//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interface for lazy computation of value constraint // information. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lazy-value-info" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Support/CFG.h" #include "llvm/Support/ConstantRange.h" #include "llvm/Support/Debug.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/ValueHandle.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; using namespace PatternMatch; char LazyValueInfo::ID = 0; INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info", "Lazy Value Information Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info", "Lazy Value Information Analysis", false, true) namespace llvm { FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } } //===----------------------------------------------------------------------===// // LVILatticeVal //===----------------------------------------------------------------------===// /// LVILatticeVal - This is the information tracked by LazyValueInfo for each /// value. /// /// FIXME: This is basically just for bringup, this can be made a lot more rich /// in the future. /// namespace { class LVILatticeVal { enum LatticeValueTy { /// undefined - This Value has no known value yet. undefined, /// constant - This Value has a specific constant value. constant, /// notconstant - This Value is known to not have the specified value. notconstant, /// constantrange - The Value falls within this range. constantrange, /// overdefined - This value is not known to be constant, and we know that /// it has a value. overdefined }; /// Val: This stores the current lattice value along with the Constant* for /// the constant if this is a 'constant' or 'notconstant' value. LatticeValueTy Tag; Constant *Val; ConstantRange Range; public: LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {} static LVILatticeVal get(Constant *C) { LVILatticeVal Res; if (!isa(C)) Res.markConstant(C); return Res; } static LVILatticeVal getNot(Constant *C) { LVILatticeVal Res; if (!isa(C)) Res.markNotConstant(C); return Res; } static LVILatticeVal getRange(ConstantRange CR) { LVILatticeVal Res; Res.markConstantRange(CR); return Res; } bool isUndefined() const { return Tag == undefined; } bool isConstant() const { return Tag == constant; } bool isNotConstant() const { return Tag == notconstant; } bool isConstantRange() const { return Tag == constantrange; } bool isOverdefined() const { return Tag == overdefined; } Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return Val; } Constant *getNotConstant() const { assert(isNotConstant() && "Cannot get the constant of a non-notconstant!"); return Val; } ConstantRange getConstantRange() const { assert(isConstantRange() && "Cannot get the constant-range of a non-constant-range!"); return Range; } /// markOverdefined - Return true if this is a change in status. bool markOverdefined() { if (isOverdefined()) return false; Tag = overdefined; return true; } /// markConstant - Return true if this is a change in status. bool markConstant(Constant *V) { assert(V && "Marking constant with NULL"); if (ConstantInt *CI = dyn_cast(V)) return markConstantRange(ConstantRange(CI->getValue())); if (isa(V)) return false; assert((!isConstant() || getConstant() == V) && "Marking constant with different value"); assert(isUndefined()); Tag = constant; Val = V; return true; } /// markNotConstant - Return true if this is a change in status. bool markNotConstant(Constant *V) { assert(V && "Marking constant with NULL"); if (ConstantInt *CI = dyn_cast(V)) return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue())); if (isa(V)) return false; assert((!isConstant() || getConstant() != V) && "Marking constant !constant with same value"); assert((!isNotConstant() || getNotConstant() == V) && "Marking !constant with different value"); assert(isUndefined() || isConstant()); Tag = notconstant; Val = V; return true; } /// markConstantRange - Return true if this is a change in status. bool markConstantRange(const ConstantRange NewR) { if (isConstantRange()) { if (NewR.isEmptySet()) return markOverdefined(); bool changed = Range == NewR; Range = NewR; return changed; } assert(isUndefined()); if (NewR.isEmptySet()) return markOverdefined(); Tag = constantrange; Range = NewR; return true; } /// mergeIn - Merge the specified lattice value into this one, updating this /// one and returning true if anything changed. bool mergeIn(const LVILatticeVal &RHS) { if (RHS.isUndefined() || isOverdefined()) return false; if (RHS.isOverdefined()) return markOverdefined(); if (isUndefined()) { Tag = RHS.Tag; Val = RHS.Val; Range = RHS.Range; return true; } if (isConstant()) { if (RHS.isConstant()) { if (Val == RHS.Val) return false; return markOverdefined(); } if (RHS.isNotConstant()) { if (Val == RHS.Val) return markOverdefined(); // Unless we can prove that the two Constants are different, we must // move to overdefined. // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding. if (ConstantInt *Res = dyn_cast( ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant()))) if (Res->isOne()) return markNotConstant(RHS.getNotConstant()); return markOverdefined(); } // RHS is a ConstantRange, LHS is a non-integer Constant. // FIXME: consider the case where RHS is a range [1, 0) and LHS is // a function. The correct result is to pick up RHS. return markOverdefined(); } if (isNotConstant()) { if (RHS.isConstant()) { if (Val == RHS.Val) return markOverdefined(); // Unless we can prove that the two Constants are different, we must // move to overdefined. // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding. if (ConstantInt *Res = dyn_cast( ConstantFoldCompareInstOperands(CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant()))) if (Res->isOne()) return false; return markOverdefined(); } if (RHS.isNotConstant()) { if (Val == RHS.Val) return false; return markOverdefined(); } return markOverdefined(); } assert(isConstantRange() && "New LVILattice type?"); if (!RHS.isConstantRange()) return markOverdefined(); ConstantRange NewR = Range.unionWith(RHS.getConstantRange()); if (NewR.isFullSet()) return markOverdefined(); return markConstantRange(NewR); } }; } // end anonymous namespace. namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) LLVM_ATTRIBUTE_USED; raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { if (Val.isUndefined()) return OS << "undefined"; if (Val.isOverdefined()) return OS << "overdefined"; if (Val.isNotConstant()) return OS << "notconstant<" << *Val.getNotConstant() << '>'; else if (Val.isConstantRange()) return OS << "constantrange<" << Val.getConstantRange().getLower() << ", " << Val.getConstantRange().getUpper() << '>'; return OS << "constant<" << *Val.getConstant() << '>'; } } //===----------------------------------------------------------------------===// // LazyValueInfoCache Decl //===----------------------------------------------------------------------===// namespace { /// LVIValueHandle - A callback value handle update the cache when /// values are erased. class LazyValueInfoCache; struct LVIValueHandle : public CallbackVH { LazyValueInfoCache *Parent; LVIValueHandle(Value *V, LazyValueInfoCache *P) : CallbackVH(V), Parent(P) { } void deleted(); void allUsesReplacedWith(Value *V) { deleted(); } }; } namespace { /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which /// maintains information about queries across the clients' queries. class LazyValueInfoCache { /// ValueCacheEntryTy - This is all of the cached block information for /// exactly one Value*. The entries are sorted by the BasicBlock* of the /// entries, allowing us to do a lookup with a binary search. typedef std::map, LVILatticeVal> ValueCacheEntryTy; /// ValueCache - This is all of the cached information for all values, /// mapped from Value* to key information. std::map ValueCache; /// OverDefinedCache - This tracks, on a per-block basis, the set of /// values that are over-defined at the end of that block. This is required /// for cache updating. typedef std::pair, Value*> OverDefinedPairTy; DenseSet OverDefinedCache; /// SeenBlocks - Keep track of all blocks that we have ever seen, so we /// don't spend time removing unused blocks from our caches. DenseSet > SeenBlocks; /// BlockValueStack - This stack holds the state of the value solver /// during a query. It basically emulates the callstack of the naive /// recursive value lookup process. std::stack > BlockValueStack; friend struct LVIValueHandle; /// OverDefinedCacheUpdater - A helper object that ensures that the /// OverDefinedCache is updated whenever solveBlockValue returns. struct OverDefinedCacheUpdater { LazyValueInfoCache *Parent; Value *Val; BasicBlock *BB; LVILatticeVal &BBLV; OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV, LazyValueInfoCache *P) : Parent(P), Val(V), BB(B), BBLV(LV) { } bool markResult(bool changed) { if (changed && BBLV.isOverdefined()) Parent->OverDefinedCache.insert(std::make_pair(BB, Val)); return changed; } }; LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB); bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, LVILatticeVal &Result); bool hasBlockValue(Value *Val, BasicBlock *BB); // These methods process one work item and may add more. A false value // returned means that the work item was not completely processed and must // be revisited after going through the new items. bool solveBlockValue(Value *Val, BasicBlock *BB); bool solveBlockValueNonLocal(LVILatticeVal &BBLV, Value *Val, BasicBlock *BB); bool solveBlockValuePHINode(LVILatticeVal &BBLV, PHINode *PN, BasicBlock *BB); bool solveBlockValueConstantRange(LVILatticeVal &BBLV, Instruction *BBI, BasicBlock *BB); void solve(); ValueCacheEntryTy &lookup(Value *V) { return ValueCache[LVIValueHandle(V, this)]; } public: /// getValueInBlock - This is the query interface to determine the lattice /// value for the specified Value* at the end of the specified block. LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB); /// getValueOnEdge - This is the query interface to determine the lattice /// value for the specified Value* that is true on the specified edge. LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB); /// threadEdge - This is the update interface to inform the cache that an /// edge from PredBB to OldSucc has been threaded to be from PredBB to /// NewSucc. void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); /// eraseBlock - This is part of the update interface to inform the cache /// that a block has been deleted. void eraseBlock(BasicBlock *BB); /// clear - Empty the cache. void clear() { SeenBlocks.clear(); ValueCache.clear(); OverDefinedCache.clear(); } }; } // end anonymous namespace void LVIValueHandle::deleted() { typedef std::pair, Value*> OverDefinedPairTy; SmallVector ToErase; for (DenseSet::iterator I = Parent->OverDefinedCache.begin(), E = Parent->OverDefinedCache.end(); I != E; ++I) { if (I->second == getValPtr()) ToErase.push_back(*I); } for (SmallVector::iterator I = ToErase.begin(), E = ToErase.end(); I != E; ++I) Parent->OverDefinedCache.erase(*I); // This erasure deallocates *this, so it MUST happen after we're done // using any and all members of *this. Parent->ValueCache.erase(*this); } void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { // Shortcut if we have never seen this block. DenseSet >::iterator I = SeenBlocks.find(BB); if (I == SeenBlocks.end()) return; SeenBlocks.erase(I); SmallVector ToErase; for (DenseSet::iterator I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ++I) { if (I->first == BB) ToErase.push_back(*I); } for (SmallVector::iterator I = ToErase.begin(), E = ToErase.end(); I != E; ++I) OverDefinedCache.erase(*I); for (std::map::iterator I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I) I->second.erase(BB); } void LazyValueInfoCache::solve() { while (!BlockValueStack.empty()) { std::pair &e = BlockValueStack.top(); if (solveBlockValue(e.second, e.first)) BlockValueStack.pop(); } } bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) { // If already a constant, there is nothing to compute. if (isa(Val)) return true; LVIValueHandle ValHandle(Val, this); if (!ValueCache.count(ValHandle)) return false; return ValueCache[ValHandle].count(BB); } LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast(Val)) return LVILatticeVal::get(VC); SeenBlocks.insert(BB); return lookup(Val)[BB]; } bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) { if (isa(Val)) return true; ValueCacheEntryTy &Cache = lookup(Val); SeenBlocks.insert(BB); LVILatticeVal &BBLV = Cache[BB]; // OverDefinedCacheUpdater is a helper object that will update // the OverDefinedCache for us when this method exits. Make sure to // call markResult on it as we exist, passing a bool to indicate if the // cache needs updating, i.e. if we have solve a new value or not. OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this); // If we've already computed this block's value, return it. if (!BBLV.isUndefined()) { DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n'); // Since we're reusing a cached value here, we don't need to update the // OverDefinedCahce. The cache will have been properly updated // whenever the cached value was inserted. ODCacheUpdater.markResult(false); return true; } // Otherwise, this is the first time we're seeing this block. Reset the // lattice value to overdefined, so that cycles will terminate and be // conservatively correct. BBLV.markOverdefined(); Instruction *BBI = dyn_cast(Val); if (BBI == 0 || BBI->getParent() != BB) { return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB)); } if (PHINode *PN = dyn_cast(BBI)) { return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB)); } if (AllocaInst *AI = dyn_cast(BBI)) { BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType())); return ODCacheUpdater.markResult(true); } // We can only analyze the definitions of certain classes of instructions // (integral binops and casts at the moment), so bail if this isn't one. LVILatticeVal Result; if ((!isa(BBI) && !isa(BBI)) || !BBI->getType()->isIntegerTy()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because inst def found.\n"); BBLV.markOverdefined(); return ODCacheUpdater.markResult(true); } // FIXME: We're currently limited to binops with a constant RHS. This should // be improved. BinaryOperator *BO = dyn_cast(BBI); if (BO && !isa(BO->getOperand(1))) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because inst def found.\n"); BBLV.markOverdefined(); return ODCacheUpdater.markResult(true); } return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB)); } static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { if (LoadInst *L = dyn_cast(I)) { return L->getPointerAddressSpace() == 0 && GetUnderlyingObject(L->getPointerOperand()) == GetUnderlyingObject(Ptr); } if (StoreInst *S = dyn_cast(I)) { return S->getPointerAddressSpace() == 0 && GetUnderlyingObject(S->getPointerOperand()) == GetUnderlyingObject(Ptr); } if (MemIntrinsic *MI = dyn_cast(I)) { if (MI->isVolatile()) return false; // FIXME: check whether it has a valuerange that excludes zero? ConstantInt *Len = dyn_cast(MI->getLength()); if (!Len || Len->isZero()) return false; if (MI->getDestAddressSpace() == 0) if (MI->getRawDest() == Ptr || MI->getDest() == Ptr) return true; if (MemTransferInst *MTI = dyn_cast(MI)) if (MTI->getSourceAddressSpace() == 0) if (MTI->getRawSource() == Ptr || MTI->getSource() == Ptr) return true; } return false; } bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV, Value *Val, BasicBlock *BB) { LVILatticeVal Result; // Start Undefined. // If this is a pointer, and there's a load from that pointer in this BB, // then we know that the pointer can't be NULL. bool NotNull = false; if (Val->getType()->isPointerTy()) { if (isa(Val)) { NotNull = true; } else { for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){ if (InstructionDereferencesPointer(BI, Val)) { NotNull = true; break; } } } } // If this is the entry block, we must be asking about an argument. The // value is overdefined. if (BB == &BB->getParent()->getEntryBlock()) { assert(isa(Val) && "Unknown live-in to the entry block"); if (NotNull) { PointerType *PTy = cast(Val->getType()); Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); } else { Result.markOverdefined(); } BBLV = Result; return true; } // Loop over all of our predecessors, merging what we know from them into // result. bool EdgesMissing = false; for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { LVILatticeVal EdgeResult; EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult); if (EdgesMissing) continue; Result.mergeIn(EdgeResult); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred.\n"); // If we previously determined that this is a pointer that can't be null // then return that rather than giving up entirely. if (NotNull) { PointerType *PTy = cast(Val->getType()); Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy)); } BBLV = Result; return true; } } if (EdgesMissing) return false; // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined()); BBLV = Result; return true; } bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV, PHINode *PN, BasicBlock *BB) { LVILatticeVal Result; // Start Undefined. // Loop over all of our predecessors, merging what we know from them into // result. bool EdgesMissing = false; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *PhiBB = PN->getIncomingBlock(i); Value *PhiVal = PN->getIncomingValue(i); LVILatticeVal EdgeResult; EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult); if (EdgesMissing) continue; Result.mergeIn(EdgeResult); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred.\n"); BBLV = Result; return true; } } if (EdgesMissing) return false; // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined() && "Possible PHI in entry block?"); BBLV = Result; return true; } bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV, Instruction *BBI, BasicBlock *BB) { // Figure out the range of the LHS. If that fails, bail. if (!hasBlockValue(BBI->getOperand(0), BB)) { BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0))); return false; } LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB); if (!LHSVal.isConstantRange()) { BBLV.markOverdefined(); return true; } ConstantRange LHSRange = LHSVal.getConstantRange(); ConstantRange RHSRange(1); IntegerType *ResultTy = cast(BBI->getType()); if (isa(BBI)) { if (ConstantInt *RHS = dyn_cast(BBI->getOperand(1))) { RHSRange = ConstantRange(RHS->getValue()); } else { BBLV.markOverdefined(); return true; } } // NOTE: We're currently limited by the set of operations that ConstantRange // can evaluate symbolically. Enhancing that set will allows us to analyze // more definitions. LVILatticeVal Result; switch (BBI->getOpcode()) { case Instruction::Add: Result.markConstantRange(LHSRange.add(RHSRange)); break; case Instruction::Sub: Result.markConstantRange(LHSRange.sub(RHSRange)); break; case Instruction::Mul: Result.markConstantRange(LHSRange.multiply(RHSRange)); break; case Instruction::UDiv: Result.markConstantRange(LHSRange.udiv(RHSRange)); break; case Instruction::Shl: Result.markConstantRange(LHSRange.shl(RHSRange)); break; case Instruction::LShr: Result.markConstantRange(LHSRange.lshr(RHSRange)); break; case Instruction::Trunc: Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth())); break; case Instruction::SExt: Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth())); break; case Instruction::ZExt: Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth())); break; case Instruction::BitCast: Result.markConstantRange(LHSRange); break; case Instruction::And: Result.markConstantRange(LHSRange.binaryAnd(RHSRange)); break; case Instruction::Or: Result.markConstantRange(LHSRange.binaryOr(RHSRange)); break; // Unhandled instructions are overdefined. default: DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because inst def found.\n"); Result.markOverdefined(); break; } BBLV = Result; return true; } /// getEdgeValue - This method attempts to infer more complex bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, LVILatticeVal &Result) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast(Val)) { Result = LVILatticeVal::get(VC); return true; } // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we // know that v != 0. if (BranchInst *BI = dyn_cast(BBFrom->getTerminator())) { // If this is a conditional branch and only one successor goes to BBTo, then // we maybe able to infer something from the condition. if (BI->isConditional() && BI->getSuccessor(0) != BI->getSuccessor(1)) { bool isTrueDest = BI->getSuccessor(0) == BBTo; assert(BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom"); // If V is the condition of the branch itself, then we know exactly what // it is. if (BI->getCondition() == Val) { Result = LVILatticeVal::get(ConstantInt::get( Type::getInt1Ty(Val->getContext()), isTrueDest)); return true; } // If the condition of the branch is an equality comparison, we may be // able to infer the value. ICmpInst *ICI = dyn_cast(BI->getCondition()); if (ICI && isa(ICI->getOperand(1))) { if (ICI->isEquality() && ICI->getOperand(0) == Val) { // We know that V has the RHS constant if this is a true SETEQ or // false SETNE. if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) Result = LVILatticeVal::get(cast(ICI->getOperand(1))); else Result = LVILatticeVal::getNot(cast(ICI->getOperand(1))); return true; } // Recognize the range checking idiom that InstCombine produces. // (X-C1) u< C2 --> [C1, C1+C2) ConstantInt *NegOffset = 0; if (ICI->getPredicate() == ICmpInst::ICMP_ULT) match(ICI->getOperand(0), m_Add(m_Specific(Val), m_ConstantInt(NegOffset))); ConstantInt *CI = dyn_cast(ICI->getOperand(1)); if (CI && (ICI->getOperand(0) == Val || NegOffset)) { // Calculate the range of values that would satisfy the comparison. ConstantRange CmpRange(CI->getValue()); ConstantRange TrueValues = ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange); if (NegOffset) // Apply the offset from above. TrueValues = TrueValues.subtract(NegOffset->getValue()); // If we're interested in the false dest, invert the condition. if (!isTrueDest) TrueValues = TrueValues.inverse(); // Figure out the possible values of the query BEFORE this branch. if (!hasBlockValue(Val, BBFrom)) { BlockValueStack.push(std::make_pair(BBFrom, Val)); return false; } LVILatticeVal InBlock = getBlockValue(Val, BBFrom); if (!InBlock.isConstantRange()) { Result = LVILatticeVal::getRange(TrueValues); return true; } // Find all potential values that satisfy both the input and output // conditions. ConstantRange PossibleValues = TrueValues.intersectWith(InBlock.getConstantRange()); Result = LVILatticeVal::getRange(PossibleValues); return true; } } } } // If the edge was formed by a switch on the value, then we may know exactly // what it is. if (SwitchInst *SI = dyn_cast(BBFrom->getTerminator())) { if (SI->getCondition() == Val) { // We don't know anything in the default case. if (SI->getDefaultDest() == BBTo) { Result.markOverdefined(); return true; } unsigned BitWidth = Val->getType()->getIntegerBitWidth(); ConstantRange EdgesVals(BitWidth, false/*isFullSet*/); for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) { if (i.getCaseSuccessor() != BBTo) continue; ConstantRange EdgeVal(i.getCaseValue()->getValue()); EdgesVals = EdgesVals.unionWith(EdgeVal); } Result = LVILatticeVal::getRange(EdgesVals); return true; } } // Otherwise see if the value is known in the block. if (hasBlockValue(Val, BBFrom)) { Result = getBlockValue(Val, BBFrom); return true; } BlockValueStack.push(std::make_pair(BBFrom, Val)); return false; } LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) { DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" << BB->getName() << "'\n"); BlockValueStack.push(std::make_pair(BB, V)); solve(); LVILatticeVal Result = getBlockValue(V, BB); DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } LVILatticeVal LazyValueInfoCache:: getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); LVILatticeVal Result; if (!getEdgeValue(V, FromBB, ToBB, Result)) { solve(); bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result); (void)WasFastQuery; assert(WasFastQuery && "More work to do after problem solved?"); } DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc) { // When an edge in the graph has been threaded, values that we could not // determine a value for before (i.e. were marked overdefined) may be possible // to solve now. We do NOT try to proactively update these values. Instead, // we clear their entries from the cache, and allow lazy updating to recompute // them when needed. // The updating process is fairly simple: we need to dropped cached info // for all values that were marked overdefined in OldSucc, and for those same // values in any successor of OldSucc (except NewSucc) in which they were // also marked overdefined. std::vector worklist; worklist.push_back(OldSucc); DenseSet ClearSet; for (DenseSet::iterator I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E; ++I) { if (I->first == OldSucc) ClearSet.insert(I->second); } // Use a worklist to perform a depth-first search of OldSucc's successors. // NOTE: We do not need a visited list since any blocks we have already // visited will have had their overdefined markers cleared already, and we // thus won't loop to their successors. while (!worklist.empty()) { BasicBlock *ToUpdate = worklist.back(); worklist.pop_back(); // Skip blocks only accessible through NewSucc. if (ToUpdate == NewSucc) continue; bool changed = false; for (DenseSet::iterator I = ClearSet.begin(), E = ClearSet.end(); I != E; ++I) { // If a value was marked overdefined in OldSucc, and is here too... DenseSet::iterator OI = OverDefinedCache.find(std::make_pair(ToUpdate, *I)); if (OI == OverDefinedCache.end()) continue; // Remove it from the caches. ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)]; ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate); assert(CI != Entry.end() && "Couldn't find entry to update?"); Entry.erase(CI); OverDefinedCache.erase(OI); // If we removed anything, then we potentially need to update // blocks successors too. changed = true; } if (!changed) continue; worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); } } //===----------------------------------------------------------------------===// // LazyValueInfo Impl //===----------------------------------------------------------------------===// /// getCache - This lazily constructs the LazyValueInfoCache. static LazyValueInfoCache &getCache(void *&PImpl) { if (!PImpl) PImpl = new LazyValueInfoCache(); return *static_cast(PImpl); } bool LazyValueInfo::runOnFunction(Function &F) { if (PImpl) getCache(PImpl).clear(); TD = getAnalysisIfAvailable(); TLI = &getAnalysis(); // Fully lazy. return false; } void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); } void LazyValueInfo::releaseMemory() { // If the cache was allocated, free it. if (PImpl) { delete &getCache(PImpl); PImpl = 0; } } Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) { LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB); if (Result.isConstant()) return Result.getConstant(); if (Result.isConstantRange()) { ConstantRange CR = Result.getConstantRange(); if (const APInt *SingleVal = CR.getSingleElement()) return ConstantInt::get(V->getContext(), *SingleVal); } return 0; } /// getConstantOnEdge - Determine whether the specified value is known to be a /// constant on the specified edge. Return null if not. Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) { LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); if (Result.isConstant()) return Result.getConstant(); if (Result.isConstantRange()) { ConstantRange CR = Result.getConstantRange(); if (const APInt *SingleVal = CR.getSingleElement()) return ConstantInt::get(V->getContext(), *SingleVal); } return 0; } /// getPredicateOnEdge - Determine whether the specified value comparison /// with a constant is known to be true or false on the specified CFG edge. /// Pred is a CmpInst predicate. LazyValueInfo::Tristate LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB) { LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB); // If we know the value is a constant, evaluate the conditional. Constant *Res = 0; if (Result.isConstant()) { Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD, TLI); if (ConstantInt *ResCI = dyn_cast(Res)) return ResCI->isZero() ? False : True; return Unknown; } if (Result.isConstantRange()) { ConstantInt *CI = dyn_cast(C); if (!CI) return Unknown; ConstantRange CR = Result.getConstantRange(); if (Pred == ICmpInst::ICMP_EQ) { if (!CR.contains(CI->getValue())) return False; if (CR.isSingleElement() && CR.contains(CI->getValue())) return True; } else if (Pred == ICmpInst::ICMP_NE) { if (!CR.contains(CI->getValue())) return True; if (CR.isSingleElement() && CR.contains(CI->getValue())) return False; } // Handle more complex predicates. ConstantRange TrueValues = ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue()); if (TrueValues.contains(CR)) return True; if (TrueValues.inverse().contains(CR)) return False; return Unknown; } if (Result.isNotConstant()) { // If this is an equality comparison, we can try to fold it knowing that // "V != C1". if (Pred == ICmpInst::ICMP_EQ) { // !C1 == C -> false iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Result.getNotConstant(), C, TD, TLI); if (Res->isNullValue()) return False; } else if (Pred == ICmpInst::ICMP_NE) { // !C1 != C -> true iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Result.getNotConstant(), C, TD, TLI); if (Res->isNullValue()) return True; } return Unknown; } return Unknown; } void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc) { if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc); } void LazyValueInfo::eraseBlock(BasicBlock *BB) { if (PImpl) getCache(PImpl).eraseBlock(BB); }