//===-- SafeStack.cpp - Safe Stack Insertion ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass splits the stack into the safe stack (kept as-is for LLVM backend) // and the unsafe stack (explicitly allocated and managed through the runtime // support library). // // http://clang.llvm.org/docs/SafeStack.html // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_os_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace llvm; #define DEBUG_TYPE "safestack" namespace llvm { STATISTIC(NumFunctions, "Total number of functions"); STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); STATISTIC(NumUnsafeStackRestorePointsFunctions, "Number of functions that use setjmp or exceptions"); STATISTIC(NumAllocas, "Total number of allocas"); STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); } // namespace llvm namespace { /// Check whether a given alloca instruction (AI) should be put on the safe /// stack or not. The function analyzes all uses of AI and checks whether it is /// only accessed in a memory safe way (as decided statically). bool IsSafeStackAlloca(const AllocaInst *AI) { // Go through all uses of this alloca and check whether all accesses to the // allocated object are statically known to be memory safe and, hence, the // object can be placed on the safe stack. SmallPtrSet Visited; SmallVector WorkList; WorkList.push_back(AI); // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. while (!WorkList.empty()) { const Instruction *V = WorkList.pop_back_val(); for (const Use &UI : V->uses()) { auto I = cast(UI.getUser()); assert(V == UI.get()); switch (I->getOpcode()) { case Instruction::Load: // Loading from a pointer is safe. break; case Instruction::VAArg: // "va-arg" from a pointer is safe. break; case Instruction::Store: if (V == I->getOperand(0)) // Stored the pointer - conservatively assume it may be unsafe. return false; // Storing to the pointee is safe. break; case Instruction::GetElementPtr: if (!cast(I)->hasAllConstantIndices()) // GEP with non-constant indices can lead to memory errors. // This also applies to inbounds GEPs, as the inbounds attribute // represents an assumption that the address is in bounds, rather than // an assertion that it is. return false; // We assume that GEP on static alloca with constant indices is safe, // otherwise a compiler would detect it and warn during compilation. if (!isa(AI->getArraySize())) // However, if the array size itself is not constant, the access // might still be unsafe at runtime. return false; /* fallthrough */ case Instruction::BitCast: case Instruction::IntToPtr: case Instruction::PHI: case Instruction::PtrToInt: case Instruction::Select: // The object can be safe or not, depending on how the result of the // instruction is used. if (Visited.insert(I).second) WorkList.push_back(cast(I)); break; case Instruction::Call: case Instruction::Invoke: { // FIXME: add support for memset and memcpy intrinsics. ImmutableCallSite CS(I); // LLVM 'nocapture' attribute is only set for arguments whose address // is not stored, passed around, or used in any other non-trivial way. // We assume that passing a pointer to an object as a 'nocapture' // argument is safe. // FIXME: a more precise solution would require an interprocedural // analysis here, which would look at all uses of an argument inside // the function being called. ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); for (ImmutableCallSite::arg_iterator A = B; A != E; ++A) if (A->get() == V && !CS.doesNotCapture(A - B)) // The parameter is not marked 'nocapture' - unsafe. return false; continue; } default: // The object is unsafe if it is used in any other way. return false; } } } // All uses of the alloca are safe, we can place it on the safe stack. return true; } /// The SafeStack pass splits the stack of each function into the /// safe stack, which is only accessed through memory safe dereferences /// (as determined statically), and the unsafe stack, which contains all /// local variables that are accessed in unsafe ways. class SafeStack : public FunctionPass { const DataLayout *DL; Type *StackPtrTy; Type *IntPtrTy; Type *Int32Ty; Type *Int8Ty; Constant *UnsafeStackPtr = nullptr; /// Unsafe stack alignment. Each stack frame must ensure that the stack is /// aligned to this value. We need to re-align the unsafe stack if the /// alignment of any object on the stack exceeds this value. /// /// 16 seems like a reasonable upper bound on the alignment of objects that we /// might expect to appear on the stack on most common targets. enum { StackAlignment = 16 }; /// \brief Build a constant representing a pointer to the unsafe stack /// pointer. Constant *getOrCreateUnsafeStackPtr(Module &M); /// \brief Find all static allocas, dynamic allocas, return instructions and /// stack restore points (exception unwind blocks and setjmp calls) in the /// given function and append them to the respective vectors. void findInsts(Function &F, SmallVectorImpl &StaticAllocas, SmallVectorImpl &DynamicAllocas, SmallVectorImpl &Returns, SmallVectorImpl &StackRestorePoints); /// \brief Allocate space for all static allocas in \p StaticAllocas, /// replace allocas with pointers into the unsafe stack and generate code to /// restore the stack pointer before all return instructions in \p Returns. /// /// \returns A pointer to the top of the unsafe stack after all unsafe static /// allocas are allocated. Value *moveStaticAllocasToUnsafeStack(Function &F, ArrayRef StaticAllocas, ArrayRef Returns); /// \brief Generate code to restore the stack after all stack restore points /// in \p StackRestorePoints. /// /// \returns A local variable in which to maintain the dynamic top of the /// unsafe stack if needed. AllocaInst * createStackRestorePoints(Function &F, ArrayRef StackRestorePoints, Value *StaticTop, bool NeedDynamicTop); /// \brief Replace all allocas in \p DynamicAllocas with code to allocate /// space dynamically on the unsafe stack and store the dynamic unsafe stack /// top to \p DynamicTop if non-null. void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, ArrayRef DynamicAllocas); public: static char ID; // Pass identification, replacement for typeid. SafeStack() : FunctionPass(ID), DL(nullptr) { initializeSafeStackPass(*PassRegistry::getPassRegistry()); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } virtual bool doInitialization(Module &M) { DL = &M.getDataLayout(); StackPtrTy = Type::getInt8PtrTy(M.getContext()); IntPtrTy = DL->getIntPtrType(M.getContext()); Int32Ty = Type::getInt32Ty(M.getContext()); Int8Ty = Type::getInt8Ty(M.getContext()); return false; } bool runOnFunction(Function &F); }; // class SafeStack Constant *SafeStack::getOrCreateUnsafeStackPtr(Module &M) { // The unsafe stack pointer is stored in a global variable with a magic name. const char *kUnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; auto UnsafeStackPtr = dyn_cast_or_null(M.getNamedValue(kUnsafeStackPtrVar)); if (!UnsafeStackPtr) { // The global variable is not defined yet, define it ourselves. // We use the initial-exec TLS model because we do not support the variable // living anywhere other than in the main executable. UnsafeStackPtr = new GlobalVariable( /*Module=*/M, /*Type=*/StackPtrTy, /*isConstant=*/false, /*Linkage=*/GlobalValue::ExternalLinkage, /*Initializer=*/0, /*Name=*/kUnsafeStackPtrVar, /*InsertBefore=*/nullptr, /*ThreadLocalMode=*/GlobalValue::InitialExecTLSModel); } else { // The variable exists, check its type and attributes. if (UnsafeStackPtr->getValueType() != StackPtrTy) { report_fatal_error(Twine(kUnsafeStackPtrVar) + " must have void* type"); } if (!UnsafeStackPtr->isThreadLocal()) { report_fatal_error(Twine(kUnsafeStackPtrVar) + " must be thread-local"); } } return UnsafeStackPtr; } void SafeStack::findInsts(Function &F, SmallVectorImpl &StaticAllocas, SmallVectorImpl &DynamicAllocas, SmallVectorImpl &Returns, SmallVectorImpl &StackRestorePoints) { for (Instruction &I : inst_range(&F)) { if (auto AI = dyn_cast(&I)) { ++NumAllocas; if (IsSafeStackAlloca(AI)) continue; if (AI->isStaticAlloca()) { ++NumUnsafeStaticAllocas; StaticAllocas.push_back(AI); } else { ++NumUnsafeDynamicAllocas; DynamicAllocas.push_back(AI); } } else if (auto RI = dyn_cast(&I)) { Returns.push_back(RI); } else if (auto CI = dyn_cast(&I)) { // setjmps require stack restore. if (CI->getCalledFunction() && CI->canReturnTwice()) StackRestorePoints.push_back(CI); } else if (auto LP = dyn_cast(&I)) { // Exception landing pads require stack restore. StackRestorePoints.push_back(LP); } else if (auto II = dyn_cast(&I)) { if (II->getIntrinsicID() == Intrinsic::gcroot) llvm::report_fatal_error( "gcroot intrinsic not compatible with safestack attribute"); } } } AllocaInst * SafeStack::createStackRestorePoints(Function &F, ArrayRef StackRestorePoints, Value *StaticTop, bool NeedDynamicTop) { if (StackRestorePoints.empty()) return nullptr; IRBuilder<> IRB(StaticTop ? cast(StaticTop)->getNextNode() : (Instruction *)F.getEntryBlock().getFirstInsertionPt()); // We need the current value of the shadow stack pointer to restore // after longjmp or exception catching. // FIXME: On some platforms this could be handled by the longjmp/exception // runtime itself. AllocaInst *DynamicTop = nullptr; if (NeedDynamicTop) // If we also have dynamic alloca's, the stack pointer value changes // throughout the function. For now we store it in an alloca. DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, "unsafe_stack_dynamic_ptr"); if (!StaticTop) // We need the original unsafe stack pointer value, even if there are // no unsafe static allocas. StaticTop = IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); if (NeedDynamicTop) IRB.CreateStore(StaticTop, DynamicTop); // Restore current stack pointer after longjmp/exception catch. for (Instruction *I : StackRestorePoints) { ++NumUnsafeStackRestorePoints; IRB.SetInsertPoint(cast(I->getNextNode())); Value *CurrentTop = DynamicTop ? IRB.CreateLoad(DynamicTop) : StaticTop; IRB.CreateStore(CurrentTop, UnsafeStackPtr); } return DynamicTop; } Value * SafeStack::moveStaticAllocasToUnsafeStack(Function &F, ArrayRef StaticAllocas, ArrayRef Returns) { if (StaticAllocas.empty()) return nullptr; IRBuilder<> IRB(F.getEntryBlock().getFirstInsertionPt()); DIBuilder DIB(*F.getParent()); // We explicitly compute and set the unsafe stack layout for all unsafe // static alloca instructions. We save the unsafe "base pointer" in the // prologue into a local variable and restore it in the epilogue. // Load the current stack pointer (we'll also use it as a base pointer). // FIXME: use a dedicated register for it ? Instruction *BasePointer = IRB.CreateLoad(UnsafeStackPtr, false, "unsafe_stack_ptr"); assert(BasePointer->getType() == StackPtrTy); for (ReturnInst *RI : Returns) { IRB.SetInsertPoint(RI); IRB.CreateStore(BasePointer, UnsafeStackPtr); } // Compute maximum alignment among static objects on the unsafe stack. unsigned MaxAlignment = 0; for (AllocaInst *AI : StaticAllocas) { Type *Ty = AI->getAllocatedType(); unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); if (Align > MaxAlignment) MaxAlignment = Align; } if (MaxAlignment > StackAlignment) { // Re-align the base pointer according to the max requested alignment. assert(isPowerOf2_32(MaxAlignment)); IRB.SetInsertPoint(cast(BasePointer->getNextNode())); BasePointer = cast(IRB.CreateIntToPtr( IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy), ConstantInt::get(IntPtrTy, ~uint64_t(MaxAlignment - 1))), StackPtrTy)); } // Allocate space for every unsafe static AllocaInst on the unsafe stack. int64_t StaticOffset = 0; // Current stack top. for (AllocaInst *AI : StaticAllocas) { IRB.SetInsertPoint(AI); auto CArraySize = cast(AI->getArraySize()); Type *Ty = AI->getAllocatedType(); uint64_t Size = DL->getTypeAllocSize(Ty) * CArraySize->getZExtValue(); if (Size == 0) Size = 1; // Don't create zero-sized stack objects. // Ensure the object is properly aligned. unsigned Align = std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()); // Add alignment. // NOTE: we ensure that BasePointer itself is aligned to >= Align. StaticOffset += Size; StaticOffset = RoundUpToAlignment(StaticOffset, Align); Value *Off = IRB.CreateGEP(BasePointer, // BasePointer is i8* ConstantInt::get(Int32Ty, -StaticOffset)); Value *NewAI = IRB.CreateBitCast(Off, AI->getType(), AI->getName()); if (AI->hasName() && isa(NewAI)) cast(NewAI)->takeName(AI); // Replace alloc with the new location. replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true); AI->replaceAllUsesWith(NewAI); AI->eraseFromParent(); } // Re-align BasePointer so that our callees would see it aligned as // expected. // FIXME: no need to update BasePointer in leaf functions. StaticOffset = RoundUpToAlignment(StaticOffset, StackAlignment); // Update shadow stack pointer in the function epilogue. IRB.SetInsertPoint(cast(BasePointer->getNextNode())); Value *StaticTop = IRB.CreateGEP(BasePointer, ConstantInt::get(Int32Ty, -StaticOffset), "unsafe_stack_static_top"); IRB.CreateStore(StaticTop, UnsafeStackPtr); return StaticTop; } void SafeStack::moveDynamicAllocasToUnsafeStack( Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, ArrayRef DynamicAllocas) { DIBuilder DIB(*F.getParent()); for (AllocaInst *AI : DynamicAllocas) { IRBuilder<> IRB(AI); // Compute the new SP value (after AI). Value *ArraySize = AI->getArraySize(); if (ArraySize->getType() != IntPtrTy) ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); Type *Ty = AI->getAllocatedType(); uint64_t TySize = DL->getTypeAllocSize(Ty); Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(UnsafeStackPtr), IntPtrTy); SP = IRB.CreateSub(SP, Size); // Align the SP value to satisfy the AllocaInst, type and stack alignments. unsigned Align = std::max( std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI->getAlignment()), (unsigned)StackAlignment); assert(isPowerOf2_32(Align)); Value *NewTop = IRB.CreateIntToPtr( IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))), StackPtrTy); // Save the stack pointer. IRB.CreateStore(NewTop, UnsafeStackPtr); if (DynamicTop) IRB.CreateStore(NewTop, DynamicTop); Value *NewAI = IRB.CreateIntToPtr(SP, AI->getType()); if (AI->hasName() && isa(NewAI)) NewAI->takeName(AI); replaceDbgDeclareForAlloca(AI, NewAI, DIB, /*Deref=*/true); AI->replaceAllUsesWith(NewAI); AI->eraseFromParent(); } if (!DynamicAllocas.empty()) { // Now go through the instructions again, replacing stacksave/stackrestore. for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) { Instruction *I = &*(It++); auto II = dyn_cast(I); if (!II) continue; if (II->getIntrinsicID() == Intrinsic::stacksave) { IRBuilder<> IRB(II); Instruction *LI = IRB.CreateLoad(UnsafeStackPtr); LI->takeName(II); II->replaceAllUsesWith(LI); II->eraseFromParent(); } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { IRBuilder<> IRB(II); Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); SI->takeName(II); assert(II->use_empty()); II->eraseFromParent(); } } } } bool SafeStack::runOnFunction(Function &F) { auto AA = &getAnalysis(); DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); if (!F.hasFnAttribute(Attribute::SafeStack)) { DEBUG(dbgs() << "[SafeStack] safestack is not requested" " for this function\n"); return false; } if (F.isDeclaration()) { DEBUG(dbgs() << "[SafeStack] function definition" " is not available\n"); return false; } { // Make sure the regular stack protector won't run on this function // (safestack attribute takes precedence). AttrBuilder B; B.addAttribute(Attribute::StackProtect) .addAttribute(Attribute::StackProtectReq) .addAttribute(Attribute::StackProtectStrong); F.removeAttributes( AttributeSet::FunctionIndex, AttributeSet::get(F.getContext(), AttributeSet::FunctionIndex, B)); } if (AA->onlyReadsMemory(&F)) { // XXX: we don't protect against information leak attacks for now. DEBUG(dbgs() << "[SafeStack] function only reads memory\n"); return false; } ++NumFunctions; SmallVector StaticAllocas; SmallVector DynamicAllocas; SmallVector Returns; // Collect all points where stack gets unwound and needs to be restored // This is only necessary because the runtime (setjmp and unwind code) is // not aware of the unsafe stack and won't unwind/restore it prorerly. // To work around this problem without changing the runtime, we insert // instrumentation to restore the unsafe stack pointer when necessary. SmallVector StackRestorePoints; // Find all static and dynamic alloca instructions that must be moved to the // unsafe stack, all return instructions and stack restore points. findInsts(F, StaticAllocas, DynamicAllocas, Returns, StackRestorePoints); if (StaticAllocas.empty() && DynamicAllocas.empty() && StackRestorePoints.empty()) return false; // Nothing to do in this function. if (!StaticAllocas.empty() || !DynamicAllocas.empty()) ++NumUnsafeStackFunctions; // This function has the unsafe stack. if (!StackRestorePoints.empty()) ++NumUnsafeStackRestorePointsFunctions; if (!UnsafeStackPtr) UnsafeStackPtr = getOrCreateUnsafeStackPtr(*F.getParent()); // The top of the unsafe stack after all unsafe static allocas are allocated. Value *StaticTop = moveStaticAllocasToUnsafeStack(F, StaticAllocas, Returns); // Safe stack object that stores the current unsafe stack top. It is updated // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. // This is only needed if we need to restore stack pointer after longjmp // or exceptions, and we have dynamic allocations. // FIXME: a better alternative might be to store the unsafe stack pointer // before setjmp / invoke instructions. AllocaInst *DynamicTop = createStackRestorePoints( F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); // Handle dynamic allocas. moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, DynamicAllocas); DEBUG(dbgs() << "[SafeStack] safestack applied\n"); return true; } } // end anonymous namespace char SafeStack::ID = 0; INITIALIZE_PASS_BEGIN(SafeStack, "safe-stack", "Safe Stack instrumentation pass", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(SafeStack, "safe-stack", "Safe Stack instrumentation pass", false, false) FunctionPass *llvm::createSafeStackPass() { return new SafeStack(); }