//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PPCISelLowering class. // //===----------------------------------------------------------------------===// #include "PPCISelLowering.h" #include "PPCMachineFunctionInfo.h" #include "PPCPredicates.h" #include "PPCTargetMachine.h" #include "PPCPerfectShuffle.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/VectorExtras.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" using namespace llvm; static cl::opt EnablePPCPreinc("enable-ppc-preinc", cl::desc("enable preincrement load/store generation on PPC (experimental)"), cl::Hidden); PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) { setPow2DivIsCheap(); // Use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(true); // Set up the register classes. addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); // PowerPC has an i16 but no i8 (or i1) SEXTLOAD setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); // PowerPC has pre-inc load and store's. setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg) setConvertAction(MVT::ppcf128, MVT::f64, Expand); setConvertAction(MVT::ppcf128, MVT::f32, Expand); // This is used in the ppcf128->int sequence. Note it has different semantics // from FP_ROUND: that rounds to nearest, this rounds to zero. setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); // PowerPC has no intrinsics for these particular operations setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); setOperationAction(ISD::MEMSET, MVT::Other, Expand); setOperationAction(ISD::MEMCPY, MVT::Other, Expand); setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); // PowerPC has no SREM/UREM instructions setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); // We don't support sin/cos/sqrt/fmod/pow setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FPOW , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); setOperationAction(ISD::FPOW , MVT::f32, Expand); setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); // If we're enabling GP optimizations, use hardware square root if (!TM.getSubtarget().hasFSQRT()) { setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f32, Expand); } setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); // PowerPC does not have BSWAP, CTPOP or CTTZ setOperationAction(ISD::BSWAP, MVT::i32 , Expand); setOperationAction(ISD::CTPOP, MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setOperationAction(ISD::BSWAP, MVT::i64 , Expand); setOperationAction(ISD::CTPOP, MVT::i64 , Expand); setOperationAction(ISD::CTTZ , MVT::i64 , Expand); // PowerPC does not have ROTR setOperationAction(ISD::ROTR, MVT::i32 , Expand); // PowerPC does not have Select setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::i64, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); // PowerPC wants to turn select_cc of FP into fsel when possible. setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); // PowerPC wants to optimize integer setcc a bit setOperationAction(ISD::SETCC, MVT::i32, Custom); // PowerPC does not have BRCOND which requires SetCC setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); // PowerPC does not have [U|S]INT_TO_FP setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand); // We cannot sextinreg(i1). Expand to shifts. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // Support label based line numbers. setOperationAction(ISD::LOCATION, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); // We want to legalize GlobalAddress and ConstantPool nodes into the // appropriate instructions to materialize the address. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::ConstantPool, MVT::i64, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); // RET must be custom lowered, to meet ABI requirements setOperationAction(ISD::RET , MVT::Other, Custom); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); // VAARG is custom lowered with ELF 32 ABI if (TM.getSubtarget().isELF32_ABI()) setOperationAction(ISD::VAARG, MVT::Other, Custom); else setOperationAction(ISD::VAARG, MVT::Other, Expand); // Use the default implementation. setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); if (TM.getSubtarget().has64BitSupport()) { // They also have instructions for converting between i64 and fp. setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); // FIXME: disable this lowered code. This generates 64-bit register values, // and we don't model the fact that the top part is clobbered by calls. We // need to flag these together so that the value isn't live across a call. //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); } else { // PowerPC does not have FP_TO_UINT on 32-bit implementations. setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); } if (TM.getSubtarget().use64BitRegs()) { // 64-bit PowerPC implementations can support i64 types directly addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); // BUILD_PAIR can't be handled natively, and should be expanded to shl/or setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); // 64-bit PowerPC wants to expand i128 shifts itself. setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); } else { // 32-bit PowerPC wants to expand i64 shifts itself. setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); } if (TM.getSubtarget().hasAltivec()) { // First set operation action for all vector types to expand. Then we // will selectively turn on ones that can be effectively codegen'd. for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { // add/sub are legal for all supported vector VT's. setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal); setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal); // We promote all shuffles to v16i8. setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8); // We promote all non-typed operations to v4i32. setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32); // No other operations are legal. setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand); setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand); setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand); setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand); setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand); setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand); setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand); setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand); setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand); } // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle // with merges, splats, etc. setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); setOperationAction(ISD::AND , MVT::v4i32, Legal); setOperationAction(ISD::OR , MVT::v4i32, Legal); setOperationAction(ISD::XOR , MVT::v4i32, Legal); setOperationAction(ISD::LOAD , MVT::v4i32, Legal); setOperationAction(ISD::SELECT, MVT::v4i32, Expand); setOperationAction(ISD::STORE , MVT::v4i32, Legal); addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); setOperationAction(ISD::MUL, MVT::v4f32, Legal); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v8i16, Custom); setOperationAction(ISD::MUL, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); } setShiftAmountType(MVT::i32); setSetCCResultContents(ZeroOrOneSetCCResult); if (TM.getSubtarget().isPPC64()) { setStackPointerRegisterToSaveRestore(PPC::X1); setExceptionPointerRegister(PPC::X3); setExceptionSelectorRegister(PPC::X4); } else { setStackPointerRegisterToSaveRestore(PPC::R1); setExceptionPointerRegister(PPC::R3); setExceptionSelectorRegister(PPC::R4); } // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::BR_CC); setTargetDAGCombine(ISD::BSWAP); // Darwin long double math library functions have $LDBL128 appended. if (TM.getSubtarget().isDarwin()) { setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); } computeRegisterProperties(); } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const { TargetMachine &TM = getTargetMachine(); // Darwin passes everything on 4 byte boundary. if (TM.getSubtarget().isDarwin()) return 4; // FIXME Elf TBD return 4; } const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case PPCISD::FSEL: return "PPCISD::FSEL"; case PPCISD::FCFID: return "PPCISD::FCFID"; case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; case PPCISD::STFIWX: return "PPCISD::STFIWX"; case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; case PPCISD::VPERM: return "PPCISD::VPERM"; case PPCISD::Hi: return "PPCISD::Hi"; case PPCISD::Lo: return "PPCISD::Lo"; case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; case PPCISD::SRL: return "PPCISD::SRL"; case PPCISD::SRA: return "PPCISD::SRA"; case PPCISD::SHL: return "PPCISD::SHL"; case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; case PPCISD::STD_32: return "PPCISD::STD_32"; case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF"; case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho"; case PPCISD::MTCTR: return "PPCISD::MTCTR"; case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho"; case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF"; case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; case PPCISD::MFCR: return "PPCISD::MFCR"; case PPCISD::VCMP: return "PPCISD::VCMP"; case PPCISD::VCMPo: return "PPCISD::VCMPo"; case PPCISD::LBRX: return "PPCISD::LBRX"; case PPCISD::STBRX: return "PPCISD::STBRX"; case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; case PPCISD::MFFS: return "PPCISD::MFFS"; case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; case PPCISD::MTFSF: return "PPCISD::MTFSF"; } } MVT::ValueType PPCTargetLowering::getSetCCResultType(const SDOperand &) const { return MVT::i32; } //===----------------------------------------------------------------------===// // Node matching predicates, for use by the tblgen matching code. //===----------------------------------------------------------------------===// /// isFloatingPointZero - Return true if this is 0.0 or -0.0. static bool isFloatingPointZero(SDOperand Op) { if (ConstantFPSDNode *CFP = dyn_cast(Op)) return CFP->getValueAPF().isZero(); else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) { // Maybe this has already been legalized into the constant pool? if (ConstantPoolSDNode *CP = dyn_cast(Op.getOperand(1))) if (ConstantFP *CFP = dyn_cast(CP->getConstVal())) return CFP->getValueAPF().isZero(); } return false; } /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return /// true if Op is undef or if it matches the specified value. static bool isConstantOrUndef(SDOperand Op, unsigned Val) { return Op.getOpcode() == ISD::UNDEF || cast(Op)->getValue() == Val; } /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUHUM instruction. bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) { if (!isUnary) { for (unsigned i = 0; i != 16; ++i) if (!isConstantOrUndef(N->getOperand(i), i*2+1)) return false; } else { for (unsigned i = 0; i != 8; ++i) if (!isConstantOrUndef(N->getOperand(i), i*2+1) || !isConstantOrUndef(N->getOperand(i+8), i*2+1)) return false; } return true; } /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUWUM instruction. bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) { if (!isUnary) { for (unsigned i = 0; i != 16; i += 2) if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || !isConstantOrUndef(N->getOperand(i+1), i*2+3)) return false; } else { for (unsigned i = 0; i != 8; i += 2) if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || !isConstantOrUndef(N->getOperand(i+1), i*2+3) || !isConstantOrUndef(N->getOperand(i+8), i*2+2) || !isConstantOrUndef(N->getOperand(i+9), i*2+3)) return false; } return true; } /// isVMerge - Common function, used to match vmrg* shuffles. /// static bool isVMerge(SDNode *N, unsigned UnitSize, unsigned LHSStart, unsigned RHSStart) { assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && "Unsupported merge size!"); for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j), LHSStart+j+i*UnitSize) || !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j), RHSStart+j+i*UnitSize)) return false; } return true; } /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { if (!isUnary) return isVMerge(N, UnitSize, 8, 24); return isVMerge(N, UnitSize, 8, 8); } /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { if (!isUnary) return isVMerge(N, UnitSize, 0, 16); return isVMerge(N, UnitSize, 0, 0); } /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift /// amount, otherwise return -1. int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); // Find the first non-undef value in the shuffle mask. unsigned i; for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i) /*search*/; if (i == 16) return -1; // all undef. // Otherwise, check to see if the rest of the elements are consequtively // numbered from this value. unsigned ShiftAmt = cast(N->getOperand(i))->getValue(); if (ShiftAmt < i) return -1; ShiftAmt -= i; if (!isUnary) { // Check the rest of the elements to see if they are consequtive. for (++i; i != 16; ++i) if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i)) return -1; } else { // Check the rest of the elements to see if they are consequtive. for (++i; i != 16; ++i) if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15)) return -1; } return ShiftAmt; } /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of a single element that is suitable for input to /// VSPLTB/VSPLTH/VSPLTW. bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) { assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 16 && (EltSize == 1 || EltSize == 2 || EltSize == 4)); // This is a splat operation if each element of the permute is the same, and // if the value doesn't reference the second vector. unsigned ElementBase = 0; SDOperand Elt = N->getOperand(0); if (ConstantSDNode *EltV = dyn_cast(Elt)) ElementBase = EltV->getValue(); else return false; // FIXME: Handle UNDEF elements too! if (cast(Elt)->getValue() >= 16) return false; // Check that they are consequtive. for (unsigned i = 1; i != EltSize; ++i) { if (!isa(N->getOperand(i)) || cast(N->getOperand(i))->getValue() != i+ElementBase) return false; } assert(isa(Elt) && "Invalid VECTOR_SHUFFLE mask!"); for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; assert(isa(N->getOperand(i)) && "Invalid VECTOR_SHUFFLE mask!"); for (unsigned j = 0; j != EltSize; ++j) if (N->getOperand(i+j) != N->getOperand(j)) return false; } return true; } /// isAllNegativeZeroVector - Returns true if all elements of build_vector /// are -0.0. bool PPC::isAllNegativeZeroVector(SDNode *N) { assert(N->getOpcode() == ISD::BUILD_VECTOR); if (PPC::isSplatShuffleMask(N, N->getNumOperands())) if (ConstantFPSDNode *CFP = dyn_cast(N)) return CFP->getValueAPF().isNegZero(); return false; } /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { assert(isSplatShuffleMask(N, EltSize)); return cast(N->getOperand(0))->getValue() / EltSize; } /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed /// by using a vspltis[bhw] instruction of the specified element size, return /// the constant being splatted. The ByteSize field indicates the number of /// bytes of each element [124] -> [bhw]. SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { SDOperand OpVal(0, 0); // If ByteSize of the splat is bigger than the element size of the // build_vector, then we have a case where we are checking for a splat where // multiple elements of the buildvector are folded together into a single // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). unsigned EltSize = 16/N->getNumOperands(); if (EltSize < ByteSize) { unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. SDOperand UniquedVals[4]; assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); // See if all of the elements in the buildvector agree across. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; // If the element isn't a constant, bail fully out. if (!isa(N->getOperand(i))) return SDOperand(); if (UniquedVals[i&(Multiple-1)].Val == 0) UniquedVals[i&(Multiple-1)] = N->getOperand(i); else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) return SDOperand(); // no match. } // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains // either constant or undef values that are identical for each chunk. See // if these chunks can form into a larger vspltis*. // Check to see if all of the leading entries are either 0 or -1. If // neither, then this won't fit into the immediate field. bool LeadingZero = true; bool LeadingOnes = true; for (unsigned i = 0; i != Multiple-1; ++i) { if (UniquedVals[i].Val == 0) continue; // Must have been undefs. LeadingZero &= cast(UniquedVals[i])->isNullValue(); LeadingOnes &= cast(UniquedVals[i])->isAllOnesValue(); } // Finally, check the least significant entry. if (LeadingZero) { if (UniquedVals[Multiple-1].Val == 0) return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef int Val = cast(UniquedVals[Multiple-1])->getValue(); if (Val < 16) return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) } if (LeadingOnes) { if (UniquedVals[Multiple-1].Val == 0) return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef int Val =cast(UniquedVals[Multiple-1])->getSignExtended(); if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) return DAG.getTargetConstant(Val, MVT::i32); } return SDOperand(); } // Check to see if this buildvec has a single non-undef value in its elements. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; if (OpVal.Val == 0) OpVal = N->getOperand(i); else if (OpVal != N->getOperand(i)) return SDOperand(); } if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def. unsigned ValSizeInBytes = 0; uint64_t Value = 0; if (ConstantSDNode *CN = dyn_cast(OpVal)) { Value = CN->getValue(); ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8; } else if (ConstantFPSDNode *CN = dyn_cast(OpVal)) { assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); Value = FloatToBits(CN->getValueAPF().convertToFloat()); ValSizeInBytes = 4; } // If the splat value is larger than the element value, then we can never do // this splat. The only case that we could fit the replicated bits into our // immediate field for would be zero, and we prefer to use vxor for it. if (ValSizeInBytes < ByteSize) return SDOperand(); // If the element value is larger than the splat value, cut it in half and // check to see if the two halves are equal. Continue doing this until we // get to ByteSize. This allows us to handle 0x01010101 as 0x01. while (ValSizeInBytes > ByteSize) { ValSizeInBytes >>= 1; // If the top half equals the bottom half, we're still ok. if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != (Value & ((1 << (8*ValSizeInBytes))-1))) return SDOperand(); } // Properly sign extend the value. int ShAmt = (4-ByteSize)*8; int MaskVal = ((int)Value << ShAmt) >> ShAmt; // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. if (MaskVal == 0) return SDOperand(); // Finally, if this value fits in a 5 bit sext field, return it if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) return DAG.getTargetConstant(MaskVal, MVT::i32); return SDOperand(); } //===----------------------------------------------------------------------===// // Addressing Mode Selection //===----------------------------------------------------------------------===// /// isIntS16Immediate - This method tests to see if the node is either a 32-bit /// or 64-bit immediate, and if the value can be accurately represented as a /// sign extension from a 16-bit value. If so, this returns true and the /// immediate. static bool isIntS16Immediate(SDNode *N, short &Imm) { if (N->getOpcode() != ISD::Constant) return false; Imm = (short)cast(N)->getValue(); if (N->getValueType(0) == MVT::i32) return Imm == (int32_t)cast(N)->getValue(); else return Imm == (int64_t)cast(N)->getValue(); } static bool isIntS16Immediate(SDOperand Op, short &Imm) { return isIntS16Immediate(Op.Val, Imm); } /// SelectAddressRegReg - Given the specified addressed, check to see if it /// can be represented as an indexed [r+r] operation. Returns false if it /// can be more efficiently represented with [r+imm]. bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base, SDOperand &Index, SelectionDAG &DAG) { short imm = 0; if (N.getOpcode() == ISD::ADD) { if (isIntS16Immediate(N.getOperand(1), imm)) return false; // r+i if (N.getOperand(1).getOpcode() == PPCISD::Lo) return false; // r+i Base = N.getOperand(0); Index = N.getOperand(1); return true; } else if (N.getOpcode() == ISD::OR) { if (isIntS16Immediate(N.getOperand(1), imm)) return false; // r+i can fold it if we can. // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are provably // disjoint. APInt LHSKnownZero, LHSKnownOne; APInt RHSKnownZero, RHSKnownOne; DAG.ComputeMaskedBits(N.getOperand(0), APInt::getAllOnesValue(N.getOperand(0) .getValueSizeInBits()), LHSKnownZero, LHSKnownOne); if (LHSKnownZero.getBoolValue()) { DAG.ComputeMaskedBits(N.getOperand(1), APInt::getAllOnesValue(N.getOperand(1) .getValueSizeInBits()), RHSKnownZero, RHSKnownOne); // If all of the bits are known zero on the LHS or RHS, the add won't // carry. if (~(LHSKnownZero | RHSKnownZero) == 0) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } } } return false; } /// Returns true if the address N can be represented by a base register plus /// a signed 16-bit displacement [r+imm], and if it is not better /// represented as reg+reg. bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp, SDOperand &Base, SelectionDAG &DAG){ // If this can be more profitably realized as r+r, fail. if (SelectAddressRegReg(N, Disp, Base, DAG)) return false; if (N.getOpcode() == ISD::ADD) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm)) { Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } return true; // [r+i] } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { // Match LOAD (ADD (X, Lo(G))). assert(!cast(N.getOperand(1).getOperand(1))->getValue() && "Cannot handle constant offsets yet!"); Disp = N.getOperand(1).getOperand(0); // The global address. assert(Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable); Base = N.getOperand(0); return true; // [&g+r] } } else if (N.getOpcode() == ISD::OR) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm)) { // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are // provably disjoint. APInt LHSKnownZero, LHSKnownOne; DAG.ComputeMaskedBits(N.getOperand(0), APInt::getAllOnesValue(32), LHSKnownZero, LHSKnownOne); if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { // If all of the bits are known zero on the LHS or RHS, the add won't // carry. Base = N.getOperand(0); Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); return true; } } } else if (ConstantSDNode *CN = dyn_cast(N)) { // Loading from a constant address. // If this address fits entirely in a 16-bit sext immediate field, codegen // this as "d, 0" short Imm; if (isIntS16Immediate(CN, Imm)) { Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); return true; } // Handle 32-bit sext immediates with LIS + addr mode. if (CN->getValueType(0) == MVT::i32 || (int64_t)CN->getValue() == (int)CN->getValue()) { int Addr = (int)CN->getValue(); // Otherwise, break this down into an LIS + disp. Disp = DAG.getTargetConstant((short)Addr, MVT::i32); Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0); return true; } } Disp = DAG.getTargetConstant(0, getPointerTy()); if (FrameIndexSDNode *FI = dyn_cast(N)) Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); else Base = N; return true; // [r+0] } /// SelectAddressRegRegOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base, SDOperand &Index, SelectionDAG &DAG) { // Check to see if we can easily represent this as an [r+r] address. This // will fail if it thinks that the address is more profitably represented as // reg+imm, e.g. where imm = 0. if (SelectAddressRegReg(N, Base, Index, DAG)) return true; // If the operand is an addition, always emit this as [r+r], since this is // better (for code size, and execution, as the memop does the add for free) // than emitting an explicit add. if (N.getOpcode() == ISD::ADD) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } // Otherwise, do it the hard way, using R0 as the base register. Base = DAG.getRegister(PPC::R0, N.getValueType()); Index = N; return true; } /// SelectAddressRegImmShift - Returns true if the address N can be /// represented by a base register plus a signed 14-bit displacement /// [r+imm*4]. Suitable for use by STD and friends. bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base, SelectionDAG &DAG) { // If this can be more profitably realized as r+r, fail. if (SelectAddressRegReg(N, Disp, Base, DAG)) return false; if (N.getOpcode() == ISD::ADD) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } return true; // [r+i] } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { // Match LOAD (ADD (X, Lo(G))). assert(!cast(N.getOperand(1).getOperand(1))->getValue() && "Cannot handle constant offsets yet!"); Disp = N.getOperand(1).getOperand(0); // The global address. assert(Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable); Base = N.getOperand(0); return true; // [&g+r] } } else if (N.getOpcode() == ISD::OR) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are // provably disjoint. APInt LHSKnownZero, LHSKnownOne; DAG.ComputeMaskedBits(N.getOperand(0), APInt::getAllOnesValue(32), LHSKnownZero, LHSKnownOne); if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { // If all of the bits are known zero on the LHS or RHS, the add won't // carry. Base = N.getOperand(0); Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); return true; } } } else if (ConstantSDNode *CN = dyn_cast(N)) { // Loading from a constant address. Verify low two bits are clear. if ((CN->getValue() & 3) == 0) { // If this address fits entirely in a 14-bit sext immediate field, codegen // this as "d, 0" short Imm; if (isIntS16Immediate(CN, Imm)) { Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); return true; } // Fold the low-part of 32-bit absolute addresses into addr mode. if (CN->getValueType(0) == MVT::i32 || (int64_t)CN->getValue() == (int)CN->getValue()) { int Addr = (int)CN->getValue(); // Otherwise, break this down into an LIS + disp. Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0); return true; } } } Disp = DAG.getTargetConstant(0, getPointerTy()); if (FrameIndexSDNode *FI = dyn_cast(N)) Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); else Base = N; return true; // [r+0] } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base, SDOperand &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) { // Disabled by default for now. if (!EnablePPCPreinc) return false; SDOperand Ptr; MVT::ValueType VT; if (LoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); VT = LD->getMemoryVT(); } else if (StoreSDNode *ST = dyn_cast(N)) { ST = ST; Ptr = ST->getBasePtr(); VT = ST->getMemoryVT(); } else return false; // PowerPC doesn't have preinc load/store instructions for vectors. if (MVT::isVector(VT)) return false; // TODO: Check reg+reg first. // LDU/STU use reg+imm*4, others use reg+imm. if (VT != MVT::i64) { // reg + imm if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) return false; } else { // reg + imm * 4. if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) return false; } if (LoadSDNode *LD = dyn_cast(N)) { // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of // sext i32 to i64 when addr mode is r+i. if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && LD->getExtensionType() == ISD::SEXTLOAD && isa(Offset)) return false; } AM = ISD::PRE_INC; return true; } //===----------------------------------------------------------------------===// // LowerOperation implementation //===----------------------------------------------------------------------===// SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = Op.getValueType(); ConstantPoolSDNode *CP = cast(Op); Constant *C = CP->getConstVal(); SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment()); SDOperand Zero = DAG.getConstant(0, PtrVT); const TargetMachine &TM = DAG.getTarget(); SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero); SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to the constant pool. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); } Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); return Lo; } SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = Op.getValueType(); JumpTableSDNode *JT = cast(Op); SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); SDOperand Zero = DAG.getConstant(0, PtrVT); const TargetMachine &TM = DAG.getTarget(); SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero); SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to the constant pool. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); } Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); return Lo; } SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) { assert(0 && "TLS not implemented for PPC."); } SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = Op.getValueType(); GlobalAddressSDNode *GSDN = cast(Op); GlobalValue *GV = GSDN->getGlobal(); SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset()); // If it's a debug information descriptor, don't mess with it. if (DAG.isVerifiedDebugInfoDesc(Op)) return GA; SDOperand Zero = DAG.getConstant(0, PtrVT); const TargetMachine &TM = DAG.getTarget(); SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero); SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to globals. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); } Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); if (!TM.getSubtarget().hasLazyResolverStub(GV)) return Lo; // If the global is weak or external, we have to go through the lazy // resolution stub. return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0); } SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) { ISD::CondCode CC = cast(Op.getOperand(2))->get(); // If we're comparing for equality to zero, expose the fact that this is // implented as a ctlz/srl pair on ppc, so that the dag combiner can // fold the new nodes. if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { if (C->isNullValue() && CC == ISD::SETEQ) { MVT::ValueType VT = Op.getOperand(0).getValueType(); SDOperand Zext = Op.getOperand(0); if (VT < MVT::i32) { VT = MVT::i32; Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0)); } unsigned Log2b = Log2_32(MVT::getSizeInBits(VT)); SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext); SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz, DAG.getConstant(Log2b, MVT::i32)); return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc); } // Leave comparisons against 0 and -1 alone for now, since they're usually // optimized. FIXME: revisit this when we can custom lower all setcc // optimizations. if (C->isAllOnesValue() || C->isNullValue()) return SDOperand(); } // If we have an integer seteq/setne, turn it into a compare against zero // by xor'ing the rhs with the lhs, which is faster than setting a // condition register, reading it back out, and masking the correct bit. The // normal approach here uses sub to do this instead of xor. Using xor exposes // the result to other bit-twiddling opportunities. MVT::ValueType LHSVT = Op.getOperand(0).getValueType(); if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { MVT::ValueType VT = Op.getValueType(); SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0), Op.getOperand(1)); return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC); } return SDOperand(); } SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG, int VarArgsFrameIndex, int VarArgsStackOffset, unsigned VarArgsNumGPR, unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget) { assert(0 && "VAARG in ELF32 ABI not implemented yet!"); } SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG, int VarArgsFrameIndex, int VarArgsStackOffset, unsigned VarArgsNumGPR, unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget) { if (Subtarget.isMachoABI()) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0); } // For ELF 32 ABI we follow the layout of the va_list struct. // We suppose the given va_list is already allocated. // // typedef struct { // char gpr; /* index into the array of 8 GPRs // * stored in the register save area // * gpr=0 corresponds to r3, // * gpr=1 to r4, etc. // */ // char fpr; /* index into the array of 8 FPRs // * stored in the register save area // * fpr=0 corresponds to f1, // * fpr=1 to f2, etc. // */ // char *overflow_arg_area; // /* location on stack that holds // * the next overflow argument // */ // char *reg_save_area; // /* where r3:r10 and f1:f8 (if saved) // * are stored // */ // } va_list[1]; SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8); SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8); MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT); SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8; SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1; SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); uint64_t FPROffset = 1; SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); // Store first byte : number of int regs SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR, Op.getOperand(1), SV, 0); uint64_t nextOffset = FPROffset; SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1), ConstFPROffset); // Store second byte : number of float regs SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset); nextOffset += StackOffset; nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset); // Store second word : arguments given on stack SDOperand thirdStore = DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset); nextOffset += FrameOffset; nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset); // Store third word : arguments given in registers return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset); } #include "PPCGenCallingConv.inc" /// GetFPR - Get the set of FP registers that should be allocated for arguments, /// depending on which subtarget is selected. static const unsigned *GetFPR(const PPCSubtarget &Subtarget) { if (Subtarget.isMachoABI()) { static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; return FPR; } static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8 }; return FPR; } SDOperand PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG, int &VarArgsFrameIndex, int &VarArgsStackOffset, unsigned &VarArgsNumGPR, unsigned &VarArgsNumFPR, const PPCSubtarget &Subtarget) { // TODO: add description of PPC stack frame format, or at least some docs. // MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); SmallVector ArgValues; SDOperand Root = Op.getOperand(0); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; bool isMachoABI = Subtarget.isMachoABI(); bool isELF32_ABI = Subtarget.isELF32_ABI(); unsigned PtrByteSize = isPPC64 ? 8 : 4; unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); static const unsigned GPR_32[] = { // 32-bit registers. PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned GPR_64[] = { // 64-bit registers. PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const unsigned *FPR = GetFPR(Subtarget); static const unsigned VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned Num_GPR_Regs = array_lengthof(GPR_32); const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8; const unsigned Num_VR_Regs = array_lengthof( VR); unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; // In 32-bit non-varargs functions, the stack space for vectors is after the // stack space for non-vectors. We do not use this space unless we have // too many vectors to fit in registers, something that only occurs in // constructed examples:), but we have to walk the arglist to figure // that out...for the pathological case, compute VecArgOffset as the // start of the vector parameter area. Computing VecArgOffset is the // entire point of the following loop. // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying // to handle Elf here. unsigned VecArgOffset = ArgOffset; if (!isVarArg && !isPPC64) { for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) { MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8; ISD::ArgFlagsTy Flags = cast(Op.getOperand(ArgNo+3))->getArgFlags(); if (Flags.isByVal()) { // ObjSize is the true size, ArgSize rounded up to multiple of regs. ObjSize = Flags.getByValSize(); unsigned ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; VecArgOffset += ArgSize; continue; } switch(ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i32: case MVT::f32: VecArgOffset += isPPC64 ? 8 : 4; break; case MVT::i64: // PPC64 case MVT::f64: VecArgOffset += 8; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: // Nothing to do, we're only looking at Nonvector args here. break; } } } // We've found where the vector parameter area in memory is. Skip the // first 12 parameters; these don't use that memory. VecArgOffset = ((VecArgOffset+15)/16)*16; VecArgOffset += 12*16; // Add DAG nodes to load the arguments or copy them out of registers. On // entry to a function on PPC, the arguments start after the linkage area, // although the first ones are often in registers. // // In the ELF 32 ABI, GPRs and stack are double word align: an argument // represented with two words (long long or double) must be copied to an // even GPR_idx value or to an even ArgOffset value. TODO: implement this. SmallVector MemOps; for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) { SDOperand ArgVal; bool needsLoad = false; MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8; unsigned ArgSize = ObjSize; ISD::ArgFlagsTy Flags = cast(Op.getOperand(ArgNo+3))->getArgFlags(); // See if next argument requires stack alignment in ELF bool Expand = false; // TODO: implement this. unsigned CurArgOffset = ArgOffset; // FIXME alignment for ELF may not be right // FIXME the codegen can be much improved in some cases. // We do not have to keep everything in memory. if (Flags.isByVal()) { // ObjSize is the true size, ArgSize rounded up to multiple of registers. ObjSize = Flags.getByValSize(); ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; // Double word align in ELF if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2); // Objects of size 1 and 2 are right justified, everything else is // left justified. This means the memory address is adjusted forwards. if (ObjSize==1 || ObjSize==2) { CurArgOffset = CurArgOffset + (4 - ObjSize); } // The value of the object is its address. int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset); SDOperand FIN = DAG.getFrameIndex(FI, PtrVT); ArgValues.push_back(FIN); if (ObjSize==1 || ObjSize==2) { if (GPR_idx != Num_GPR_Regs) { unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); RegInfo.addLiveIn(GPR[GPR_idx], VReg); SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT); SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN, NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 ); MemOps.push_back(Store); ++GPR_idx; if (isMachoABI) ArgOffset += PtrByteSize; } else { ArgOffset += PtrByteSize; } continue; } for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { // Store whatever pieces of the object are in registers // to memory. ArgVal will be address of the beginning of // the object. if (GPR_idx != Num_GPR_Regs) { unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); RegInfo.addLiveIn(GPR[GPR_idx], VReg); int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset); SDOperand FIN = DAG.getFrameIndex(FI, PtrVT); SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT); SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); MemOps.push_back(Store); ++GPR_idx; if (isMachoABI) ArgOffset += PtrByteSize; } else { ArgOffset += ArgSize - (ArgOffset-CurArgOffset); break; } } continue; } switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i32: if (!isPPC64) { // Double word align in ELF if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2); if (GPR_idx != Num_GPR_Regs) { unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); RegInfo.addLiveIn(GPR[GPR_idx], VReg); ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32); ++GPR_idx; } else { needsLoad = true; ArgSize = PtrByteSize; } // Stack align in ELF if (needsLoad && Expand && isELF32_ABI) ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; // All int arguments reserve stack space in Macho ABI. if (isMachoABI || needsLoad) ArgOffset += PtrByteSize; break; } // FALLTHROUGH case MVT::i64: // PPC64 if (GPR_idx != Num_GPR_Regs) { unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); RegInfo.addLiveIn(GPR[GPR_idx], VReg); ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64); if (ObjectVT == MVT::i32) { // PPC64 passes i8, i16, and i32 values in i64 registers. Promote // value to MVT::i64 and then truncate to the correct register size. if (Flags.isSExt()) ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal, DAG.getValueType(ObjectVT)); else if (Flags.isZExt()) ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal, DAG.getValueType(ObjectVT)); ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal); } ++GPR_idx; } else { needsLoad = true; } // All int arguments reserve stack space in Macho ABI. if (isMachoABI || needsLoad) ArgOffset += 8; break; case MVT::f32: case MVT::f64: // Every 4 bytes of argument space consumes one of the GPRs available for // argument passing. if (GPR_idx != Num_GPR_Regs && isMachoABI) { ++GPR_idx; if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) ++GPR_idx; } if (FPR_idx != Num_FPR_Regs) { unsigned VReg; if (ObjectVT == MVT::f32) VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass); else VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); RegInfo.addLiveIn(FPR[FPR_idx], VReg); ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); ++FPR_idx; } else { needsLoad = true; } // Stack align in ELF if (needsLoad && Expand && isELF32_ABI) ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize; // All FP arguments reserve stack space in Macho ABI. if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: // Note that vector arguments in registers don't reserve stack space, // except in varargs functions. if (VR_idx != Num_VR_Regs) { unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass); RegInfo.addLiveIn(VR[VR_idx], VReg); ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); if (isVarArg) { while ((ArgOffset % 16) != 0) { ArgOffset += PtrByteSize; if (GPR_idx != Num_GPR_Regs) GPR_idx++; } ArgOffset += 16; GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); } ++VR_idx; } else { if (!isVarArg && !isPPC64) { // Vectors go after all the nonvectors. CurArgOffset = VecArgOffset; VecArgOffset += 16; } else { // Vectors are aligned. ArgOffset = ((ArgOffset+15)/16)*16; CurArgOffset = ArgOffset; ArgOffset += 16; } needsLoad = true; } break; } // We need to load the argument to a virtual register if we determined above // that we ran out of physical registers of the appropriate type. if (needsLoad) { int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset + (ArgSize - ObjSize)); SDOperand FIN = DAG.getFrameIndex(FI, PtrVT); ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0); } ArgValues.push_back(ArgVal); } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { int depth; if (isELF32_ABI) { VarArgsNumGPR = GPR_idx; VarArgsNumFPR = FPR_idx; // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame // pointer. depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 + Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 + MVT::getSizeInBits(PtrVT)/8); VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8, ArgOffset); } else depth = ArgOffset; VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8, depth); SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); // In ELF 32 ABI, the fixed integer arguments of a variadic function are // stored to the VarArgsFrameIndex on the stack. if (isELF32_ABI) { for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) { SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT); SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT); FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); } } // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing the // result of va_next. for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { unsigned VReg; if (isPPC64) VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); else VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); RegInfo.addLiveIn(GPR[GPR_idx], VReg); SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT); SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT); FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); } // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex // on the stack. if (isELF32_ABI) { for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) { SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64); SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0); MemOps.push_back(Store); // Increment the address by eight for the next argument to store SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8, PtrVT); FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); } for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) { unsigned VReg; VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); RegInfo.addLiveIn(FPR[FPR_idx], VReg); SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64); SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); MemOps.push_back(Store); // Increment the address by eight for the next argument to store SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8, PtrVT); FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); } } } if (!MemOps.empty()) Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size()); ArgValues.push_back(Root); // Return the new list of results. std::vector RetVT(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size()); } /// isCallCompatibleAddress - Return the immediate to use if the specified /// 32-bit value is representable in the immediate field of a BxA instruction. static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) { ConstantSDNode *C = dyn_cast(Op); if (!C) return 0; int Addr = C->getValue(); if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. (Addr << 6 >> 6) != Addr) return 0; // Top 6 bits have to be sext of immediate. return DAG.getConstant((int)C->getValue() >> 2, DAG.getTargetLoweringInfo().getPointerTy()).Val; } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" of size "Size". Alignment information is /// specified by the specific parameter attribute. The copy will be passed as /// a byval function parameter. /// Sometimes what we are copying is the end of a larger object, the part that /// does not fit in registers. static SDOperand CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, unsigned Size) { SDOperand AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32); SDOperand SizeNode = DAG.getConstant(Size, MVT::i32); SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32); return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline); } SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget, TargetMachine &TM) { SDOperand Chain = Op.getOperand(0); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; SDOperand Callee = Op.getOperand(4); unsigned NumOps = (Op.getNumOperands() - 5) / 2; bool isMachoABI = Subtarget.isMachoABI(); bool isELF32_ABI = Subtarget.isELF32_ABI(); MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; unsigned PtrByteSize = isPPC64 ? 8 : 4; // args_to_use will accumulate outgoing args for the PPCISD::CALL case in // SelectExpr to use to put the arguments in the appropriate registers. std::vector args_to_use; // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. We start with 24/48 bytes, which is // prereserved space for [SP][CR][LR][3 x unused]. unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); // Add up all the space actually used. // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually // they all go in registers, but we must reserve stack space for them for // possible use by the caller. In varargs or 64-bit calls, parameters are // assigned stack space in order, with padding so Altivec parameters are // 16-byte aligned. unsigned nAltivecParamsAtEnd = 0; for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); MVT::ValueType ArgVT = Arg.getValueType(); if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { if (!isVarArg && !isPPC64) { // Non-varargs Altivec parameters go after all the non-Altivec parameters; // do those last so we know how much padding we need. nAltivecParamsAtEnd++; continue; } else { // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. NumBytes = ((NumBytes+15)/16)*16; } } ISD::ArgFlagsTy Flags = cast(Op.getOperand(5+2*i+1))->getArgFlags(); unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8; if (Flags.isByVal()) ArgSize = Flags.getByValSize(); ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; NumBytes += ArgSize; } // Allow for Altivec parameters at the end, if needed. if (nAltivecParamsAtEnd) { NumBytes = ((NumBytes+15)/16)*16; NumBytes += 16*nAltivecParamsAtEnd; } // The prolog code of the callee may store up to 8 GPR argument registers to // the stack, allowing va_start to index over them in memory if its varargs. // Because we cannot tell if this is needed on the caller side, we have to // conservatively assume that it is needed. As such, make sure we have at // least enough stack space for the caller to store the 8 GPRs. NumBytes = std::max(NumBytes, PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI)); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT)); SDOperand CallSeqStart = Chain; // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDOperand StackPtr; if (isPPC64) StackPtr = DAG.getRegister(PPC::X1, MVT::i64); else StackPtr = DAG.getRegister(PPC::R1, MVT::i32); // Figure out which arguments are going to go in registers, and which in // memory. Also, if this is a vararg function, floating point operations // must be stored to our stack, and loaded into integer regs as well, if // any integer regs are available for argument passing. unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI); unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; static const unsigned GPR_32[] = { // 32-bit registers. PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned GPR_64[] = { // 64-bit registers. PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const unsigned *FPR = GetFPR(Subtarget); static const unsigned VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned NumGPRs = array_lengthof(GPR_32); const unsigned NumFPRs = isMachoABI ? 13 : 8; const unsigned NumVRs = array_lengthof( VR); const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; std::vector > RegsToPass; SmallVector MemOpChains; for (unsigned i = 0; i != NumOps; ++i) { bool inMem = false; SDOperand Arg = Op.getOperand(5+2*i); ISD::ArgFlagsTy Flags = cast(Op.getOperand(5+2*i+1))->getArgFlags(); // See if next argument requires stack alignment in ELF bool Expand = false; // TODO: implement this. // PtrOff will be used to store the current argument to the stack if a // register cannot be found for it. SDOperand PtrOff; // Stack align in ELF 32 if (isELF32_ABI && Expand) PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize, StackPtr.getValueType()); else PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff); // On PPC64, promote integers to 64-bit values. if (isPPC64 && Arg.getValueType() == MVT::i32) { // FIXME: Should this use ANY_EXTEND if neither sext nor zext? unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Arg = DAG.getNode(ExtOp, MVT::i64, Arg); } // FIXME Elf untested, what are alignment rules? // FIXME memcpy is used way more than necessary. Correctness first. if (Flags.isByVal()) { unsigned Size = Flags.getByValSize(); if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2); if (Size==1 || Size==2) { // Very small objects are passed right-justified. // Everything else is passed left-justified. MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16; if (GPR_idx != NumGPRs) { SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg, NULL, 0, VT); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); if (isMachoABI) ArgOffset += PtrByteSize; } else { SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const); SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, CallSeqStart.Val->getOperand(0), Flags, DAG, Size); // This must go outside the CALLSEQ_START..END. SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, CallSeqStart.Val->getOperand(1)); DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val); Chain = CallSeqStart = NewCallSeqStart; ArgOffset += PtrByteSize; } continue; } // Copy entire object into memory. There are cases where gcc-generated // code assumes it is there, even if it could be put entirely into // registers. (This is not what the doc says.) SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, CallSeqStart.Val->getOperand(0), Flags, DAG, Size); // This must go outside the CALLSEQ_START..END. SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, CallSeqStart.Val->getOperand(1)); DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val); Chain = CallSeqStart = NewCallSeqStart; // And copy the pieces of it that fit into registers. for (unsigned j=0; j NumVRs) { unsigned j = 0; // Offset is aligned; skip 1st 12 params which go in V registers. ArgOffset = ((ArgOffset+15)/16)*16; ArgOffset += 12*16; for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); MVT::ValueType ArgType = Arg.getValueType(); if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { if (++j > NumVRs) { SDOperand PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, DAG.getConstant(ArgOffset, PtrVT)); SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0); MemOpChains.push_back(Store); ArgOffset += 16; } } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDOperand InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // With the ELF 32 ABI, set CR6 to true if this is a vararg call. if (isVarArg && isELF32_ABI) { SDOperand SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0); Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag); InFlag = Chain.getValue(1); } std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. SmallVector Ops; unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF; // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType()); else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType()); else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) // If this is an absolute destination address, use the munged value. Callee = SDOperand(Dest, 0); else { // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair // to do the call, we can't use PPCISD::CALL. SDOperand MTCTROps[] = {Chain, Callee, InFlag}; Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0)); InFlag = Chain.getValue(1); // Copy the callee address into R12/X12 on darwin. if (isMachoABI) { unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12; Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag); InFlag = Chain.getValue(1); } NodeTys.clear(); NodeTys.push_back(MVT::Other); NodeTys.push_back(MVT::Flag); Ops.push_back(Chain); CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF; Callee.Val = 0; } // If this is a direct call, pass the chain and the callee. if (Callee.Val) { Ops.push_back(Chain); Ops.push_back(Callee); } // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); if (InFlag.Val) Ops.push_back(InFlag); Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, PtrVT), DAG.getConstant(0, PtrVT), InFlag); if (Op.Val->getValueType(0) != MVT::Other) InFlag = Chain.getValue(1); SmallVector ResultVals; SmallVector RVLocs; unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); CCState CCInfo(CC, isVarArg, TM, RVLocs); CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; MVT::ValueType VT = VA.getValVT(); assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); InFlag = Chain.getValue(2); } // If the function returns void, just return the chain. if (RVLocs.empty()) return Chain; // Otherwise, merge everything together with a MERGE_VALUES node. ResultVals.push_back(Chain); SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), &ResultVals[0], ResultVals.size()); return Res.getValue(Op.ResNo); } SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) { SmallVector RVLocs; unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); CCState CCInfo(CC, isVarArg, TM, RVLocs); CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC); // If this is the first return lowered for this function, add the regs to the // liveout set for the function. if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { for (unsigned i = 0; i != RVLocs.size(); ++i) DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); } SDOperand Chain = Op.getOperand(0); SDOperand Flag; // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag); Flag = Chain.getValue(1); } if (Flag.Val) return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag); else return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain); } SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) { // When we pop the dynamic allocation we need to restore the SP link. // Get the corect type for pointers. MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Construct the stack pointer operand. bool IsPPC64 = Subtarget.isPPC64(); unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1; SDOperand StackPtr = DAG.getRegister(SP, PtrVT); // Get the operands for the STACKRESTORE. SDOperand Chain = Op.getOperand(0); SDOperand SaveSP = Op.getOperand(1); // Load the old link SP. SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0); // Restore the stack pointer. Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP); // Store the old link SP. return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0); } SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) { MachineFunction &MF = DAG.getMachineFunction(); bool IsPPC64 = Subtarget.isPPC64(); bool isMachoABI = Subtarget.isMachoABI(); // Get current frame pointer save index. The users of this index will be // primarily DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo(); int FPSI = FI->getFramePointerSaveIndex(); // If the frame pointer save index hasn't been defined yet. if (!FPSI) { // Find out what the fix offset of the frame pointer save area. int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI); // Allocate the frame index for frame pointer save area. FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset); // Save the result. FI->setFramePointerSaveIndex(FPSI); } // Get the inputs. SDOperand Chain = Op.getOperand(0); SDOperand Size = Op.getOperand(1); // Get the corect type for pointers. MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Negate the size. SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT, DAG.getConstant(0, PtrVT), Size); // Construct a node for the frame pointer save index. SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT); // Build a DYNALLOC node. SDOperand Ops[3] = { Chain, NegSize, FPSIdx }; SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3); } /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when /// possible. SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) { // Not FP? Not a fsel. if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) || !MVT::isFloatingPoint(Op.getOperand(2).getValueType())) return SDOperand(); ISD::CondCode CC = cast(Op.getOperand(4))->get(); // Cannot handle SETEQ/SETNE. if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand(); MVT::ValueType ResVT = Op.getValueType(); MVT::ValueType CmpVT = Op.getOperand(0).getValueType(); SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3); // If the RHS of the comparison is a 0.0, we don't need to do the // subtraction at all. if (isFloatingPointZero(RHS)) switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETULT: case ISD::SETOLT: case ISD::SETLT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETUGE: case ISD::SETOGE: case ISD::SETGE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV); case ISD::SETUGT: case ISD::SETOGT: case ISD::SETGT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETULE: case ISD::SETOLE: case ISD::SETLE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, ResVT, DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV); } SDOperand Cmp; switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETULT: case ISD::SETOLT: case ISD::SETLT: Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); case ISD::SETUGE: case ISD::SETOGE: case ISD::SETGE: Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); case ISD::SETUGT: case ISD::SETOGT: case ISD::SETGT: Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); case ISD::SETULE: case ISD::SETOLE: case ISD::SETLE: Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); } return SDOperand(); } // FIXME: Split this code up when LegalizeDAGTypes lands. SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType())); SDOperand Src = Op.getOperand(0); if (Src.getValueType() == MVT::f32) Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src); SDOperand Tmp; switch (Op.getValueType()) { default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!"); case MVT::i32: Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src); break; case MVT::i64: Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src); break; } // Convert the FP value to an int value through memory. SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64); // Emit a store to the stack slot. SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0); // Result is a load from the stack slot. If loading 4 bytes, make sure to // add in a bias. if (Op.getValueType() == MVT::i32) FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, DAG.getConstant(4, FIPtr.getValueType())); return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0); } SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) { assert(Op.getValueType() == MVT::ppcf128); SDNode *Node = Op.Val; assert(Node->getOperand(0).getValueType() == MVT::ppcf128); assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR); SDOperand Lo = Node->getOperand(0).Val->getOperand(0); SDOperand Hi = Node->getOperand(0).Val->getOperand(1); // This sequence changes FPSCR to do round-to-zero, adds the two halves // of the long double, and puts FPSCR back the way it was. We do not // actually model FPSCR. std::vector NodeTys; SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg; NodeTys.push_back(MVT::f64); // Return register NodeTys.push_back(MVT::Flag); // Returns a flag for later insns Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0); MFFSreg = Result.getValue(0); InFlag = Result.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Flag); // Returns a flag Ops[0] = DAG.getConstant(31, MVT::i32); Ops[1] = InFlag; Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2); InFlag = Result.getValue(0); NodeTys.clear(); NodeTys.push_back(MVT::Flag); // Returns a flag Ops[0] = DAG.getConstant(30, MVT::i32); Ops[1] = InFlag; Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2); InFlag = Result.getValue(0); NodeTys.clear(); NodeTys.push_back(MVT::f64); // result of add NodeTys.push_back(MVT::Flag); // Returns a flag Ops[0] = Lo; Ops[1] = Hi; Ops[2] = InFlag; Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3); FPreg = Result.getValue(0); InFlag = Result.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::f64); Ops[0] = DAG.getConstant(1, MVT::i32); Ops[1] = MFFSreg; Ops[2] = FPreg; Ops[3] = InFlag; Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4); FPreg = Result.getValue(0); // We know the low half is about to be thrown away, so just use something // convenient. return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg); } SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { // Don't handle ppc_fp128 here; let it be lowered to a libcall. if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) return SDOperand(); if (Op.getOperand(0).getValueType() == MVT::i64) { SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits); if (Op.getValueType() == MVT::f32) FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0)); return FP; } assert(Op.getOperand(0).getValueType() == MVT::i32 && "Unhandled SINT_TO_FP type in custom expander!"); // Since we only generate this in 64-bit mode, we can take advantage of // 64-bit registers. In particular, sign extend the input value into the // 64-bit register with extsw, store the WHOLE 64-bit value into the stack // then lfd it and fcfid it. MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); int FrameIdx = FrameInfo->CreateStackObject(8, 8); MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32, Op.getOperand(0)); // STD the extended value into the stack slot. MemOperand MO(PseudoSourceValue::getFixedStack(), MemOperand::MOStore, FrameIdx, 8, 8); SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other, DAG.getEntryNode(), Ext64, FIdx, DAG.getMemOperand(MO)); // Load the value as a double. SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0); // FCFID it and return it. SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld); if (Op.getValueType() == MVT::f32) FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0)); return FP; } SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) { /* The rounding mode is in bits 30:31 of FPSR, and has the following settings: 00 Round to nearest 01 Round to 0 10 Round to +inf 11 Round to -inf FLT_ROUNDS, on the other hand, expects the following: -1 Undefined 0 Round to 0 1 Round to nearest 2 Round to +inf 3 Round to -inf To perform the conversion, we do: ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) */ MachineFunction &MF = DAG.getMachineFunction(); MVT::ValueType VT = Op.getValueType(); MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); std::vector NodeTys; SDOperand MFFSreg, InFlag; // Save FP Control Word to register NodeTys.push_back(MVT::f64); // return register NodeTys.push_back(MVT::Flag); // unused in this context SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0); // Save FP register to stack slot int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT); SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain, StackSlot, NULL, 0); // Load FP Control Word from low 32 bits of stack slot. SDOperand Four = DAG.getConstant(4, PtrVT); SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four); SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0); // Transform as necessary SDOperand CWD1 = DAG.getNode(ISD::AND, MVT::i32, CWD, DAG.getConstant(3, MVT::i32)); SDOperand CWD2 = DAG.getNode(ISD::SRL, MVT::i32, DAG.getNode(ISD::AND, MVT::i32, DAG.getNode(ISD::XOR, MVT::i32, CWD, DAG.getConstant(3, MVT::i32)), DAG.getConstant(3, MVT::i32)), DAG.getConstant(1, MVT::i8)); SDOperand RetVal = DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2); return DAG.getNode((MVT::getSizeInBits(VT) < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal); } SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); unsigned BitWidth = MVT::getSizeInBits(VT); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SHL!"); // Expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDOperand Lo = Op.getOperand(0); SDOperand Hi = Op.getOperand(1); SDOperand Amt = Op.getOperand(2); MVT::ValueType AmtVT = Amt.getValueType(); SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT, DAG.getConstant(BitWidth, AmtVT), Amt); SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt); SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1); SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3); SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt, DAG.getConstant(-BitWidth, AmtVT)); SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5); SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6); SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt); SDOperand OutOps[] = { OutLo, OutHi }; return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT), OutOps, 2); } SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); unsigned BitWidth = MVT::getSizeInBits(VT); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRL!"); // Expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDOperand Lo = Op.getOperand(0); SDOperand Hi = Op.getOperand(1); SDOperand Amt = Op.getOperand(2); MVT::ValueType AmtVT = Amt.getValueType(); SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT, DAG.getConstant(BitWidth, AmtVT), Amt); SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt); SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1); SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3); SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt, DAG.getConstant(-BitWidth, AmtVT)); SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5); SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6); SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt); SDOperand OutOps[] = { OutLo, OutHi }; return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT), OutOps, 2); } SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); unsigned BitWidth = MVT::getSizeInBits(VT); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRA!"); // Expand into a bunch of logical ops, followed by a select_cc. SDOperand Lo = Op.getOperand(0); SDOperand Hi = Op.getOperand(1); SDOperand Amt = Op.getOperand(2); MVT::ValueType AmtVT = Amt.getValueType(); SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT, DAG.getConstant(BitWidth, AmtVT), Amt); SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt); SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1); SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3); SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt, DAG.getConstant(-BitWidth, AmtVT)); SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5); SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt); SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT), Tmp4, Tmp6, ISD::SETLE); SDOperand OutOps[] = { OutLo, OutHi }; return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT), OutOps, 2); } //===----------------------------------------------------------------------===// // Vector related lowering. // // If this is a vector of constants or undefs, get the bits. A bit in // UndefBits is set if the corresponding element of the vector is an // ISD::UNDEF value. For undefs, the corresponding VectorBits values are // zero. Return true if this is not an array of constants, false if it is. // static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2], uint64_t UndefBits[2]) { // Start with zero'd results. VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0; unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType()); for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { SDOperand OpVal = BV->getOperand(i); unsigned PartNo = i >= e/2; // In the upper 128 bits? unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t. uint64_t EltBits = 0; if (OpVal.getOpcode() == ISD::UNDEF) { uint64_t EltUndefBits = ~0U >> (32-EltBitSize); UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize); continue; } else if (ConstantSDNode *CN = dyn_cast(OpVal)) { EltBits = CN->getValue() & (~0U >> (32-EltBitSize)); } else if (ConstantFPSDNode *CN = dyn_cast(OpVal)) { assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); EltBits = FloatToBits(CN->getValueAPF().convertToFloat()); } else { // Nonconstant element. return true; } VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize); } //printf("%llx %llx %llx %llx\n", // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]); return false; } // If this is a splat (repetition) of a value across the whole vector, return // the smallest size that splats it. For example, "0x01010101010101..." is a // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and // SplatSize = 1 byte. static bool isConstantSplat(const uint64_t Bits128[2], const uint64_t Undef128[2], unsigned &SplatBits, unsigned &SplatUndef, unsigned &SplatSize) { // Don't let undefs prevent splats from matching. See if the top 64-bits are // the same as the lower 64-bits, ignoring undefs. if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0])) return false; // Can't be a splat if two pieces don't match. uint64_t Bits64 = Bits128[0] | Bits128[1]; uint64_t Undef64 = Undef128[0] & Undef128[1]; // Check that the top 32-bits are the same as the lower 32-bits, ignoring // undefs. if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64)) return false; // Can't be a splat if two pieces don't match. uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32); uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32); // If the top 16-bits are different than the lower 16-bits, ignoring // undefs, we have an i32 splat. if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) { SplatBits = Bits32; SplatUndef = Undef32; SplatSize = 4; return true; } uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16); uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16); // If the top 8-bits are different than the lower 8-bits, ignoring // undefs, we have an i16 splat. if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) { SplatBits = Bits16; SplatUndef = Undef16; SplatSize = 2; return true; } // Otherwise, we have an 8-bit splat. SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8); SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8); SplatSize = 1; return true; } /// BuildSplatI - Build a canonical splati of Val with an element size of /// SplatSize. Cast the result to VT. static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT, SelectionDAG &DAG) { assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); static const MVT::ValueType VTys[] = { // canonical VT to use for each size. MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 }; MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. if (Val == -1) SplatSize = 1; MVT::ValueType CanonicalVT = VTys[SplatSize-1]; // Build a canonical splat for this value. SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT)); SmallVector Ops; Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt); SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, &Ops[0], Ops.size()); return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res); } /// BuildIntrinsicOp - Return a binary operator intrinsic node with the /// specified intrinsic ID. static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS, SelectionDAG &DAG, MVT::ValueType DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = LHS.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, DAG.getConstant(IID, MVT::i32), LHS, RHS); } /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the /// specified intrinsic ID. static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1, SDOperand Op2, SelectionDAG &DAG, MVT::ValueType DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = Op0.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); } /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified /// amount. The result has the specified value type. static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt, MVT::ValueType VT, SelectionDAG &DAG) { // Force LHS/RHS to be the right type. LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS); RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS); SDOperand Ops[16]; for (unsigned i = 0; i != 16; ++i) Ops[i] = DAG.getConstant(i+Amt, MVT::i32); SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS, DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16)); return DAG.getNode(ISD::BIT_CONVERT, VT, T); } // If this is a case we can't handle, return null and let the default // expansion code take care of it. If we CAN select this case, and if it // selects to a single instruction, return Op. Otherwise, if we can codegen // this case more efficiently than a constant pool load, lower it to the // sequence of ops that should be used. SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { // If this is a vector of constants or undefs, get the bits. A bit in // UndefBits is set if the corresponding element of the vector is an // ISD::UNDEF value. For undefs, the corresponding VectorBits values are // zero. uint64_t VectorBits[2]; uint64_t UndefBits[2]; if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits)) return SDOperand(); // Not a constant vector. // If this is a splat (repetition) of a value across the whole vector, return // the smallest size that splats it. For example, "0x01010101010101..." is a // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and // SplatSize = 1 byte. unsigned SplatBits, SplatUndef, SplatSize; if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){ bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0; // First, handle single instruction cases. // All zeros? if (SplatBits == 0) { // Canonicalize all zero vectors to be v4i32. if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { SDOperand Z = DAG.getConstant(0, MVT::i32); Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z); Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z); } return Op; } // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize); if (SextVal >= -16 && SextVal <= 15) return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG); // Two instruction sequences. // If this value is in the range [-32,30] and is even, use: // tmp = VSPLTI[bhw], result = add tmp, tmp if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG); return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op); } // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important // for fneg/fabs. if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { // Make -1 and vspltisw -1: SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG); // Make the VSLW intrinsic, computing 0x8000_0000. SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, OnesV, DAG); // xor by OnesV to invert it. Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // Check to see if this is a wide variety of vsplti*, binop self cases. unsigned SplatBitSize = SplatSize*8; static const signed char SplatCsts[] = { -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 }; for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { // Indirect through the SplatCsts array so that we favor 'vsplti -1' for // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' int i = SplatCsts[idx]; // Figure out what shift amount will be used by altivec if shifted by i in // this splat size. unsigned TypeShiftAmt = i & (SplatBitSize-1); // vsplti + shl self. if (SextVal == (i << (int)TypeShiftAmt)) { SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, Intrinsic::ppc_altivec_vslw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // vsplti + srl self. if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, Intrinsic::ppc_altivec_vsrw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // vsplti + sra self. if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, Intrinsic::ppc_altivec_vsraw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // vsplti + rol self. if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, Intrinsic::ppc_altivec_vrlw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // t = vsplti c, result = vsldoi t, t, 1 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) { SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG); } // t = vsplti c, result = vsldoi t, t, 2 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) { SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG); } // t = vsplti c, result = vsldoi t, t, 3 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) { SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG); } } // Three instruction sequences. // Odd, in range [17,31]: (vsplti C)-(vsplti -16). if (SextVal >= 0 && SextVal <= 31) { SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG); SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); } // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). if (SextVal >= -31 && SextVal <= 0) { SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG); SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); } } return SDOperand(); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS, SDOperand RHS, SelectionDAG &DAG) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); enum { OP_COPY = 0, // Copy, used for things like to say it is <0,1,2,3> OP_VMRGHW, OP_VMRGLW, OP_VSPLTISW0, OP_VSPLTISW1, OP_VSPLTISW2, OP_VSPLTISW3, OP_VSLDOI4, OP_VSLDOI8, OP_VSLDOI12 }; if (OpNum == OP_COPY) { if (LHSID == (1*9+2)*9+3) return LHS; assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); return RHS; } SDOperand OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG); unsigned ShufIdxs[16]; switch (OpNum) { default: assert(0 && "Unknown i32 permute!"); case OP_VMRGHW: ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; break; case OP_VMRGLW: ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; break; case OP_VSPLTISW0: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+0; break; case OP_VSPLTISW1: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+4; break; case OP_VSPLTISW2: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+8; break; case OP_VSPLTISW3: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+12; break; case OP_VSLDOI4: return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG); case OP_VSLDOI8: return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG); case OP_VSLDOI12: return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG); } SDOperand Ops[16]; for (unsigned i = 0; i != 16; ++i) Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32); return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS, DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); } /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this /// is a shuffle we can handle in a single instruction, return it. Otherwise, /// return the code it can be lowered into. Worst case, it can always be /// lowered into a vperm. SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { SDOperand V1 = Op.getOperand(0); SDOperand V2 = Op.getOperand(1); SDOperand PermMask = Op.getOperand(2); // Cases that are handled by instructions that take permute immediates // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be // selected by the instruction selector. if (V2.getOpcode() == ISD::UNDEF) { if (PPC::isSplatShuffleMask(PermMask.Val, 1) || PPC::isSplatShuffleMask(PermMask.Val, 2) || PPC::isSplatShuffleMask(PermMask.Val, 4) || PPC::isVPKUWUMShuffleMask(PermMask.Val, true) || PPC::isVPKUHUMShuffleMask(PermMask.Val, true) || PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 || PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) || PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) || PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) || PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) || PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) || PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) { return Op; } } // Altivec has a variety of "shuffle immediates" that take two vector inputs // and produce a fixed permutation. If any of these match, do not lower to // VPERM. if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) || PPC::isVPKUHUMShuffleMask(PermMask.Val, false) || PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 || PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) || PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) || PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) || PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) || PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) || PPC::isVMRGHShuffleMask(PermMask.Val, 4, false)) return Op; // Check to see if this is a shuffle of 4-byte values. If so, we can use our // perfect shuffle table to emit an optimal matching sequence. unsigned PFIndexes[4]; bool isFourElementShuffle = true; for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number unsigned EltNo = 8; // Start out undef. for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF) continue; // Undef, ignore it. unsigned ByteSource = cast(PermMask.getOperand(i*4+j))->getValue(); if ((ByteSource & 3) != j) { isFourElementShuffle = false; break; } if (EltNo == 8) { EltNo = ByteSource/4; } else if (EltNo != ByteSource/4) { isFourElementShuffle = false; break; } } PFIndexes[i] = EltNo; } // If this shuffle can be expressed as a shuffle of 4-byte elements, use the // perfect shuffle vector to determine if it is cost effective to do this as // discrete instructions, or whether we should use a vperm. if (isFourElementShuffle) { // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); // Determining when to avoid vperm is tricky. Many things affect the cost // of vperm, particularly how many times the perm mask needs to be computed. // For example, if the perm mask can be hoisted out of a loop or is already // used (perhaps because there are multiple permutes with the same shuffle // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of // the loop requires an extra register. // // As a compromise, we only emit discrete instructions if the shuffle can be // generated in 3 or fewer operations. When we have loop information // available, if this block is within a loop, we should avoid using vperm // for 3-operation perms and use a constant pool load instead. if (Cost < 3) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG); } // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant // vector that will get spilled to the constant pool. if (V2.getOpcode() == ISD::UNDEF) V2 = V1; // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except // that it is in input element units, not in bytes. Convert now. MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType()); unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8; SmallVector ResultMask; for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) { unsigned SrcElt; if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF) SrcElt = 0; else SrcElt = cast(PermMask.getOperand(i))->getValue(); for (unsigned j = 0; j != BytesPerElement; ++j) ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, MVT::i8)); } SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, &ResultMask[0], ResultMask.size()); return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask); } /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an /// altivec comparison. If it is, return true and fill in Opc/isDot with /// information about the intrinsic. static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc, bool &isDot) { unsigned IntrinsicID = cast(Intrin.getOperand(0))->getValue(); CompareOpc = -1; isDot = false; switch (IntrinsicID) { default: return false; // Comparison predicates. case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; // Normal Comparisons. case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; } return true; } /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom /// lower, do it, otherwise return null. SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { // If this is a lowered altivec predicate compare, CompareOpc is set to the // opcode number of the comparison. int CompareOpc; bool isDot; if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) return SDOperand(); // Don't custom lower most intrinsics. // If this is a non-dot comparison, make the VCMP node and we are done. if (!isDot) { SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(), Op.getOperand(1), Op.getOperand(2), DAG.getConstant(CompareOpc, MVT::i32)); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp); } // Create the PPCISD altivec 'dot' comparison node. SDOperand Ops[] = { Op.getOperand(2), // LHS Op.getOperand(3), // RHS DAG.getConstant(CompareOpc, MVT::i32) }; std::vector VTs; VTs.push_back(Op.getOperand(2).getValueType()); VTs.push_back(MVT::Flag); SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); // Now that we have the comparison, emit a copy from the CR to a GPR. // This is flagged to the above dot comparison. SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32, DAG.getRegister(PPC::CR6, MVT::i32), CompNode.getValue(1)); // Unpack the result based on how the target uses it. unsigned BitNo; // Bit # of CR6. bool InvertBit; // Invert result? switch (cast(Op.getOperand(1))->getValue()) { default: // Can't happen, don't crash on invalid number though. case 0: // Return the value of the EQ bit of CR6. BitNo = 0; InvertBit = false; break; case 1: // Return the inverted value of the EQ bit of CR6. BitNo = 0; InvertBit = true; break; case 2: // Return the value of the LT bit of CR6. BitNo = 2; InvertBit = false; break; case 3: // Return the inverted value of the LT bit of CR6. BitNo = 2; InvertBit = true; break; } // Shift the bit into the low position. Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags, DAG.getConstant(8-(3-BitNo), MVT::i32)); // Isolate the bit. Flags = DAG.getNode(ISD::AND, MVT::i32, Flags, DAG.getConstant(1, MVT::i32)); // If we are supposed to, toggle the bit. if (InvertBit) Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags, DAG.getConstant(1, MVT::i32)); return Flags; } SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { // Create a stack slot that is 16-byte aligned. MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); int FrameIdx = FrameInfo->CreateStackObject(16, 16); MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); // Store the input value into Value#0 of the stack slot. SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), FIdx, NULL, 0); // Load it out. return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0); } SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) { if (Op.getValueType() == MVT::v4i32) { SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG); SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt. SDOperand RHSSwap = // = vrlw RHS, 16 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG); // Shrinkify inputs to v8i16. LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS); RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS); RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap); // Low parts multiplied together, generating 32-bit results (we ignore the // top parts). SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, LHS, RHS, DAG, MVT::v4i32); SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, LHS, RHSSwap, Zero, DAG, MVT::v4i32); // Shift the high parts up 16 bits. HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG); return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd); } else if (Op.getValueType() == MVT::v8i16) { SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG); return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, LHS, RHS, Zero, DAG); } else if (Op.getValueType() == MVT::v16i8) { SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); // Multiply the even 8-bit parts, producing 16-bit sums. SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, LHS, RHS, DAG, MVT::v8i16); EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts); // Multiply the odd 8-bit parts, producing 16-bit sums. SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, LHS, RHS, DAG, MVT::v8i16); OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts); // Merge the results together. SDOperand Ops[16]; for (unsigned i = 0; i != 8; ++i) { Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8); Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8); } return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts, DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); } else { assert(0 && "Unknown mul to lower!"); abort(); } } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Wasn't expecting to be able to lower this!"); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset, VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget); case ISD::VAARG: return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset, VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget); case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset, VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget); case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget, getTargetMachine()); case ISD::RET: return LowerRET(Op, DAG, getTargetMachine()); case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); // Lower 64-bit shifts. case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); // Vector-related lowering. case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); // Frame & Return address. case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); } return SDOperand(); } SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) { switch (N->getOpcode()) { default: assert(0 && "Wasn't expecting to be able to lower this!"); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val; } } //===----------------------------------------------------------------------===// // Other Lowering Code //===----------------------------------------------------------------------===// MachineBasicBlock * PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); assert((MI->getOpcode() == PPC::SELECT_CC_I4 || MI->getOpcode() == PPC::SELECT_CC_I8 || MI->getOpcode() == PPC::SELECT_CC_F4 || MI->getOpcode() == PPC::SELECT_CC_F8 || MI->getOpcode() == PPC::SELECT_CC_VRRC) && "Unexpected instr type to insert"); // To "insert" a SELECT_CC instruction, we actually have to insert the diamond // control-flow pattern. The incoming instruction knows the destination vreg // to set, the condition code register to branch on, the true/false values to // select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); unsigned SelectPred = MI->getOperand(4).getImm(); BuildMI(BB, TII->get(PPC::BCC)) .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), e = BB->succ_end(); i != e; ++i) sinkMBB->addSuccessor(*i); // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while(!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); delete MI; // The pseudo instruction is gone now. return BB; } //===----------------------------------------------------------------------===// // Target Optimization Hooks //===----------------------------------------------------------------------===// SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { TargetMachine &TM = getTargetMachine(); SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: break; case PPCISD::SHL: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->getValue() == 0) // 0 << V -> 0. return N->getOperand(0); } break; case PPCISD::SRL: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->getValue() == 0) // 0 >>u V -> 0. return N->getOperand(0); } break; case PPCISD::SRA: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->getValue() == 0 || // 0 >>s V -> 0. C->isAllOnesValue()) // -1 >>s V -> -1. return N->getOperand(0); } break; case ISD::SINT_TO_FP: if (TM.getSubtarget().has64BitSupport()) { if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. // We allow the src/dst to be either f32/f64, but the intermediate // type must be i64. if (N->getOperand(0).getValueType() == MVT::i64 && N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { SDOperand Val = N->getOperand(0).getOperand(0); if (Val.getValueType() == MVT::f32) { Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); DCI.AddToWorklist(Val.Val); } Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val); DCI.AddToWorklist(Val.Val); Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val); DCI.AddToWorklist(Val.Val); if (N->getValueType(0) == MVT::f32) { Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val, DAG.getIntPtrConstant(0)); DCI.AddToWorklist(Val.Val); } return Val; } else if (N->getOperand(0).getValueType() == MVT::i32) { // If the intermediate type is i32, we can avoid the load/store here // too. } } } break; case ISD::STORE: // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). if (TM.getSubtarget().hasSTFIWX() && !cast(N)->isTruncatingStore() && N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && N->getOperand(1).getValueType() == MVT::i32 && N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { SDOperand Val = N->getOperand(1).getOperand(0); if (Val.getValueType() == MVT::f32) { Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); DCI.AddToWorklist(Val.Val); } Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val); DCI.AddToWorklist(Val.Val); Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val, N->getOperand(2), N->getOperand(3)); DCI.AddToWorklist(Val.Val); return Val; } // Turn STORE (BSWAP) -> sthbrx/stwbrx. if (N->getOperand(1).getOpcode() == ISD::BSWAP && N->getOperand(1).Val->hasOneUse() && (N->getOperand(1).getValueType() == MVT::i32 || N->getOperand(1).getValueType() == MVT::i16)) { SDOperand BSwapOp = N->getOperand(1).getOperand(0); // Do an any-extend to 32-bits if this is a half-word input. if (BSwapOp.getValueType() == MVT::i16) BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp); return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp, N->getOperand(2), N->getOperand(3), DAG.getValueType(N->getOperand(1).getValueType())); } break; case ISD::BSWAP: // Turn BSWAP (LOAD) -> lhbrx/lwbrx. if (ISD::isNON_EXTLoad(N->getOperand(0).Val) && N->getOperand(0).hasOneUse() && (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { SDOperand Load = N->getOperand(0); LoadSDNode *LD = cast(Load); // Create the byte-swapping load. std::vector VTs; VTs.push_back(MVT::i32); VTs.push_back(MVT::Other); SDOperand MO = DAG.getMemOperand(LD->getMemOperand()); SDOperand Ops[] = { LD->getChain(), // Chain LD->getBasePtr(), // Ptr MO, // MemOperand DAG.getValueType(N->getValueType(0)) // VT }; SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4); // If this is an i16 load, insert the truncate. SDOperand ResVal = BSLoad; if (N->getValueType(0) == MVT::i16) ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad); // First, combine the bswap away. This makes the value produced by the // load dead. DCI.CombineTo(N, ResVal); // Next, combine the load away, we give it a bogus result value but a real // chain result. The result value is dead because the bswap is dead. DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1)); // Return N so it doesn't get rechecked! return SDOperand(N, 0); } break; case PPCISD::VCMP: { // If a VCMPo node already exists with exactly the same operands as this // node, use its result instead of this node (VCMPo computes both a CR6 and // a normal output). // if (!N->getOperand(0).hasOneUse() && !N->getOperand(1).hasOneUse() && !N->getOperand(2).hasOneUse()) { // Scan all of the users of the LHS, looking for VCMPo's that match. SDNode *VCMPoNode = 0; SDNode *LHSN = N->getOperand(0).Val; for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); UI != E; ++UI) if ((*UI)->getOpcode() == PPCISD::VCMPo && (*UI)->getOperand(1) == N->getOperand(1) && (*UI)->getOperand(2) == N->getOperand(2) && (*UI)->getOperand(0) == N->getOperand(0)) { VCMPoNode = *UI; break; } // If there is no VCMPo node, or if the flag value has a single use, don't // transform this. if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) break; // Look at the (necessarily single) use of the flag value. If it has a // chain, this transformation is more complex. Note that multiple things // could use the value result, which we should ignore. SDNode *FlagUser = 0; for (SDNode::use_iterator UI = VCMPoNode->use_begin(); FlagUser == 0; ++UI) { assert(UI != VCMPoNode->use_end() && "Didn't find user!"); SDNode *User = *UI; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) { FlagUser = User; break; } } } // If the user is a MFCR instruction, we know this is safe. Otherwise we // give up for right now. if (FlagUser->getOpcode() == PPCISD::MFCR) return SDOperand(VCMPoNode, 0); } break; } case ISD::BR_CC: { // If this is a branch on an altivec predicate comparison, lower this so // that we don't have to do a MFCR: instead, branch directly on CR6. This // lowering is done pre-legalize, because the legalizer lowers the predicate // compare down to code that is difficult to reassemble. ISD::CondCode CC = cast(N->getOperand(1))->get(); SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3); int CompareOpc; bool isDot; if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && isa(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && getAltivecCompareInfo(LHS, CompareOpc, isDot)) { assert(isDot && "Can't compare against a vector result!"); // If this is a comparison against something other than 0/1, then we know // that the condition is never/always true. unsigned Val = cast(RHS)->getValue(); if (Val != 0 && Val != 1) { if (CC == ISD::SETEQ) // Cond never true, remove branch. return N->getOperand(0); // Always !=, turn it into an unconditional branch. return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0), N->getOperand(4)); } bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); // Create the PPCISD altivec 'dot' comparison node. std::vector VTs; SDOperand Ops[] = { LHS.getOperand(2), // LHS of compare LHS.getOperand(3), // RHS of compare DAG.getConstant(CompareOpc, MVT::i32) }; VTs.push_back(LHS.getOperand(2).getValueType()); VTs.push_back(MVT::Flag); SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); // Unpack the result based on how the target uses it. PPC::Predicate CompOpc; switch (cast(LHS.getOperand(1))->getValue()) { default: // Can't happen, don't crash on invalid number though. case 0: // Branch on the value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; break; case 1: // Branch on the inverted value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; break; case 2: // Branch on the value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; break; case 3: // Branch on the inverted value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; break; } return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0), DAG.getConstant(CompOpc, MVT::i32), DAG.getRegister(PPC::CR6, MVT::i32), N->getOperand(4), CompNode.getValue(1)); } break; } } return SDOperand(); } //===----------------------------------------------------------------------===// // Inline Assembly Support //===----------------------------------------------------------------------===// void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, const APInt &Mask, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); switch (Op.getOpcode()) { default: break; case PPCISD::LBRX: { // lhbrx is known to have the top bits cleared out. if (cast(Op.getOperand(3))->getVT() == MVT::i16) KnownZero = 0xFFFF0000; break; } case ISD::INTRINSIC_WO_CHAIN: { switch (cast(Op.getOperand(0))->getValue()) { default: break; case Intrinsic::ppc_altivec_vcmpbfp_p: case Intrinsic::ppc_altivec_vcmpeqfp_p: case Intrinsic::ppc_altivec_vcmpequb_p: case Intrinsic::ppc_altivec_vcmpequh_p: case Intrinsic::ppc_altivec_vcmpequw_p: case Intrinsic::ppc_altivec_vcmpgefp_p: case Intrinsic::ppc_altivec_vcmpgtfp_p: case Intrinsic::ppc_altivec_vcmpgtsb_p: case Intrinsic::ppc_altivec_vcmpgtsh_p: case Intrinsic::ppc_altivec_vcmpgtsw_p: case Intrinsic::ppc_altivec_vcmpgtub_p: case Intrinsic::ppc_altivec_vcmpgtuh_p: case Intrinsic::ppc_altivec_vcmpgtuw_p: KnownZero = ~1U; // All bits but the low one are known to be zero. break; } } } } /// getConstraintType - Given a constraint, return the type of /// constraint it is for this target. PPCTargetLowering::ConstraintType PPCTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'b': case 'r': case 'f': case 'v': case 'y': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); } std::pair PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { if (Constraint.size() == 1) { // GCC RS6000 Constraint Letters switch (Constraint[0]) { case 'b': // R1-R31 case 'r': // R0-R31 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) return std::make_pair(0U, PPC::G8RCRegisterClass); return std::make_pair(0U, PPC::GPRCRegisterClass); case 'f': if (VT == MVT::f32) return std::make_pair(0U, PPC::F4RCRegisterClass); else if (VT == MVT::f64) return std::make_pair(0U, PPC::F8RCRegisterClass); break; case 'v': return std::make_pair(0U, PPC::VRRCRegisterClass); case 'y': // crrc return std::make_pair(0U, PPC::CRRCRegisterClass); } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter, std::vector&Ops, SelectionDAG &DAG) { SDOperand Result(0,0); switch (Letter) { default: break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': { ConstantSDNode *CST = dyn_cast(Op); if (!CST) return; // Must be an immediate to match. unsigned Value = CST->getValue(); switch (Letter) { default: assert(0 && "Unknown constraint letter!"); case 'I': // "I" is a signed 16-bit constant. if ((short)Value == (int)Value) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'J': // "J" is a constant with only the high-order 16 bits nonzero. case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. if ((short)Value == 0) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'K': // "K" is a constant with only the low-order 16 bits nonzero. if ((Value >> 16) == 0) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'M': // "M" is a constant that is greater than 31. if (Value > 31) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'N': // "N" is a positive constant that is an exact power of two. if ((int)Value > 0 && isPowerOf2_32(Value)) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'O': // "O" is the constant zero. if (Value == 0) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; case 'P': // "P" is a constant whose negation is a signed 16-bit constant. if ((short)-Value == (int)-Value) Result = DAG.getTargetConstant(Value, Op.getValueType()); break; } break; } } if (Result.Val) { Ops.push_back(Result); return; } // Handle standard constraint letters. TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG); } // isLegalAddressingMode - Return true if the addressing mode represented // by AM is legal for this target, for a load/store of the specified type. bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const { // FIXME: PPC does not allow r+i addressing modes for vectors! // PPC allows a sign-extended 16-bit immediate field. if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) return false; // No global is ever allowed as a base. if (AM.BaseGV) return false; // PPC only support r+r, switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. return false; // Otherwise we have r+r or r+i. break; case 2: if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. return false; // Allow 2*r as r+r. break; default: // No other scales are supported. return false; } return true; } /// isLegalAddressImmediate - Return true if the integer value can be used /// as the offset of the target addressing mode for load / store of the /// given type. bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{ // PPC allows a sign-extended 16-bit immediate field. return (V > -(1 << 16) && V < (1 << 16)-1); } bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { return false; } SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) { // Depths > 0 not supported yet! if (cast(Op.getOperand(0))->getValue() > 0) return SDOperand(); MachineFunction &MF = DAG.getMachineFunction(); PPCFunctionInfo *FuncInfo = MF.getInfo(); int RAIdx = FuncInfo->getReturnAddrSaveIndex(); if (RAIdx == 0) { bool isPPC64 = PPCSubTarget.isPPC64(); int Offset = PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI()); // Set up a frame object for the return address. RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset); // Remember it for next time. FuncInfo->setReturnAddrSaveIndex(RAIdx); // Make sure the function really does not optimize away the store of the RA // to the stack. FuncInfo->setLRStoreRequired(); } // Just load the return address off the stack. SDOperand RetAddrFI = DAG.getFrameIndex(RAIdx, getPointerTy()); return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); } SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) { // Depths > 0 not supported yet! if (cast(Op.getOperand(0))->getValue() > 0) return SDOperand(); MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects()) && MFI->getStackSize(); if (isPPC64) return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1, MVT::i64); else return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1, MVT::i32); }