//===- PointerTracking.cpp - Pointer Bounds Tracking ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements tracking of pointer bounds. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MallocHelper.h" #include "llvm/Analysis/PointerTracking.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/Value.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" using namespace llvm; char PointerTracking::ID = 0; PointerTracking::PointerTracking() : FunctionPass(&ID) {} bool PointerTracking::runOnFunction(Function &F) { predCache.clear(); assert(analyzing.empty()); FF = &F; TD = getAnalysisIfAvailable(); SE = &getAnalysis(); LI = &getAnalysis(); DT = &getAnalysis(); return false; } void PointerTracking::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredTransitive(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); AU.setPreservesAll(); } bool PointerTracking::doInitialization(Module &M) { const Type *PTy = Type::getInt8PtrTy(M.getContext()); // Find calloc(i64, i64) or calloc(i32, i32). callocFunc = M.getFunction("calloc"); if (callocFunc) { const FunctionType *Ty = callocFunc->getFunctionType(); std::vector args, args2; args.push_back(Type::getInt64Ty(M.getContext())); args.push_back(Type::getInt64Ty(M.getContext())); args2.push_back(Type::getInt32Ty(M.getContext())); args2.push_back(Type::getInt32Ty(M.getContext())); const FunctionType *Calloc1Type = FunctionType::get(PTy, args, false); const FunctionType *Calloc2Type = FunctionType::get(PTy, args2, false); if (Ty != Calloc1Type && Ty != Calloc2Type) callocFunc = 0; // Give up } // Find realloc(i8*, i64) or realloc(i8*, i32). reallocFunc = M.getFunction("realloc"); if (reallocFunc) { const FunctionType *Ty = reallocFunc->getFunctionType(); std::vector args, args2; args.push_back(PTy); args.push_back(Type::getInt64Ty(M.getContext())); args2.push_back(PTy); args2.push_back(Type::getInt32Ty(M.getContext())); const FunctionType *Realloc1Type = FunctionType::get(PTy, args, false); const FunctionType *Realloc2Type = FunctionType::get(PTy, args2, false); if (Ty != Realloc1Type && Ty != Realloc2Type) reallocFunc = 0; // Give up } return false; } // Calculates the number of elements allocated for pointer P, // the type of the element is stored in Ty. const SCEV *PointerTracking::computeAllocationCount(Value *P, const Type *&Ty) const { Value *V = P->stripPointerCasts(); if (AllocationInst *AI = dyn_cast(V)) { Value *arraySize = AI->getArraySize(); Ty = AI->getAllocatedType(); // arraySize elements of type Ty. return SE->getSCEV(arraySize); } if (CallInst *CI = extractMallocCall(V)) { Value *arraySize = getMallocArraySize(CI, P->getContext(), TD); const Type* AllocTy = getMallocAllocatedType(CI); if (!AllocTy || !arraySize) return SE->getCouldNotCompute(); Ty = AllocTy; // arraySize elements of type Ty. return SE->getSCEV(arraySize); } if (GlobalVariable *GV = dyn_cast(V)) { if (GV->hasDefinitiveInitializer()) { Constant *C = GV->getInitializer(); if (const ArrayType *ATy = dyn_cast(C->getType())) { Ty = ATy->getElementType(); return SE->getConstant(Type::getInt32Ty(P->getContext()), ATy->getNumElements()); } } Ty = GV->getType(); return SE->getConstant(Type::getInt32Ty(P->getContext()), 1); //TODO: implement more tracking for globals } if (CallInst *CI = dyn_cast(V)) { CallSite CS(CI); Function *F = dyn_cast(CS.getCalledValue()->stripPointerCasts()); const Loop *L = LI->getLoopFor(CI->getParent()); if (F == callocFunc) { Ty = Type::getInt8Ty(P->getContext()); // calloc allocates arg0*arg1 bytes. return SE->getSCEVAtScope(SE->getMulExpr(SE->getSCEV(CS.getArgument(0)), SE->getSCEV(CS.getArgument(1))), L); } else if (F == reallocFunc) { Ty = Type::getInt8Ty(P->getContext()); // realloc allocates arg1 bytes. return SE->getSCEVAtScope(CS.getArgument(1), L); } } return SE->getCouldNotCompute(); } // Calculates the number of elements of type Ty allocated for P. const SCEV *PointerTracking::computeAllocationCountForType(Value *P, const Type *Ty) const { const Type *elementTy; const SCEV *Count = computeAllocationCount(P, elementTy); if (isa(Count)) return Count; if (elementTy == Ty) return Count; if (!TD) // need TargetData from this point forward return SE->getCouldNotCompute(); uint64_t elementSize = TD->getTypeAllocSize(elementTy); uint64_t wantSize = TD->getTypeAllocSize(Ty); if (elementSize == wantSize) return Count; if (elementSize % wantSize) //fractional counts not possible return SE->getCouldNotCompute(); return SE->getMulExpr(Count, SE->getConstant(Count->getType(), elementSize/wantSize)); } const SCEV *PointerTracking::getAllocationElementCount(Value *V) const { // We only deal with pointers. const PointerType *PTy = cast(V->getType()); return computeAllocationCountForType(V, PTy->getElementType()); } const SCEV *PointerTracking::getAllocationSizeInBytes(Value *V) const { return computeAllocationCountForType(V, Type::getInt8Ty(V->getContext())); } // Helper for isLoopGuardedBy that checks the swapped and inverted predicate too enum SolverResult PointerTracking::isLoopGuardedBy(const Loop *L, Predicate Pred, const SCEV *A, const SCEV *B) const { if (SE->isLoopGuardedByCond(L, Pred, A, B)) return AlwaysTrue; Pred = ICmpInst::getSwappedPredicate(Pred); if (SE->isLoopGuardedByCond(L, Pred, B, A)) return AlwaysTrue; Pred = ICmpInst::getInversePredicate(Pred); if (SE->isLoopGuardedByCond(L, Pred, B, A)) return AlwaysFalse; Pred = ICmpInst::getSwappedPredicate(Pred); if (SE->isLoopGuardedByCond(L, Pred, A, B)) return AlwaysTrue; return Unknown; } enum SolverResult PointerTracking::checkLimits(const SCEV *Offset, const SCEV *Limit, BasicBlock *BB) { //FIXME: merge implementation return Unknown; } void PointerTracking::getPointerOffset(Value *Pointer, Value *&Base, const SCEV *&Limit, const SCEV *&Offset) const { Pointer = Pointer->stripPointerCasts(); Base = Pointer->getUnderlyingObject(); Limit = getAllocationSizeInBytes(Base); if (isa(Limit)) { Base = 0; Offset = Limit; return; } Offset = SE->getMinusSCEV(SE->getSCEV(Pointer), SE->getSCEV(Base)); if (isa(Offset)) { Base = 0; Limit = Offset; } } void PointerTracking::print(raw_ostream &OS, const Module* M) const { // Calling some PT methods may cause caches to be updated, however // this should be safe for the same reason its safe for SCEV. PointerTracking &PT = *const_cast(this); for (inst_iterator I=inst_begin(*FF), E=inst_end(*FF); I != E; ++I) { if (!isa(I->getType())) continue; Value *Base; const SCEV *Limit, *Offset; getPointerOffset(&*I, Base, Limit, Offset); if (!Base) continue; if (Base == &*I) { const SCEV *S = getAllocationElementCount(Base); OS << *Base << " ==> " << *S << " elements, "; OS << *Limit << " bytes allocated\n"; continue; } OS << &*I << " -- base: " << *Base; OS << " offset: " << *Offset; enum SolverResult res = PT.checkLimits(Offset, Limit, I->getParent()); switch (res) { case AlwaysTrue: OS << " always safe\n"; break; case AlwaysFalse: OS << " always unsafe\n"; break; case Unknown: OS << " <>\n"; break; } } } static RegisterPass X("pointertracking", "Track pointer bounds", false, true);