//===-- FastISel.h - Definition of the FastISel class ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the FastISel class. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_FASTISEL_H #define LLVM_CODEGEN_FASTISEL_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/SelectionDAGNodes.h" namespace llvm { class AllocaInst; class ConstantFP; class Instruction; class MachineBasicBlock; class MachineConstantPool; class MachineFunction; class MachineFrameInfo; class MachineModuleInfo; class DwarfWriter; class MachineRegisterInfo; class TargetData; class TargetInstrInfo; class TargetLowering; class TargetMachine; class TargetRegisterClass; /// FastISel - This is a fast-path instruction selection class that /// generates poor code and doesn't support illegal types or non-trivial /// lowering, but runs quickly. class FastISel { protected: MachineBasicBlock *MBB; DenseMap LocalValueMap; DenseMap &ValueMap; DenseMap &MBBMap; DenseMap &StaticAllocaMap; #ifndef NDEBUG SmallSet &CatchInfoLost; #endif MachineFunction &MF; MachineModuleInfo *MMI; DwarfWriter *DW; MachineRegisterInfo &MRI; MachineFrameInfo &MFI; MachineConstantPool &MCP; DebugLoc DL; const TargetMachine &TM; const TargetData &TD; const TargetInstrInfo &TII; const TargetLowering &TLI; public: /// startNewBlock - Set the current block to which generated machine /// instructions will be appended, and clear the local CSE map. /// void startNewBlock(MachineBasicBlock *mbb) { setCurrentBlock(mbb); LocalValueMap.clear(); } /// setCurrentBlock - Set the current block to which generated machine /// instructions will be appended. /// void setCurrentBlock(MachineBasicBlock *mbb) { MBB = mbb; } /// setCurDebugLoc - Set the current debug location information, which is used /// when creating a machine instruction. /// void setCurDebugLoc(DebugLoc dl) { DL = dl; } /// getCurDebugLoc() - Return current debug location information. DebugLoc getCurDebugLoc() const { return DL; } /// SelectInstruction - Do "fast" instruction selection for the given /// LLVM IR instruction, and append generated machine instructions to /// the current block. Return true if selection was successful. /// bool SelectInstruction(Instruction *I); /// SelectInstruction - Do "fast" instruction selection for the given /// LLVM IR operator (Instruction or ConstantExpr), and append /// generated machine instructions to the current block. Return true /// if selection was successful. /// bool SelectOperator(User *I, unsigned Opcode); /// TargetSelectInstruction - This method is called by target-independent /// code when the normal FastISel process fails to select an instruction. /// This gives targets a chance to emit code for anything that doesn't /// fit into FastISel's framework. It returns true if it was successful. /// virtual bool TargetSelectInstruction(Instruction *I) = 0; /// getRegForValue - Create a virtual register and arrange for it to /// be assigned the value for the given LLVM value. unsigned getRegForValue(Value *V); /// lookUpRegForValue - Look up the value to see if its value is already /// cached in a register. It may be defined by instructions across blocks or /// defined locally. unsigned lookUpRegForValue(Value *V); /// getRegForGEPIndex - This is a wrapper around getRegForValue that also /// takes care of truncating or sign-extending the given getelementptr /// index value. unsigned getRegForGEPIndex(Value *V); virtual ~FastISel(); protected: FastISel(MachineFunction &mf, MachineModuleInfo *mmi, DwarfWriter *dw, DenseMap &vm, DenseMap &bm, DenseMap &am #ifndef NDEBUG , SmallSet &cil #endif ); /// FastEmit_r - This method is called by target-independent code /// to request that an instruction with the given type and opcode /// be emitted. virtual unsigned FastEmit_(MVT VT, MVT RetVT, ISD::NodeType Opcode); /// FastEmit_r - This method is called by target-independent code /// to request that an instruction with the given type, opcode, and /// register operand be emitted. /// virtual unsigned FastEmit_r(MVT VT, MVT RetVT, ISD::NodeType Opcode, unsigned Op0); /// FastEmit_rr - This method is called by target-independent code /// to request that an instruction with the given type, opcode, and /// register operands be emitted. /// virtual unsigned FastEmit_rr(MVT VT, MVT RetVT, ISD::NodeType Opcode, unsigned Op0, unsigned Op1); /// FastEmit_ri - This method is called by target-independent code /// to request that an instruction with the given type, opcode, and /// register and immediate operands be emitted. /// virtual unsigned FastEmit_ri(MVT VT, MVT RetVT, ISD::NodeType Opcode, unsigned Op0, uint64_t Imm); /// FastEmit_rf - This method is called by target-independent code /// to request that an instruction with the given type, opcode, and /// register and floating-point immediate operands be emitted. /// virtual unsigned FastEmit_rf(MVT VT, MVT RetVT, ISD::NodeType Opcode, unsigned Op0, ConstantFP *FPImm); /// FastEmit_rri - This method is called by target-independent code /// to request that an instruction with the given type, opcode, and /// register and immediate operands be emitted. /// virtual unsigned FastEmit_rri(MVT VT, MVT RetVT, ISD::NodeType Opcode, unsigned Op0, unsigned Op1, uint64_t Imm); /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries /// to emit an instruction with an immediate operand using FastEmit_ri. /// If that fails, it materializes the immediate into a register and try /// FastEmit_rr instead. unsigned FastEmit_ri_(MVT VT, ISD::NodeType Opcode, unsigned Op0, uint64_t Imm, MVT ImmType); /// FastEmit_rf_ - This method is a wrapper of FastEmit_rf. It first tries /// to emit an instruction with an immediate operand using FastEmit_rf. /// If that fails, it materializes the immediate into a register and try /// FastEmit_rr instead. unsigned FastEmit_rf_(MVT VT, ISD::NodeType Opcode, unsigned Op0, ConstantFP *FPImm, MVT ImmType); /// FastEmit_i - This method is called by target-independent code /// to request that an instruction with the given type, opcode, and /// immediate operand be emitted. virtual unsigned FastEmit_i(MVT VT, MVT RetVT, ISD::NodeType Opcode, uint64_t Imm); /// FastEmit_f - This method is called by target-independent code /// to request that an instruction with the given type, opcode, and /// floating-point immediate operand be emitted. virtual unsigned FastEmit_f(MVT VT, MVT RetVT, ISD::NodeType Opcode, ConstantFP *FPImm); /// FastEmitInst_ - Emit a MachineInstr with no operands and a /// result register in the given register class. /// unsigned FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass *RC); /// FastEmitInst_r - Emit a MachineInstr with one register operand /// and a result register in the given register class. /// unsigned FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0); /// FastEmitInst_rr - Emit a MachineInstr with two register operands /// and a result register in the given register class. /// unsigned FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1); /// FastEmitInst_ri - Emit a MachineInstr with two register operands /// and a result register in the given register class. /// unsigned FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, uint64_t Imm); /// FastEmitInst_rf - Emit a MachineInstr with two register operands /// and a result register in the given register class. /// unsigned FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, ConstantFP *FPImm); /// FastEmitInst_rri - Emit a MachineInstr with two register operands, /// an immediate, and a result register in the given register class. /// unsigned FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1, uint64_t Imm); /// FastEmitInst_i - Emit a MachineInstr with a single immediate /// operand, and a result register in the given register class. unsigned FastEmitInst_i(unsigned MachineInstrOpcode, const TargetRegisterClass *RC, uint64_t Imm); /// FastEmitInst_extractsubreg - Emit a MachineInstr for an extract_subreg /// from a specified index of a superregister to a specified type. unsigned FastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, uint32_t Idx); /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op /// with all but the least significant bit set to zero. unsigned FastEmitZExtFromI1(MVT VT, unsigned Op); /// FastEmitBranch - Emit an unconditional branch to the given block, /// unless it is the immediate (fall-through) successor, and update /// the CFG. void FastEmitBranch(MachineBasicBlock *MBB); unsigned UpdateValueMap(Value* I, unsigned Reg); unsigned createResultReg(const TargetRegisterClass *RC); /// TargetMaterializeConstant - Emit a constant in a register using /// target-specific logic, such as constant pool loads. virtual unsigned TargetMaterializeConstant(Constant* C) { return 0; } /// TargetMaterializeAlloca - Emit an alloca address in a register using /// target-specific logic. virtual unsigned TargetMaterializeAlloca(AllocaInst* C) { return 0; } private: bool SelectBinaryOp(User *I, ISD::NodeType ISDOpcode); bool SelectGetElementPtr(User *I); bool SelectCall(User *I); bool SelectBitCast(User *I); bool SelectCast(User *I, ISD::NodeType Opcode); }; } #endif