespace { // Forward declarations. class LoopVectorizationLegality; class LoopVectorizationCostModel; /// SingleBlockLoopVectorizer vectorizes loops which contain only one basic /// block to a specified vectorization factor (VF). /// This class performs the widening of scalars into vectors, or multiple /// scalars. This class also implements the following features: /// * It inserts an epilogue loop for handling loops that don't have iteration /// counts that are known to be a multiple of the vectorization factor. /// * It handles the code generation for reduction variables. /// * Scalarization (implementation using scalars) of un-vectorizable /// instructions. /// SingleBlockLoopVectorizer does not perform any vectorization-legality /// checks, and relies on the caller to check for the different legality /// aspects. The SingleBlockLoopVectorizer relies on the /// LoopVectorizationLegality class to provide information about the induction /// and reduction variables that were found to a given vectorization factor. class SingleBlockLoopVectorizer { public: /// Ctor. SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li, LPPassManager *Lpm, unsigned VecWidth): OrigLoop(Orig), SE(Se), LI(Li), LPM(Lpm), VF(VecWidth), Builder(Se->getContext()), Induction(0), OldInduction(0) { } // Perform the actual loop widening (vectorization). void vectorize(LoopVectorizationLegality *Legal) { ///Create a new empty loop. Unlink the old loop and connect the new one. createEmptyLoop(Legal); /// Widen each instruction in the old loop to a new one in the new loop. /// Use the Legality module to find the induction and reduction variables. vectorizeLoop(Legal); // register the new loop. cleanup(); } private: /// Create an empty loop, based on the loop ranges of the old loop. void createEmptyLoop(LoopVectorizationLegality *Legal); /// Copy and widen the instructions from the old loop. void vectorizeLoop(LoopVectorizationLegality *Legal); /// Insert the new loop to the loop hierarchy and pass manager. void cleanup(); /// This instruction is un-vectorizable. Implement it as a sequence /// of scalars. void scalarizeInstruction(Instruction *Instr); /// Create a broadcast instruction. This method generates a broadcast /// instruction (shuffle) for loop invariant values and for the induction /// value. If this is the induction variable then we extend it to N, N+1, ... /// this is needed because each iteration in the loop corresponds to a SIMD /// element. Value *getBroadcastInstrs(Value *V); /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 .. /// for each element in the vector. Starting from zero. Value *getConsecutiveVector(Value* Val); /// When we go over instructions in the basic block we rely on previous /// values within the current basic block or on loop invariant values. /// When we widen (vectorize) values we place them in the map. If the values /// are not within the map, they have to be loop invariant, so we simply /// broadcast them into a vector. Value *getVectorValue(Value *V); /// Get a uniform vector of constant integers. We use this to get /// vectors of ones and zeros for the reduction code. Constant* getUniformVector(unsigned Val, Type* ScalarTy); typedef DenseMap ValueMap; /// The original loop. Loop *OrigLoop; // Scev analysis to use. ScalarEvolution *SE; // Loop Info. LoopInfo *LI; // Loop Pass Manager; LPPassManager *LPM; // The vectorization factor to use. unsigned VF; // The builder that we use IRBuilder<> Builder; // --- Vectorization state --- /// Middle Block between the vector and the scalar. BasicBlock *LoopMiddleBlock; ///The ExitBlock of the scalar loop. BasicBlock *LoopExitBlock; ///The vector loop body. BasicBlock *LoopVectorBody; ///The scalar loop body. BasicBlock *LoopScalarBody; ///The first bypass block. BasicBlock *LoopBypassBlock; /// The new Induction variable which was added to the new block. PHINode *Induction; /// The induction variable of the old basic block. PHINode *OldInduction; // Maps scalars to widened vectors. ValueMap WidenMap; }; /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and /// to what vectorization factor. /// This class does not look at the profitability of vectorization, only the /// legality. This class has two main kinds of checks: /// * Memory checks - The code in canVectorizeMemory checks if vectorization /// will change the order of memory accesses in a way that will change the /// correctness of the program. /// * Scalars checks - The code in canVectorizeBlock checks for a number /// of different conditions, such as the availability of a single induction /// variable, that all types are supported and vectorize-able, etc. /// This code reflects the capabilities of SingleBlockLoopVectorizer. /// This class is also used by SingleBlockLoopVectorizer for identifying /// induction variable and the different reduction variables. class LoopVectorizationLegality { public: LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl): TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { } /// This represents the kinds of reductions that we support. /// We use the enum values to hold the 'identity' value for /// each operand. This value does not change the result if applied. enum ReductionKind { NoReduction = -1, /// Not a reduction. IntegerAdd = 0, /// Sum of numbers. IntegerMult = 1, /// Product of numbers. IntegerOr = 2, /// Bitwise or logical OR of numbers. IntegerAnd = 3, /// Bitwise or logical AND of numbers. IntegerXor = 4 /// Bitwise or logical XOR of numbers. }; /// This POD struct holds information about reduction variables. struct ReductionDescriptor { // Default C'tor ReductionDescriptor(): StartValue(0), LoopExitInstr(0), Kind(NoReduction) {} // C'tor. ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K): StartValue(Start), LoopExitInstr(Exit), Kind(K) {} // The starting value of the reduction. // It does not have to be zero! Value *StartValue; // The instruction who's value is used outside the loop. Instruction *LoopExitInstr; // The kind of the reduction. ReductionKind Kind; }; /// ReductionList contains the reduction descriptors for all /// of the reductions that were found in the loop. typedef DenseMap ReductionList; /// Returns true if it is legal to vectorize this loop. /// This does not mean that it is profitable to vectorize this /// loop, only that it is legal to do so. bool canVectorize(); /// Returns the Induction variable. PHINode *getInduction() {return Induction;} /// Returns the reduction variables found in the loop. ReductionList *getReductionVars() { return &Reductions; } /// Check if the pointer returned by this GEP is consecutive /// when the index is vectorized. This happens when the last /// index of the GEP is consecutive, like the induction variable. /// This check allows us to vectorize A[idx] into a wide load/store. bool isConsecutiveGep(Value *Ptr); private: /// Check if a single basic block loop is vectorizable. /// At this point we know that this is a loop with a constant trip count /// and we only need to check individual instructions. bool canVectorizeBlock(BasicBlock &BB); /// When we vectorize loops we may change the order in which /// we read and write from memory. This method checks if it is /// legal to vectorize the code, considering only memory constrains. /// Returns true if BB is vectorizable bool canVectorizeMemory(BasicBlock &BB); /// Returns True, if 'Phi' is the kind of reduction variable for type /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. bool AddReductionVar(PHINode *Phi, ReductionKind Kind); /// Returns true if the instruction I can be a reduction variable of type /// 'Kind'. bool isReductionInstr(Instruction *I, ReductionKind Kind); /// Returns True, if 'Phi' is an induction variable. bool isInductionVariable(PHINode *Phi); /// The loop that we evaluate. Loop *TheLoop; /// Scev analysis. ScalarEvolution *SE; /// DataLayout analysis. DataLayout *DL; // --- vectorization state --- // /// Holds the induction variable. PHINode *Induction; /// Holds the reduction variables. ReductionList Reductions; /// Allowed outside users. This holds the reduction /// vars which can be accessed from outside the loop. SmallPtrSet AllowedExit; }; /// LoopVectorizationCostModel - estimates the expected speedups due to /// vectorization. /// In many cases vectorization is not profitable. This can happen because /// of a number of reasons. In this class we mainly attempt to predict /// the expected speedup/slowdowns due to the supported instruction set. /// We use the VectorTargetTransformInfo to query the different backends /// for the cost of different operations. class LoopVectorizationCostModel { public: /// C'tor. LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se, LoopVectorizationLegality *Leg, const VectorTargetTransformInfo *Vtti): TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { } /// Returns the most profitable vectorization factor for the loop that is /// smaller or equal to the VF argument. This method checks every power /// of two up to VF. unsigned findBestVectorizationFactor(unsigned VF = 4); private: /// Returns the expected execution cost. The unit of the cost does /// not matter because we use the 'cost' units to compare different /// vector widths. The cost that is returned is *not* normalized by /// the factor width. unsigned expectedCost(unsigned VF); /// Returns the execution time cost of an instruction for a given vector /// width. Vector width of one means scalar. unsigned getInstructionCost(Instruction *I, unsigned VF); /// A helper function for converting Scalar types to vector types. /// If the incoming type is void, we return void. If the VF is 1, we return /// the scalar type. static Type* ToVectorTy(Type *Scalar, unsigned VF); /// The loop that we evaluate. Loop *TheLoop; /// Scev analysis. ScalarEvolution *SE; /// Vectorization legality. LoopVectorizationLegality *Legal; /// Vector target information. const VectorTargetTransformInfo *VTTI; }; struct LoopVectorize : public LoopPass { static char ID; // Pass identification, replacement for typeid LoopVectorize() : LoopPass(ID) { initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); } ScalarEvolution *SE; DataLayout *DL; LoopInfo *LI; TargetTransformInfo *TTI; virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { // We only vectorize innermost loops. if (!L->empty()) return false; SE = &getAnalysis(); DL = getAnalysisIfAvailable(); LI = &getAnalysis(); TTI = getAnalysisIfAvailable(); DEBUG(dbgs() << "LV: Checking a loop in \"" << L->getHeader()->getParent()->getName() << "\"\n"); // Check if it is legal to vectorize the loop. LoopVectorizationLegality LVL(L, SE, DL); if (!LVL.canVectorize()) { DEBUG(dbgs() << "LV: Not vectorizing.\n"); return false; } // Select the preffered vectorization factor. unsigned VF = 1; if (VectorizationFactor == 0) { const VectorTargetTransformInfo *VTTI = 0; if (TTI) VTTI = TTI->getVectorTargetTransformInfo(); // Use the cost model. LoopVectorizationCostModel CM(L, SE, &LVL, VTTI); VF = CM.findBestVectorizationFactor(); if (VF == 1) { DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); return false; } } else { // Use the user command flag. VF = VectorizationFactor; } DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ").\n"); // If we decided that it is *legal* to vectorizer the loop then do it. SingleBlockLoopVectorizer LB(L, SE, LI, &LPM, VF); LB.vectorize(&LVL); DEBUG(verifyFunction(*L->getHeader()->getParent())); return true; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { LoopPass::getAnalysisUsage(AU); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addRequired(); } }; Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) { // Instructions that access the old induction variable // actually want to get the new one. if (V == OldInduction) V = Induction; // Create the types. LLVMContext &C = V->getContext(); Type *VTy = VectorType::get(V->getType(), VF); Type *I32 = IntegerType::getInt32Ty(C); Constant *Zero = ConstantInt::get(I32, 0); Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF)); Value *UndefVal = UndefValue::get(VTy); // Insert the value into a new vector. Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero); // Broadcast the scalar into all locations in the vector. Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros, "broadcast"); // We are accessing the induction variable. Make sure to promote the // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes. if (V == Induction) return getConsecutiveVector(Shuf); return Shuf; } Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) { assert(Val->getType()->isVectorTy() && "Must be a vector"); assert(Val->getType()->getScalarType()->isIntegerTy() && "Elem must be an integer"); // Create the types. Type *ITy = Val->getType()->getScalarType(); VectorType *Ty = cast(Val->getType()); unsigned VLen = Ty->getNumElements(); SmallVector Indices; // Create a vector of consecutive numbers from zero to VF. for (unsigned i = 0; i < VLen; ++i) Indices.push_back(ConstantInt::get(ITy, i)); // Add the consecutive indices to the vector value. Constant *Cv = ConstantVector::get(Indices); assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); return Builder.CreateAdd(Val, Cv, "induction"); } bool LoopVectorizationLegality::isConsecutiveGep(Value *Ptr) { GetElementPtrInst *Gep = dyn_cast_or_null(Ptr); if (!Gep) return false; unsigned NumOperands = Gep->getNumOperands(); Value *LastIndex = Gep->getOperand(NumOperands - 1); // Check that all of the gep indices are uniform except for the last. for (unsigned i = 0; i < NumOperands - 1; ++i) if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) return false; // We can emit wide load/stores only of the last index is the induction // variable. const SCEV *Last = SE->getSCEV(LastIndex); if (const SCEVAddRecExpr *AR = dyn_cast(Last)) { const SCEV *Step = AR->getStepRecurrence(*SE); // The memory is consecutive because the last index is consecutive // and all other indices are loop invariant. if (Step->isOne()) return true; } return false; } Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) { assert(!V->getType()->isVectorTy() && "Can't widen a vector"); // If we saved a vectorized copy of V, use it. Value *&MapEntry = WidenMap[V]; if (MapEntry) return MapEntry; // Broadcast V and save the value for future uses. Value *B = getBroadcastInstrs(V); MapEntry = B; return B; } Constant* SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) { SmallVector Indices; // Create a vector of consecutive numbers from zero to VF. for (unsigned i = 0; i < VF; ++i) Indices.push_back(ConstantInt::get(ScalarTy, Val)); // Add the consecutive indices to the vector value. return ConstantVector::get(Indices); } void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) { assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); // Holds vector parameters or scalars, in case of uniform vals. SmallVector Params; // Find all of the vectorized parameters. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *SrcOp = Instr->getOperand(op); // If we are accessing the old induction variable, use the new one. if (SrcOp == OldInduction) { Params.push_back(getBroadcastInstrs(Induction)); continue; } // Try using previously calculated values. Instruction *SrcInst = dyn_cast(SrcOp); // If the src is an instruction that appeared earlier in the basic block // then it should already be vectorized. if (SrcInst && SrcInst->getParent() == Instr->getParent()) { assert(WidenMap.count(SrcInst) && "Source operand is unavailable"); // The parameter is a vector value from earlier. Params.push_back(WidenMap[SrcInst]); } else { // The parameter is a scalar from outside the loop. Maybe even a constant. Params.push_back(SrcOp); } } assert(Params.size() == Instr->getNumOperands() && "Invalid number of operands"); // Does this instruction return a value ? bool IsVoidRetTy = Instr->getType()->isVoidTy(); Value *VecResults = 0; // If we have a return value, create an empty vector. We place the scalarized // instructions in this vector. if (!IsVoidRetTy) VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF)); // For each scalar that we create: for (unsigned i = 0; i < VF; ++i) { Instruction *Cloned = Instr->clone(); if (!IsVoidRetTy) Cloned->setName(Instr->getName() + ".cloned"); // Replace the operands of the cloned instrucions with extracted scalars. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *Op = Params[op]; // Param is a vector. Need to extract the right lane. if (Op->getType()->isVectorTy()) Op = Builder.CreateExtractElement(Op, Builder.getInt32(i)); Cloned->setOperand(op, Op); } // Place the cloned scalar in the new loop. Builder.Insert(Cloned); // If the original scalar returns a value we need to place it in a vector // so that future users will be able to use it. if (!IsVoidRetTy) VecResults = Builder.CreateInsertElement(VecResults, Cloned, Builder.getInt32(i)); } if (!IsVoidRetTy) WidenMap[Instr] = VecResults; } void SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) { /* In this function we generate a new loop. The new loop will contain the vectorized instructions while the old loop will continue to run the scalar remainder. [ ] <-- vector loop bypass. / | / v | [ ] <-- vector pre header. | | | v | [ ] \ | [ ]_| <-- vector loop. | | \ v >[ ] <--- middle-block. / | / v | [ ] <--- new preheader. | | | v | [ ] \ | [ ]_| <-- old scalar loop to handle remainder. \ | \ v >[ ] <-- exit block. ... */ // This is the original scalar-loop preheader. BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); BasicBlock *ExitBlock = OrigLoop->getExitBlock(); assert(ExitBlock && "Must have an exit block"); assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop"); assert(BypassBlock && "Invalid loop structure"); BasicBlock *VectorPH = BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); BasicBlock *ScalarPH = MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.preheader"); // Find the induction variable. BasicBlock *OldBasicBlock = OrigLoop->getHeader(); OldInduction = Legal->getInduction(); assert(OldInduction && "We must have a single phi node."); Type *IdxTy = OldInduction->getType(); // Use this IR builder to create the loop instructions (Phi, Br, Cmp) // inside the loop. Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); // Generate the induction variable. Induction = Builder.CreatePHI(IdxTy, 2, "index"); Constant *Zero = ConstantInt::get(IdxTy, 0); Constant *Step = ConstantInt::get(IdxTy, VF); // Find the loop boundaries. const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader()); assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); // Get the total trip count from the count by adding 1. ExitCount = SE->getAddExpr(ExitCount, SE->getConstant(ExitCount->getType(), 1)); // Expand the trip count and place the new instructions in the preheader. // Notice that the pre-header does not change, only the loop body. SCEVExpander Exp(*SE, "induction"); Instruction *Loc = BypassBlock->getTerminator(); // We may need to extend the index in case there is a type mismatch. // We know that the count starts at zero and does not overflow. // We are using Zext because it should be less expensive. if (ExitCount->getType() != Induction->getType()) ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy); // Count holds the overall loop count (N). Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc); // Now we need to generate the expression for N - (N % VF), which is // the part that the vectorized body will execute. Constant *CIVF = ConstantInt::get(IdxTy, VF); Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc); Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc); // Now, compare the new count to zero. If it is zero, jump to the scalar part. Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, CountRoundDown, ConstantInt::getNullValue(IdxTy), "cmp.zero", Loc); BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc); // Remove the old terminator. Loc->eraseFromParent(); // Add a check in the middle block to see if we have completed // all of the iterations in the first vector loop. // If (N - N%VF) == N, then we *don't* need to run the remainder. Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); // Remove the old terminator. MiddleBlock->getTerminator()->eraseFromParent(); // Create i+1 and fill the PHINode. Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); Induction->addIncoming(Zero, VectorPH); Induction->addIncoming(NextIdx, VecBody); // Create the compare. Value *ICmp = Builder.CreateICmpEQ(NextIdx, CountRoundDown); Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); // Now we have two terminators. Remove the old one from the block. VecBody->getTerminator()->eraseFromParent(); // Fix the scalar body iteration count. unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH); OldInduction->setIncomingValue(BlockIdx, CountRoundDown); // Get ready to start creating new instructions into the vectorized body. Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); // Register the new loop. Loop* Lp = new Loop(); LPM->insertLoop(Lp, OrigLoop->getParentLoop()); Lp->addBasicBlockToLoop(VecBody, LI->getBase()); Loop *ParentLoop = OrigLoop->getParentLoop(); if (ParentLoop) { ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); } // Save the state. LoopMiddleBlock = MiddleBlock; LoopExitBlock = ExitBlock; LoopVectorBody = VecBody; LoopScalarBody = OldBasicBlock; LoopBypassBlock = BypassBlock; } void SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) { //===------------------------------------------------===// // // Notice: any optimization or new instruction that go // into the code below should be also be implemented in // the cost-model. // //===------------------------------------------------===// typedef SmallVector PhiVector; BasicBlock &BB = *OrigLoop->getHeader(); Constant *Zero = ConstantInt::get( IntegerType::getInt32Ty(BB.getContext()), 0); // In order to support reduction variables we need to be able to vectorize // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two // steages. First, we create a new vector PHI node with no incoming edges. // We use this value when we vectorize all of the instructions that use the // PHI. Next, after all of the instructions in the block are complete we // add the new incoming edges to the PHI. At this point all of the // instructions in the basic block are vectorized, so we can use them to // construct the PHI. PhiVector PHIsToFix; // For each instruction in the old loop. for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) { Instruction *Inst = it; switch (Inst->getOpcode()) { case Instruction::Br: // Nothing to do for PHIs and BR, since we already took care of the // loop control flow instructions. continue; case Instruction::PHI:{ PHINode* P = cast(Inst); // Special handling for the induction var. if (OldInduction == Inst) continue; // This is phase one of vectorizing PHIs. // This has to be a reduction variable. assert(Legal->getReductionVars()->count(P) && "Not a Reduction"); Type *VecTy = VectorType::get(Inst->getType(), VF); WidenMap[Inst] = Builder.CreatePHI(VecTy, 2, "vec.phi"); PHIsToFix.push_back(P); continue; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Just widen binops. BinaryOperator *BinOp = dyn_cast(Inst); Value *A = getVectorValue(Inst->getOperand(0)); Value *B = getVectorValue(Inst->getOperand(1)); // Use this vector value for all users of the original instruction. WidenMap[Inst] = Builder.CreateBinOp(BinOp->getOpcode(), A, B); break; } case Instruction::Select: { // Widen selects. // If the selector is loop invariant we can create a select // instruction with a scalar condition. Otherwise, use vector-select. Value *Cond = Inst->getOperand(0); bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop); // The condition can be loop invariant but still defined inside the // loop. This means that we can't just use the original 'cond' value. // We have to take the 'vectorized' value and pick the first lane. // Instcombine will make this a no-op. Cond = getVectorValue(Cond); if (InvariantCond) Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0)); Value *Op0 = getVectorValue(Inst->getOperand(1)); Value *Op1 = getVectorValue(Inst->getOperand(2)); WidenMap[Inst] = Builder.CreateSelect(Cond, Op0, Op1); break; } case Instruction::ICmp: case Instruction::FCmp: { // Widen compares. Generate vector compares. bool FCmp = (Inst->getOpcode() == Instruction::FCmp); CmpInst *Cmp = dyn_cast(Inst); Value *A = getVectorValue(Inst->getOperand(0)); Value *B = getVectorValue(Inst->getOperand(1)); if (FCmp) WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B); else WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B); break; } case Instruction::Store: { // Attempt to issue a wide store. StoreInst *SI = dyn_cast(Inst); Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF); Value *Ptr = SI->getPointerOperand(); unsigned Alignment = SI->getAlignment(); GetElementPtrInst *Gep = dyn_cast(Ptr); // This store does not use GEPs. if (!Legal->isConsecutiveGep(Gep)) { scalarizeInstruction(Inst); break; } // The last index does not have to be the induction. It can be // consecutive and be a function of the index. For example A[I+1]; unsigned NumOperands = Gep->getNumOperands(); Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1)); LastIndex = Builder.CreateExtractElement(LastIndex, Builder.getInt32(0)); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); Gep2->setOperand(NumOperands - 1, LastIndex); Ptr = Builder.Insert(Gep2); Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo()); Value *Val = getVectorValue(SI->getValueOperand()); Builder.CreateStore(Val, Ptr)->setAlignment(Alignment); break; } case Instruction::Load: { // Attempt to issue a wide load. LoadInst *LI = dyn_cast(Inst); Type *RetTy = VectorType::get(LI->getType(), VF); Value *Ptr = LI->getPointerOperand(); unsigned Alignment = LI->getAlignment(); GetElementPtrInst *Gep = dyn_cast(Ptr); // We don't have a gep. Scalarize the load. if (!Legal->isConsecutiveGep(Gep)) { scalarizeInstruction(Inst); break; } // The last index does not have to be the induction. It can be // consecutive and be a function of the index. For example A[I+1]; unsigned NumOperands = Gep->getNumOperands(); Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1)); LastIndex = Builder.CreateExtractElement(LastIndex, Builder.getInt32(0)); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); Gep2->setOperand(NumOperands - 1, LastIndex); Ptr = Builder.Insert(Gep2); Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo()); LI = Builder.CreateLoad(Ptr); LI->setAlignment(Alignment); // Use this vector value for all users of the load. WidenMap[Inst] = LI; break; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { /// Vectorize bitcasts. CastInst *CI = dyn_cast(Inst); Value *A = getVectorValue(Inst->getOperand(0)); Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF); WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy); break; } default: /// All other instructions are unsupported. Scalarize them. scalarizeInstruction(Inst); break; }// end of switch. }// end of for_each instr. // At this point every instruction in the original loop is widended to // a vector form. We are almost done. Now, we need to fix the PHI nodes // that we vectorized. The PHI nodes are currently empty because we did // not want to introduce cycles. Notice that the remaining PHI nodes // that we need to fix are reduction variables. // Create the 'reduced' values for each of the induction vars. // The reduced values are the vector values that we scalarize and combine // after the loop is finished. for (PhiVector::iterator it = PHIsToFix.begin(), e = PHIsToFix.end(); it != e; ++it) { PHINode *RdxPhi = *it; PHINode *VecRdxPhi = dyn_cast(WidenMap[RdxPhi]); assert(RdxPhi && "Unable to recover vectorized PHI"); // Find the reduction variable descriptor. assert(Legal->getReductionVars()->count(RdxPhi) && "Unable to find the reduction variable"); LoopVectorizationLegality::ReductionDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; // We need to generate a reduction vector from the incoming scalar. // To do so, we need to generate the 'identity' vector and overide // one of the elements with the incoming scalar reduction. We need // to do it in the vector-loop preheader. Builder.SetInsertPoint(LoopBypassBlock->getTerminator()); // This is the vector-clone of the value that leaves the loop. Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr); Type *VecTy = VectorExit->getType(); // Find the reduction identity variable. The value of the enum is the // identity. Zero for addition. One for Multiplication. unsigned IdentitySclr = RdxDesc.Kind; Constant *Identity = getUniformVector(IdentitySclr, VecTy->getScalarType()); // This vector is the Identity vector where the first element is the // incoming scalar reduction. Value *VectorStart = Builder.CreateInsertElement(Identity, RdxDesc.StartValue, Zero); // Fix the vector-loop phi. // We created the induction variable so we know that the // preheader is the first entry. BasicBlock *VecPreheader = Induction->getIncomingBlock(0); // Reductions do not have to start at zero. They can start with // any loop invariant values. VecRdxPhi->addIncoming(VectorStart, VecPreheader); unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody); Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx)); VecRdxPhi->addIncoming(Val, LoopVectorBody); // Before each round, move the insertion point right between // the PHIs and the values we are going to write. // This allows us to write both PHINodes and the extractelement // instructions. Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); // This PHINode contains the vectorized reduction variable, or // the initial value vector, if we bypass the vector loop. PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); NewPhi->addIncoming(VectorStart, LoopBypassBlock); NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody); // Extract the first scalar. Value *Scalar0 = Builder.CreateExtractElement(NewPhi, Builder.getInt32(0)); // Extract and reduce the remaining vector elements. for (unsigned i=1; i < VF; ++i) { Value *Scalar1 = Builder.CreateExtractElement(NewPhi, Builder.getInt32(i)); switch (RdxDesc.Kind) { case LoopVectorizationLegality::IntegerAdd: Scalar0 = Builder.CreateAdd(Scalar0, Scalar1); break; case LoopVectorizationLegality::IntegerMult: Scalar0 = Builder.CreateMul(Scalar0, Scalar1); break; case LoopVectorizationLegality::IntegerOr: Scalar0 = Builder.CreateOr(Scalar0, Scalar1); break; case LoopVectorizationLegality::IntegerAnd: Scalar0 = Builder.CreateAnd(Scalar0, Scalar1); break; case LoopVectorizationLegality::IntegerXor: Scalar0 = Builder.CreateXor(Scalar0, Scalar1); break; default: llvm_unreachable("Unknown reduction operation"); } } // Now, we need to fix the users of the reduction variable // inside and outside of the scalar remainder loop. // We know that the loop is in LCSSA form. We need to update the // PHI nodes in the exit blocks. for (BasicBlock::iterator LEI = LoopExitBlock->begin(), LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { PHINode *LCSSAPhi = dyn_cast(LEI); if (!LCSSAPhi) continue; // All PHINodes need to have a single entry edge, or two if // we already fixed them. assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); // We found our reduction value exit-PHI. Update it with the // incoming bypass edge. if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { // Add an edge coming from the bypass. LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock); break; } }// end of the LCSSA phi scan. // Fix the scalar loop reduction variable with the incoming reduction sum // from the vector body and from the backedge value. int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody); int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block. (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0); (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); }// end of for each redux variable. } void SingleBlockLoopVectorizer::cleanup() { // The original basic block. SE->forgetLoop(OrigLoop); } bool LoopVectorizationLegality::canVectorize() { if (!TheLoop->getLoopPreheader()) { assert(false && "No preheader!!"); DEBUG(dbgs() << "LV: Loop not normalized." << "\n"); return false; } // We can only vectorize single basic block loops. unsigned NumBlocks = TheLoop->getNumBlocks(); if (NumBlocks != 1) { DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n"); return false; } // We need to have a loop header. BasicBlock *BB = TheLoop->getHeader(); DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n"); // Go over each instruction and look at memory deps. if (!canVectorizeBlock(*BB)) { DEBUG(dbgs() << "LV: Can't vectorize this loop header\n"); return false; } // ScalarEvolution needs to be able to find the exit count. const SCEV *ExitCount = SE->getExitCount(TheLoop, BB); if (ExitCount == SE->getCouldNotCompute()) { DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); return false; } DEBUG(dbgs() << "LV: We can vectorize this loop!\n"); // Okay! We can vectorize. At this point we don't have any other mem analysis // which may limit our maximum vectorization factor, so just return true with // no restrictions. return true; } bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) { // Scan the instructions in the block and look for hazards. for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) { Instruction *I = it; PHINode *Phi = dyn_cast(I); if (Phi) { // This should not happen because the loop should be normalized. if (Phi->getNumIncomingValues() != 2) { DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); return false; } // We only look at integer phi nodes. if (!Phi->getType()->isIntegerTy()) { DEBUG(dbgs() << "LV: Found an non-int PHI.\n"); return false; } if (isInductionVariable(Phi)) { if (Induction) { DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n"); return false; } DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n"); Induction = Phi; continue; } if (AddReductionVar(Phi, IntegerAdd)) { DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, IntegerMult)) { DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, IntegerOr)) { DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, IntegerAnd)) { DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, IntegerXor)) { DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); continue; } DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); return false; }// end of PHI handling // We still don't handle functions. CallInst *CI = dyn_cast(I); if (CI) { DEBUG(dbgs() << "LV: Found a call site:"<< CI->getCalledFunction()->getName() << "\n"); return false; } // We do not re-vectorize vectors. if (!VectorType::isValidElementType(I->getType()) && !I->getType()->isVoidTy()) { DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n"); return false; } // Reduction instructions are allowed to have exit users. // All other instructions must not have external users. if (!AllowedExit.count(I)) //Check that all of the users of the loop are inside the BB. for (Value::use_iterator it = I->use_begin(), e = I->use_end(); it != e; ++it) { Instruction *U = cast(*it); // This user may be a reduction exit value. BasicBlock *Parent = U->getParent(); if (Parent != &BB) { DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n"); return false; } } } // next instr. if (!Induction) { DEBUG(dbgs() << "LV: Did not find an induction var.\n"); return false; } // If the memory dependencies do not prevent us from // vectorizing, then vectorize. return canVectorizeMemory(BB); } bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) { typedef SmallVector ValueVector; typedef SmallPtrSet ValueSet; // Holds the Load and Store *instructions*. ValueVector Loads; ValueVector Stores; // Scan the BB and collect legal loads and stores. for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) { Instruction *I = it; // If this is a load, save it. If this instruction can read from memory // but is not a load, then we quit. Notice that we don't handle function // calls that read or write. if (I->mayReadFromMemory()) { LoadInst *Ld = dyn_cast(I); if (!Ld) return false; if (!Ld->isSimple()) { DEBUG(dbgs() << "LV: Found a non-simple load.\n"); return false; } Loads.push_back(Ld); continue; } // Save store instructions. Abort if other instructions write to memory. if (I->mayWriteToMemory()) { StoreInst *St = dyn_cast(I); if (!St) return false; if (!St->isSimple()) { DEBUG(dbgs() << "LV: Found a non-simple store.\n"); return false; } Stores.push_back(St); } } // next instr. // Now we have two lists that hold the loads and the stores. // Next, we find the pointers that they use. // Check if we see any stores. If there are no stores, then we don't // care if the pointers are *restrict*. if (!Stores.size()) { DEBUG(dbgs() << "LV: Found a read-only loop!\n"); return true; } // Holds the read and read-write *pointers* that we find. ValueVector Reads; ValueVector ReadWrites; // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects // multiple times on the same object. If the ptr is accessed twice, once // for read and once for write, it will only appear once (on the write // list). This is okay, since we are going to check for conflicts between // writes and between reads and writes, but not between reads and reads. ValueSet Seen; ValueVector::iterator I, IE; for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { StoreInst *ST = dyn_cast(*I); assert(ST && "Bad StoreInst"); Value* Ptr = ST->getPointerOperand(); // If we did *not* see this pointer before, insert it to // the read-write list. At this phase it is only a 'write' list. if (Seen.insert(Ptr)) ReadWrites.push_back(Ptr); } for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { LoadInst *LD = dyn_cast(*I); assert(LD && "Bad LoadInst"); Value* Ptr = LD->getPointerOperand(); // If we did *not* see this pointer before, insert it to the // read list. If we *did* see it before, then it is already in // the read-write list. This allows us to vectorize expressions // such as A[i] += x; Because the address of A[i] is a read-write // pointer. This only works if the index of A[i] is consecutive. // If the address of i is unknown (for example A[B[i]]) then we may // read a few words, modify, and write a few words, and some of the // words may be written to the same address. if (Seen.insert(Ptr) || !isConsecutiveGep(Ptr)) Reads.push_back(Ptr); } // Now that the pointers are in two lists (Reads and ReadWrites), we // can check that there are no conflicts between each of the writes and // between the writes to the reads. ValueSet WriteObjects; ValueVector TempObjects; // Check that the read-writes do not conflict with other read-write // pointers. for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) { GetUnderlyingObjects(*I, TempObjects, DL); for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end(); it != e; ++it) { if (!isIdentifiedObject(*it)) { DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n"); return false; } if (!WriteObjects.insert(*it)) { DEBUG(dbgs() << "LV: Found a possible write-write reorder:" << **it <<"\n"); return false; } } TempObjects.clear(); } /// Check that the reads don't conflict with the read-writes. for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) { GetUnderlyingObjects(*I, TempObjects, DL); for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end(); it != e; ++it) { if (!isIdentifiedObject(*it)) { DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n"); return false; } if (WriteObjects.count(*it)) { DEBUG(dbgs() << "LV: Found a possible read/write reorder:" << **it <<"\n"); return false; } } TempObjects.clear(); } // All is okay. return true; } bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, ReductionKind Kind) { if (Phi->getNumIncomingValues() != 2) return false; // Find the possible incoming reduction variable. BasicBlock *BB = Phi->getParent(); int SelfEdgeIdx = Phi->getBasicBlockIndex(BB); int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry. Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx); // ExitInstruction is the single value which is used outside the loop. // We only allow for a single reduction value to be used outside the loop. // This includes users of the reduction, variables (which form a cycle // which ends in the phi node). Instruction *ExitInstruction = 0; // Iter is our iterator. We start with the PHI node and scan for all of the // users of this instruction. All users must be instructions which can be // used as reduction variables (such as ADD). We may have a single // out-of-block user. They cycle must end with the original PHI. // Also, we can't have multiple block-local users. Instruction *Iter = Phi; while (true) { // Any reduction instr must be of one of the allowed kinds. if (!isReductionInstr(Iter, Kind)) return false; // Did we found a user inside this block ? bool FoundInBlockUser = false; // Did we reach the initial PHI node ? bool FoundStartPHI = false; // If the instruction has no users then this is a broken // chain and can't be a reduction variable. if (Iter->use_empty()) return false; // For each of the *users* of iter. for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end(); it != e; ++it) { Instruction *U = cast(*it); // We already know that the PHI is a user. if (U == Phi) { FoundStartPHI = true; continue; } // Check if we found the exit user. BasicBlock *Parent = U->getParent(); if (Parent != BB) { // We must have a single exit instruction. if (ExitInstruction != 0) return false; ExitInstruction = Iter; } // We can't have multiple inside users. if (FoundInBlockUser) return false; FoundInBlockUser = true; Iter = U; } // We found a reduction var if we have reached the original // phi node and we only have a single instruction with out-of-loop // users. if (FoundStartPHI && ExitInstruction) { // This instruction is allowed to have out-of-loop users. AllowedExit.insert(ExitInstruction); // Save the description of this reduction variable. ReductionDescriptor RD(RdxStart, ExitInstruction, Kind); Reductions[Phi] = RD; return true; } } } bool LoopVectorizationLegality::isReductionInstr(Instruction *I, ReductionKind Kind) { switch (I->getOpcode()) { default: return false; case Instruction::PHI: // possibly. return true; case Instruction::Add: case Instruction::Sub: return Kind == IntegerAdd; case Instruction::Mul: case Instruction::UDiv: case Instruction::SDiv: return Kind == IntegerMult; case Instruction::And: return Kind == IntegerAnd; case Instruction::Or: return Kind == IntegerOr; case Instruction::Xor: return Kind == IntegerXor; } } bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { // Check that the PHI is consecutive and starts at zero. const SCEV *PhiScev = SE->getSCEV(Phi); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) { DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return false; } const SCEV *Step = AR->getStepRecurrence(*SE); const SCEV *Start = AR->getStart(); if (!Step->isOne() || !Start->isZero()) { DEBUG(dbgs() << "LV: PHI does not start at zero or steps by one.\n"); return false; } return true; } unsigned LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) { if (!VTTI) { DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n"); return 1; } float Cost = expectedCost(1); unsigned Width = 1; DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n"); for (unsigned i=2; i <= VF; i*=2) { // Notice that the vector loop needs to be executed less times, so // we need to divide the cost of the vector loops by the width of // the vector elements. float VectorCost = expectedCost(i) / (float)i; DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " << (int)VectorCost << ".\n"); if (VectorCost < Cost) { Cost = VectorCost; Width = i; } } DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n"); return Width; } unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { // We can only estimate the cost of single basic block loops. assert(1 == TheLoop->getNumBlocks() && "Too many blocks in loop"); BasicBlock *BB = TheLoop->getHeader(); unsigned Cost = 0; // For each instruction in the old loop. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { Instruction *Inst = it; unsigned C = getInstructionCost(Inst, VF); Cost += C; DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF "<< VF << " For instruction: "<< *Inst << "\n"); } return Cost; } unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { assert(VTTI && "Invalid vector target transformation info"); Type *RetTy = I->getType(); Type *VectorTy = ToVectorTy(RetTy, VF); // TODO: We need to estimate the cost of intrinsic calls. switch (I->getOpcode()) { case Instruction::GetElementPtr: // We mark this instruction as zero-cost because scalar GEPs are usually // lowered to the intruction addressing mode. At the moment we don't // generate vector geps. return 0; case Instruction::Br: { return VTTI->getInstrCost(I->getOpcode()); } case Instruction::PHI: return 0; case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { return VTTI->getInstrCost(I->getOpcode(), VectorTy); } case Instruction::Select: { SelectInst *SI = cast(I); const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); Type *CondTy = SI->getCondition()->getType(); if (ScalarCond) CondTy = VectorType::get(CondTy, VF); return VTTI->getInstrCost(I->getOpcode(), VectorTy, CondTy); } case Instruction::ICmp: case Instruction::FCmp: { Type *ValTy = I->getOperand(0)->getType(); VectorTy = ToVectorTy(ValTy, VF); return VTTI->getInstrCost(I->getOpcode(), VectorTy); } case Instruction::Store: { StoreInst *SI = cast(I); Type *ValTy = SI->getValueOperand()->getType(); VectorTy = ToVectorTy(ValTy, VF); if (VF == 1) return VTTI->getMemoryOpCost(I->getOpcode(), ValTy, SI->getAlignment(), SI->getPointerAddressSpace()); // Scalarized stores. if (!Legal->isConsecutiveGep(SI->getPointerOperand())) { unsigned Cost = 0; unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement, ValTy); // The cost of extracting from the value vector. Cost += VF * (ExtCost); // The cost of the scalar stores. Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), SI->getAlignment(), SI->getPointerAddressSpace()); return Cost; } // Wide stores. return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(), SI->getPointerAddressSpace()); } case Instruction::Load: { LoadInst *LI = cast(I); if (VF == 1) return VTTI->getMemoryOpCost(I->getOpcode(), RetTy, LI->getAlignment(), LI->getPointerAddressSpace()); // Scalarized loads. if (!Legal->isConsecutiveGep(LI->getPointerOperand())) { unsigned Cost = 0; unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy); // The cost of inserting the loaded value into the result vector. Cost += VF * (InCost); // The cost of the scalar stores. Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(), RetTy->getScalarType(), LI->getAlignment(), LI->getPointerAddressSpace()); return Cost; } // Wide loads. return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(), LI->getPointerAddressSpace()); } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); return VTTI->getInstrCost(I->getOpcode(), VectorTy, SrcVecTy); } default: { // We are scalarizing the instruction. Return the cost of the scalar // instruction, plus the cost of insert and extract into vector // elements, times the vector width. unsigned Cost = 0; bool IsVoid = RetTy->isVoidTy(); unsigned InsCost = (IsVoid ? 0 : VTTI->getInstrCost(Instruction::InsertElement, VectorTy)); unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement, VectorTy); // The cost of inserting the results plus extracting each one of the // operands. Cost += VF * (InsCost + ExtCost * I->getNumOperands()); // The cost of executing VF copies of the scalar instruction. Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy); return Cost; } }// end of switch. } Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { if (Scalar->isVoidTy() || VF == 1) return Scalar; return VectorType::get(Scalar, VF); } } // namespace char LoopVectorize::ID = 0; static const char lv_name[] = "Loop Vectorization"; INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) namespace llvm { Pass *createLoopVectorizePass() { return new LoopVectorize(); } }