//===-- MachODump.cpp - Object file dumping utility for llvm --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the MachO-specific dumper for llvm-objdump. // //===----------------------------------------------------------------------===// #include "llvm-objdump.h" #include "llvm-c/Disassembler.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/DebugInfo/DIContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Object/MachO.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Format.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/MachO.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; using namespace object; static cl::opt UseDbg("g", cl::desc("Print line information from debug info if available")); static cl::opt DSYMFile("dsym", cl::desc("Use .dSYM file for debug info")); static cl::opt FullLeadingAddr("full-leading-addr", cl::desc("Print full leading address")); static cl::opt PrintImmHex("print-imm-hex", cl::desc("Use hex format for immediate values")); static std::string ThumbTripleName; static const Target *GetTarget(const MachOObjectFile *MachOObj, const char **McpuDefault, const Target **ThumbTarget) { // Figure out the target triple. if (TripleName.empty()) { llvm::Triple TT("unknown-unknown-unknown"); llvm::Triple ThumbTriple = Triple(); TT = MachOObj->getArch(McpuDefault, &ThumbTriple); TripleName = TT.str(); ThumbTripleName = ThumbTriple.str(); } // Get the target specific parser. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error); if (TheTarget && ThumbTripleName.empty()) return TheTarget; *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error); if (*ThumbTarget) return TheTarget; errs() << "llvm-objdump: error: unable to get target for '"; if (!TheTarget) errs() << TripleName; else errs() << ThumbTripleName; errs() << "', see --version and --triple.\n"; return nullptr; } struct SymbolSorter { bool operator()(const SymbolRef &A, const SymbolRef &B) { SymbolRef::Type AType, BType; A.getType(AType); B.getType(BType); uint64_t AAddr, BAddr; if (AType != SymbolRef::ST_Function) AAddr = 0; else A.getAddress(AAddr); if (BType != SymbolRef::ST_Function) BAddr = 0; else B.getAddress(BAddr); return AAddr < BAddr; } }; // Types for the storted data in code table that is built before disassembly // and the predicate function to sort them. typedef std::pair DiceTableEntry; typedef std::vector DiceTable; typedef DiceTable::iterator dice_table_iterator; static bool compareDiceTableEntries(const DiceTableEntry i, const DiceTableEntry j) { return i.first == j.first; } static void DumpDataInCode(const char *bytes, uint64_t Size, unsigned short Kind) { uint64_t Value; switch (Kind) { case MachO::DICE_KIND_DATA: switch (Size) { case 4: Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0]; outs() << "\t.long " << Value; break; case 2: Value = bytes[1] << 8 | bytes[0]; outs() << "\t.short " << Value; break; case 1: Value = bytes[0]; outs() << "\t.byte " << Value; break; } outs() << "\t@ KIND_DATA\n"; break; case MachO::DICE_KIND_JUMP_TABLE8: Value = bytes[0]; outs() << "\t.byte " << Value << "\t@ KIND_JUMP_TABLE8"; break; case MachO::DICE_KIND_JUMP_TABLE16: Value = bytes[1] << 8 | bytes[0]; outs() << "\t.short " << Value << "\t@ KIND_JUMP_TABLE16"; break; case MachO::DICE_KIND_JUMP_TABLE32: Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0]; outs() << "\t.long " << Value << "\t@ KIND_JUMP_TABLE32"; break; default: outs() << "\t@ data in code kind = " << Kind << "\n"; break; } } static void getSectionsAndSymbols(const MachO::mach_header Header, MachOObjectFile *MachOObj, std::vector &Sections, std::vector &Symbols, SmallVectorImpl &FoundFns, uint64_t &BaseSegmentAddress) { for (const SymbolRef &Symbol : MachOObj->symbols()) Symbols.push_back(Symbol); for (const SectionRef &Section : MachOObj->sections()) { StringRef SectName; Section.getName(SectName); Sections.push_back(Section); } MachOObjectFile::LoadCommandInfo Command = MachOObj->getFirstLoadCommandInfo(); bool BaseSegmentAddressSet = false; for (unsigned i = 0; ; ++i) { if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) { // We found a function starts segment, parse the addresses for later // consumption. MachO::linkedit_data_command LLC = MachOObj->getLinkeditDataLoadCommand(Command); MachOObj->ReadULEB128s(LLC.dataoff, FoundFns); } else if (Command.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command); StringRef SegName = SLC.segname; if(!BaseSegmentAddressSet && SegName != "__PAGEZERO") { BaseSegmentAddressSet = true; BaseSegmentAddress = SLC.vmaddr; } } if (i == Header.ncmds - 1) break; else Command = MachOObj->getNextLoadCommandInfo(Command); } } static void DisassembleInputMachO2(StringRef Filename, MachOObjectFile *MachOOF); void llvm::DisassembleInputMachO(StringRef Filename) { ErrorOr> BuffOrErr = MemoryBuffer::getFileOrSTDIN(Filename); if (std::error_code EC = BuffOrErr.getError()) { errs() << "llvm-objdump: " << Filename << ": " << EC.message() << "\n"; return; } std::unique_ptr Buff = std::move(BuffOrErr.get()); std::unique_ptr MachOOF = std::move( ObjectFile::createMachOObjectFile(Buff.get()->getMemBufferRef()).get()); DisassembleInputMachO2(Filename, MachOOF.get()); } typedef DenseMap SymbolAddressMap; // The block of info used by the Symbolizer call backs. struct DisassembleInfo { bool verbose; MachOObjectFile *O; SectionRef S; SymbolAddressMap *AddrMap; }; // SymbolizerGetOpInfo() is the operand information call back function. // This is called to get the symbolic information for operand(s) of an // instruction when it is being done. This routine does this from // the relocation information, symbol table, etc. That block of information // is a pointer to the struct DisassembleInfo that was passed when the // disassembler context was created and passed to back to here when // called back by the disassembler for instruction operands that could have // relocation information. The address of the instruction containing operand is // at the Pc parameter. The immediate value the operand has is passed in // op_info->Value and is at Offset past the start of the instruction and has a // byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the // LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol // names and addends of the symbolic expression to add for the operand. The // value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic // information is returned then this function returns 1 else it returns 0. int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset, uint64_t Size, int TagType, void *TagBuf) { struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo; struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf; unsigned int value = op_info->Value; // Make sure all fields returned are zero if we don't set them. memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1)); op_info->Value = value; // If the TagType is not the value 1 which it code knows about or if no // verbose symbolic information is wanted then just return 0, indicating no // information is being returned. if (TagType != 1 || info->verbose == false) return 0; unsigned int Arch = info->O->getArch(); if (Arch == Triple::x86) { return 0; } else if (Arch == Triple::x86_64) { if (Size != 1 && Size != 2 && Size != 4 && Size != 0) return 0; // First search the section's relocation entries (if any) for an entry // for this section offset. uint64_t sect_addr; info->S.getAddress(sect_addr); uint64_t sect_offset = (Pc + Offset) - sect_addr; bool reloc_found = false; DataRefImpl Rel; MachO::any_relocation_info RE; bool isExtern = false; SymbolRef Symbol; for (const RelocationRef &Reloc : info->S.relocations()) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); if (RelocOffset == sect_offset) { Rel = Reloc.getRawDataRefImpl(); RE = info->O->getRelocation(Rel); // NOTE: Scattered relocations don't exist on x86_64. isExtern = info->O->getPlainRelocationExternal(RE); if (isExtern) { symbol_iterator RelocSym = Reloc.getSymbol(); Symbol = *RelocSym; } reloc_found = true; break; } } if (reloc_found && isExtern) { // The Value passed in will be adjusted by the Pc if the instruction // adds the Pc. But for x86_64 external relocation entries the Value // is the offset from the external symbol. if (info->O->getAnyRelocationPCRel(RE)) op_info->Value -= Pc + Offset + Size; StringRef SymName; Symbol.getName(SymName); const char *name = SymName.data(); unsigned Type = info->O->getAnyRelocationType(RE); if (Type == MachO::X86_64_RELOC_SUBTRACTOR) { DataRefImpl RelNext = Rel; info->O->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = info->O->getRelocation(RelNext); unsigned TypeNext = info->O->getAnyRelocationType(RENext); bool isExternNext = info->O->getPlainRelocationExternal(RENext); unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext); if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) { op_info->SubtractSymbol.Present = 1; op_info->SubtractSymbol.Name = name; symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum); Symbol = *RelocSymNext; StringRef SymNameNext; Symbol.getName(SymNameNext); name = SymNameNext.data(); } } // TODO: add the VariantKinds to op_info->VariantKind for relocation types // like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT. op_info->AddSymbol.Present = 1; op_info->AddSymbol.Name = name; return 1; } // TODO: // Second search the external relocation entries of a fully linked image // (if any) for an entry that matches this segment offset. //uint64_t seg_offset = (Pc + Offset); return 0; } else if (Arch == Triple::arm) { return 0; } else if (Arch == Triple::aarch64) { return 0; } else { return 0; } } // GuessCstringPointer is passed the address of what might be a pointer to a // literal string in a cstring section. If that address is in a cstring section // it returns a pointer to that string. Else it returns nullptr. const char *GuessCstringPointer(uint64_t ReferenceValue, struct DisassembleInfo *info) { uint32_t LoadCommandCount = info->O->getHeader().ncmds; MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo(); for (unsigned I = 0;; ++I) { if (Load.C.cmd == MachO::LC_SEGMENT_64) { MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section_64 Sec = info->O->getSection64(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if (section_type == MachO::S_CSTRING_LITERALS && ReferenceValue >= Sec.addr && ReferenceValue < Sec.addr + Sec.size) { uint64_t sect_offset = ReferenceValue - Sec.addr; uint64_t object_offset = Sec.offset + sect_offset; StringRef MachOContents = info->O->getData(); uint64_t object_size = MachOContents.size(); const char *object_addr = (const char *)MachOContents.data(); if (object_offset < object_size) { const char *name = object_addr + object_offset; return name; } else { return nullptr; } } } } else if (Load.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section Sec = info->O->getSection(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if (section_type == MachO::S_CSTRING_LITERALS && ReferenceValue >= Sec.addr && ReferenceValue < Sec.addr + Sec.size) { uint64_t sect_offset = ReferenceValue - Sec.addr; uint64_t object_offset = Sec.offset + sect_offset; StringRef MachOContents = info->O->getData(); uint64_t object_size = MachOContents.size(); const char *object_addr = (const char *)MachOContents.data(); if (object_offset < object_size) { const char *name = object_addr + object_offset; return name; } else { return nullptr; } } } } if (I == LoadCommandCount - 1) break; else Load = info->O->getNextLoadCommandInfo(Load); } return nullptr; } // GuessIndirectSymbol returns the name of the indirect symbol for the // ReferenceValue passed in or nullptr. This is used when ReferenceValue maybe // an address of a symbol stub or a lazy or non-lazy pointer to associate the // symbol name being referenced by the stub or pointer. static const char *GuessIndirectSymbol(uint64_t ReferenceValue, struct DisassembleInfo *info) { uint32_t LoadCommandCount = info->O->getHeader().ncmds; MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo(); MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand(); MachO::symtab_command Symtab = info->O->getSymtabLoadCommand(); for (unsigned I = 0;; ++I) { if (Load.C.cmd == MachO::LC_SEGMENT_64) { MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section_64 Sec = info->O->getSection64(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS || section_type == MachO::S_SYMBOL_STUBS) && ReferenceValue >= Sec.addr && ReferenceValue < Sec.addr + Sec.size) { uint32_t stride; if (section_type == MachO::S_SYMBOL_STUBS) stride = Sec.reserved2; else stride = 8; if (stride == 0) return nullptr; uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride; if (index < Dysymtab.nindirectsyms) { uint32_t indirect_symbol = info->O->getIndirectSymbolTableEntry(Dysymtab, index); if (indirect_symbol < Symtab.nsyms) { symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol); SymbolRef Symbol = *Sym; StringRef SymName; Symbol.getName(SymName); const char *name = SymName.data(); return name; } } } } } else if (Load.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section Sec = info->O->getSection(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS || section_type == MachO::S_SYMBOL_STUBS) && ReferenceValue >= Sec.addr && ReferenceValue < Sec.addr + Sec.size) { uint32_t stride; if (section_type == MachO::S_SYMBOL_STUBS) stride = Sec.reserved2; else stride = 4; if (stride == 0) return nullptr; uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride; if (index < Dysymtab.nindirectsyms) { uint32_t indirect_symbol = info->O->getIndirectSymbolTableEntry(Dysymtab, index); if (indirect_symbol < Symtab.nsyms) { symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol); SymbolRef Symbol = *Sym; StringRef SymName; Symbol.getName(SymName); const char *name = SymName.data(); return name; } } } } } if (I == LoadCommandCount - 1) break; else Load = info->O->getNextLoadCommandInfo(Load); } return nullptr; } // GuessLiteralPointer returns a string which for the item in the Mach-O file // for the address passed in as ReferenceValue for printing as a comment with // the instruction and also returns the corresponding type of that item // indirectly through ReferenceType. // // If ReferenceValue is an address of literal cstring then a pointer to the // cstring is returned and ReferenceType is set to // LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr . // // TODO: other literals such as Objective-C CFStrings refs, Selector refs, // Message refs, Class refs and a Symbol address in a literal pool are yet // to be done here. const char *GuessLiteralPointer(uint64_t ReferenceValue, uint64_t ReferencePC, uint64_t *ReferenceType, struct DisassembleInfo *info) { // TODO: This rouine's code is only for an x86_64 Mach-O file for now. unsigned int Arch = info->O->getArch(); if (Arch != Triple::x86_64) return nullptr; // First see if there is an external relocation entry at the ReferencePC. uint64_t sect_addr; info->S.getAddress(sect_addr); uint64_t sect_offset = ReferencePC - sect_addr; bool reloc_found = false; DataRefImpl Rel; MachO::any_relocation_info RE; bool isExtern = false; SymbolRef Symbol; for (const RelocationRef &Reloc : info->S.relocations()) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); if (RelocOffset == sect_offset) { Rel = Reloc.getRawDataRefImpl(); RE = info->O->getRelocation(Rel); if (info->O->isRelocationScattered(RE)) continue; isExtern = info->O->getPlainRelocationExternal(RE); if (isExtern) { symbol_iterator RelocSym = Reloc.getSymbol(); Symbol = *RelocSym; } reloc_found = true; break; } } // If there is an external relocation entry for a symbol in a section // then used that symbol's value for the value of the reference. if (reloc_found && isExtern) { if (info->O->getAnyRelocationPCRel(RE)) { unsigned Type = info->O->getAnyRelocationType(RE); if (Type == MachO::X86_64_RELOC_SIGNED) { Symbol.getAddress(ReferenceValue); } } } // TODO: the code to look for other literals such as Objective-C CFStrings // refs, Selector refs, Message refs, Class refs will be added here. const char *name = GuessCstringPointer(ReferenceValue, info); if (name) { // TODO: note when the code is added above for Selector refs and Message // refs we will need check for that here and set the ReferenceType // accordingly. *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr; return name; } // TODO: look for an indirect symbol with this ReferenceValue which is in // a literal pool. return nullptr; } // SymbolizerSymbolLookUp is the symbol lookup function passed when creating // the Symbolizer. It looks up the ReferenceValue using the info passed via the // pointer to the struct DisassembleInfo that was passed when MCSymbolizer // is created and returns the symbol name that matches the ReferenceValue or // nullptr if none. The ReferenceType is passed in for the IN type of // reference the instruction is making from the values in defined in the header // "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific // Out type and the ReferenceName will also be set which is added as a comment // to the disassembled instruction. // // If the symbol name is a C++ mangled name then the demangled name is // returned through ReferenceName and ReferenceType is set to // LLVMDisassembler_ReferenceType_DeMangled_Name . // // When this is called to get a symbol name for a branch target then the // ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then // SymbolValue will be looked for in the indirect symbol table to determine if // it is an address for a symbol stub. If so then the symbol name for that // stub is returned indirectly through ReferenceName and then ReferenceType is // set to LLVMDisassembler_ReferenceType_Out_SymbolStub. // // When this is called with an value loaded via a PC relative load then // ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the // SymbolValue is checked to be an address of literal pointer, symbol pointer, // or an Objective-C meta data reference. If so the output ReferenceType is // set to correspond to that as well as ReferenceName. const char *SymbolizerSymbolLookUp(void *DisInfo, uint64_t ReferenceValue, uint64_t *ReferenceType, uint64_t ReferencePC, const char **ReferenceName) { struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo; // If no verbose symbolic information is wanted then just return nullptr. if (info->verbose == false) { *ReferenceName = nullptr; *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; return nullptr; } const char *SymbolName = nullptr; StringRef name = info->AddrMap->lookup(ReferenceValue); if (!name.empty()) SymbolName = name.data(); if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) { *ReferenceName = GuessIndirectSymbol(ReferenceValue, info); if (*ReferenceName) *ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub; else *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; } else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) { *ReferenceName = GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info); if (*ReferenceName == nullptr) *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; // TODO: other types of references to be added. } else { *ReferenceName = nullptr; *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; } return SymbolName; } // // This is the memory object used by DisAsm->getInstruction() which has its // BasePC. This then allows the 'address' parameter to getInstruction() to // be the actual PC of the instruction. Then when a branch dispacement is // added to the PC of an instruction, the 'ReferenceValue' passed to the // SymbolizerSymbolLookUp() routine is the correct target addresses. As in // the case of a fully linked Mach-O file where a section being disassembled // generally not linked at address zero. // class DisasmMemoryObject : public MemoryObject { const uint8_t *Bytes; uint64_t Size; uint64_t BasePC; public: DisasmMemoryObject(const uint8_t *bytes, uint64_t size, uint64_t basePC) : Bytes(bytes), Size(size), BasePC(basePC) {} uint64_t getBase() const override { return BasePC; } uint64_t getExtent() const override { return Size; } int readByte(uint64_t Addr, uint8_t *Byte) const override { if (Addr - BasePC >= Size) return -1; *Byte = Bytes[Addr - BasePC]; return 0; } }; /// \brief Emits the comments that are stored in the CommentStream. /// Each comment in the CommentStream must end with a newline. static void emitComments(raw_svector_ostream &CommentStream, SmallString<128> &CommentsToEmit, formatted_raw_ostream &FormattedOS, const MCAsmInfo &MAI) { // Flush the stream before taking its content. CommentStream.flush(); StringRef Comments = CommentsToEmit.str(); // Get the default information for printing a comment. const char *CommentBegin = MAI.getCommentString(); unsigned CommentColumn = MAI.getCommentColumn(); bool IsFirst = true; while (!Comments.empty()) { if (!IsFirst) FormattedOS << '\n'; // Emit a line of comments. FormattedOS.PadToColumn(CommentColumn); size_t Position = Comments.find('\n'); FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position); // Move after the newline character. Comments = Comments.substr(Position + 1); IsFirst = false; } FormattedOS.flush(); // Tell the comment stream that the vector changed underneath it. CommentsToEmit.clear(); CommentStream.resync(); } static void DisassembleInputMachO2(StringRef Filename, MachOObjectFile *MachOOF) { const char *McpuDefault = nullptr; const Target *ThumbTarget = nullptr; const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget); if (!TheTarget) { // GetTarget prints out stuff. return; } if (MCPU.empty() && McpuDefault) MCPU = McpuDefault; std::unique_ptr InstrInfo(TheTarget->createMCInstrInfo()); std::unique_ptr InstrAnalysis( TheTarget->createMCInstrAnalysis(InstrInfo.get())); std::unique_ptr ThumbInstrInfo; std::unique_ptr ThumbInstrAnalysis; if (ThumbTarget) { ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo()); ThumbInstrAnalysis.reset( ThumbTarget->createMCInstrAnalysis(ThumbInstrInfo.get())); } // Package up features to be passed to target/subtarget std::string FeaturesStr; if (MAttrs.size()) { SubtargetFeatures Features; for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); FeaturesStr = Features.getString(); } // Set up disassembler. std::unique_ptr MRI( TheTarget->createMCRegInfo(TripleName)); std::unique_ptr AsmInfo( TheTarget->createMCAsmInfo(*MRI, TripleName)); std::unique_ptr STI( TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr)); MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr); std::unique_ptr DisAsm( TheTarget->createMCDisassembler(*STI, Ctx)); std::unique_ptr Symbolizer; struct DisassembleInfo SymbolizerInfo; std::unique_ptr RelInfo( TheTarget->createMCRelocationInfo(TripleName, Ctx)); if (RelInfo) { Symbolizer.reset(TheTarget->createMCSymbolizer( TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp, &SymbolizerInfo, &Ctx, RelInfo.release())); DisAsm->setSymbolizer(std::move(Symbolizer)); } int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); std::unique_ptr IP(TheTarget->createMCInstPrinter( AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI, *STI)); // Set the display preference for hex vs. decimal immediates. IP->setPrintImmHex(PrintImmHex); // Comment stream and backing vector. SmallString<128> CommentsToEmit; raw_svector_ostream CommentStream(CommentsToEmit); IP->setCommentStream(CommentStream); if (!InstrAnalysis || !AsmInfo || !STI || !DisAsm || !IP) { errs() << "error: couldn't initialize disassembler for target " << TripleName << '\n'; return; } // Set up thumb disassembler. std::unique_ptr ThumbMRI; std::unique_ptr ThumbAsmInfo; std::unique_ptr ThumbSTI; std::unique_ptr ThumbDisAsm; std::unique_ptr ThumbIP; std::unique_ptr ThumbCtx; if (ThumbTarget) { ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName)); ThumbAsmInfo.reset( ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName)); ThumbSTI.reset( ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr)); ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr)); ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx)); // TODO: add MCSymbolizer here for the ThumbTarget like above for TheTarget. int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect(); ThumbIP.reset(ThumbTarget->createMCInstPrinter( ThumbAsmPrinterVariant, *ThumbAsmInfo, *ThumbInstrInfo, *ThumbMRI, *ThumbSTI)); // Set the display preference for hex vs. decimal immediates. ThumbIP->setPrintImmHex(PrintImmHex); } if (ThumbTarget && (!ThumbInstrAnalysis || !ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) { errs() << "error: couldn't initialize disassembler for target " << ThumbTripleName << '\n'; return; } outs() << '\n' << Filename << ":\n\n"; MachO::mach_header Header = MachOOF->getHeader(); // FIXME: Using the -cfg command line option, this code used to be able to // annotate relocations with the referenced symbol's name, and if this was // inside a __[cf]string section, the data it points to. This is now replaced // by the upcoming MCSymbolizer, which needs the appropriate setup done above. std::vector Sections; std::vector Symbols; SmallVector FoundFns; uint64_t BaseSegmentAddress; getSectionsAndSymbols(Header, MachOOF, Sections, Symbols, FoundFns, BaseSegmentAddress); // Sort the symbols by address, just in case they didn't come in that way. std::sort(Symbols.begin(), Symbols.end(), SymbolSorter()); // Build a data in code table that is sorted on by the address of each entry. uint64_t BaseAddress = 0; if (Header.filetype == MachO::MH_OBJECT) Sections[0].getAddress(BaseAddress); else BaseAddress = BaseSegmentAddress; DiceTable Dices; for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices(); DI != DE; ++DI) { uint32_t Offset; DI->getOffset(Offset); Dices.push_back(std::make_pair(BaseAddress + Offset, *DI)); } array_pod_sort(Dices.begin(), Dices.end()); #ifndef NDEBUG raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); #else raw_ostream &DebugOut = nulls(); #endif std::unique_ptr diContext; ObjectFile *DbgObj = MachOOF; // Try to find debug info and set up the DIContext for it. if (UseDbg) { // A separate DSym file path was specified, parse it as a macho file, // get the sections and supply it to the section name parsing machinery. if (!DSYMFile.empty()) { ErrorOr> BufOrErr = MemoryBuffer::getFileOrSTDIN(DSYMFile); if (std::error_code EC = BufOrErr.getError()) { errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n'; return; } DbgObj = ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef()) .get() .release(); } // Setup the DIContext diContext.reset(DIContext::getDWARFContext(*DbgObj)); } for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) { bool SectIsText = false; Sections[SectIdx].isText(SectIsText); if (SectIsText == false) continue; StringRef SectName; if (Sections[SectIdx].getName(SectName) || SectName != "__text") continue; // Skip non-text sections DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl(); StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR); if (SegmentName != "__TEXT") continue; StringRef Bytes; Sections[SectIdx].getContents(Bytes); uint64_t SectAddress = 0; Sections[SectIdx].getAddress(SectAddress); DisasmMemoryObject MemoryObject((const uint8_t *)Bytes.data(), Bytes.size(), SectAddress); bool symbolTableWorked = false; // Parse relocations. std::vector> Relocs; for (const RelocationRef &Reloc : Sections[SectIdx].relocations()) { uint64_t RelocOffset, SectionAddress; Reloc.getOffset(RelocOffset); Sections[SectIdx].getAddress(SectionAddress); RelocOffset -= SectionAddress; symbol_iterator RelocSym = Reloc.getSymbol(); Relocs.push_back(std::make_pair(RelocOffset, *RelocSym)); } array_pod_sort(Relocs.begin(), Relocs.end()); // Create a map of symbol addresses to symbol names for use by // the SymbolizerSymbolLookUp() routine. SymbolAddressMap AddrMap; for (const SymbolRef &Symbol : MachOOF->symbols()) { SymbolRef::Type ST; Symbol.getType(ST); if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data || ST == SymbolRef::ST_Other) { uint64_t Address; Symbol.getAddress(Address); StringRef SymName; Symbol.getName(SymName); AddrMap[Address] = SymName; } } // Set up the block of info used by the Symbolizer call backs. SymbolizerInfo.verbose = true; SymbolizerInfo.O = MachOOF; SymbolizerInfo.S = Sections[SectIdx]; SymbolizerInfo.AddrMap = &AddrMap; // Disassemble symbol by symbol. for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) { StringRef SymName; Symbols[SymIdx].getName(SymName); SymbolRef::Type ST; Symbols[SymIdx].getType(ST); if (ST != SymbolRef::ST_Function) continue; // Make sure the symbol is defined in this section. bool containsSym = false; Sections[SectIdx].containsSymbol(Symbols[SymIdx], containsSym); if (!containsSym) continue; // Start at the address of the symbol relative to the section's address. uint64_t SectionAddress = 0; uint64_t Start = 0; Sections[SectIdx].getAddress(SectionAddress); Symbols[SymIdx].getAddress(Start); Start -= SectionAddress; // Stop disassembling either at the beginning of the next symbol or at // the end of the section. bool containsNextSym = false; uint64_t NextSym = 0; uint64_t NextSymIdx = SymIdx+1; while (Symbols.size() > NextSymIdx) { SymbolRef::Type NextSymType; Symbols[NextSymIdx].getType(NextSymType); if (NextSymType == SymbolRef::ST_Function) { Sections[SectIdx].containsSymbol(Symbols[NextSymIdx], containsNextSym); Symbols[NextSymIdx].getAddress(NextSym); NextSym -= SectionAddress; break; } ++NextSymIdx; } uint64_t SectSize; Sections[SectIdx].getSize(SectSize); uint64_t End = containsNextSym ? NextSym : SectSize; uint64_t Size; symbolTableWorked = true; DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl(); bool isThumb = (MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget; outs() << SymName << ":\n"; DILineInfo lastLine; for (uint64_t Index = Start; Index < End; Index += Size) { MCInst Inst; uint64_t PC = SectAddress + Index; if (FullLeadingAddr) { if (MachOOF->is64Bit()) outs() << format("%016" PRIx64, PC); else outs() << format("%08" PRIx64, PC); } else { outs() << format("%8" PRIx64 ":", PC); } if (!NoShowRawInsn) outs() << "\t"; // Check the data in code table here to see if this is data not an // instruction to be disassembled. DiceTable Dice; Dice.push_back(std::make_pair(PC, DiceRef())); dice_table_iterator DTI = std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(), compareDiceTableEntries); if (DTI != Dices.end()){ uint16_t Length; DTI->second.getLength(Length); DumpBytes(StringRef(Bytes.data() + Index, Length)); uint16_t Kind; DTI->second.getKind(Kind); DumpDataInCode(Bytes.data() + Index, Length, Kind); continue; } SmallVector AnnotationsBytes; raw_svector_ostream Annotations(AnnotationsBytes); bool gotInst; if (isThumb) gotInst = ThumbDisAsm->getInstruction(Inst, Size, MemoryObject, PC, DebugOut, Annotations); else gotInst = DisAsm->getInstruction(Inst, Size, MemoryObject, PC, DebugOut, Annotations); if (gotInst) { if (!NoShowRawInsn) { DumpBytes(StringRef(Bytes.data() + Index, Size)); } formatted_raw_ostream FormattedOS(outs()); Annotations.flush(); StringRef AnnotationsStr = Annotations.str(); if (isThumb) ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr); else IP->printInst(&Inst, FormattedOS, AnnotationsStr); emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo); // Print debug info. if (diContext) { DILineInfo dli = diContext->getLineInfoForAddress(PC); // Print valid line info if it changed. if (dli != lastLine && dli.Line != 0) outs() << "\t## " << dli.FileName << ':' << dli.Line << ':' << dli.Column; lastLine = dli; } outs() << "\n"; } else { errs() << "llvm-objdump: warning: invalid instruction encoding\n"; if (Size == 0) Size = 1; // skip illegible bytes } } } if (!symbolTableWorked) { // Reading the symbol table didn't work, disassemble the whole section. uint64_t SectAddress; Sections[SectIdx].getAddress(SectAddress); uint64_t SectSize; Sections[SectIdx].getSize(SectSize); uint64_t InstSize; for (uint64_t Index = 0; Index < SectSize; Index += InstSize) { MCInst Inst; uint64_t PC = SectAddress + Index; if (DisAsm->getInstruction(Inst, InstSize, MemoryObject, PC, DebugOut, nulls())) { if (FullLeadingAddr) { if (MachOOF->is64Bit()) outs() << format("%016" PRIx64, PC); else outs() << format("%08" PRIx64, PC); } else { outs() << format("%8" PRIx64 ":", PC); } if (!NoShowRawInsn) { outs() << "\t"; DumpBytes(StringRef(Bytes.data() + Index, InstSize)); } IP->printInst(&Inst, outs(), ""); outs() << "\n"; } else { errs() << "llvm-objdump: warning: invalid instruction encoding\n"; if (InstSize == 0) InstSize = 1; // skip illegible bytes } } } } } //===----------------------------------------------------------------------===// // __compact_unwind section dumping //===----------------------------------------------------------------------===// namespace { template static uint64_t readNext(const char *&Buf) { using llvm::support::little; using llvm::support::unaligned; uint64_t Val = support::endian::read(Buf); Buf += sizeof(T); return Val; } struct CompactUnwindEntry { uint32_t OffsetInSection; uint64_t FunctionAddr; uint32_t Length; uint32_t CompactEncoding; uint64_t PersonalityAddr; uint64_t LSDAAddr; RelocationRef FunctionReloc; RelocationRef PersonalityReloc; RelocationRef LSDAReloc; CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64) : OffsetInSection(Offset) { if (Is64) read(Contents.data() + Offset); else read(Contents.data() + Offset); } private: template void read(const char *Buf) { FunctionAddr = readNext(Buf); Length = readNext(Buf); CompactEncoding = readNext(Buf); PersonalityAddr = readNext(Buf); LSDAAddr = readNext(Buf); } }; } /// Given a relocation from __compact_unwind, consisting of the RelocationRef /// and data being relocated, determine the best base Name and Addend to use for /// display purposes. /// /// 1. An Extern relocation will directly reference a symbol (and the data is /// then already an addend), so use that. /// 2. Otherwise the data is an offset in the object file's layout; try to find // a symbol before it in the same section, and use the offset from there. /// 3. Finally, if all that fails, fall back to an offset from the start of the /// referenced section. static void findUnwindRelocNameAddend(const MachOObjectFile *Obj, std::map &Symbols, const RelocationRef &Reloc, uint64_t Addr, StringRef &Name, uint64_t &Addend) { if (Reloc.getSymbol() != Obj->symbol_end()) { Reloc.getSymbol()->getName(Name); Addend = Addr; return; } auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl()); SectionRef RelocSection = Obj->getRelocationSection(RE); uint64_t SectionAddr; RelocSection.getAddress(SectionAddr); auto Sym = Symbols.upper_bound(Addr); if (Sym == Symbols.begin()) { // The first symbol in the object is after this reference, the best we can // do is section-relative notation. RelocSection.getName(Name); Addend = Addr - SectionAddr; return; } // Go back one so that SymbolAddress <= Addr. --Sym; section_iterator SymSection = Obj->section_end(); Sym->second.getSection(SymSection); if (RelocSection == *SymSection) { // There's a valid symbol in the same section before this reference. Sym->second.getName(Name); Addend = Addr - Sym->first; return; } // There is a symbol before this reference, but it's in a different // section. Probably not helpful to mention it, so use the section name. RelocSection.getName(Name); Addend = Addr - SectionAddr; } static void printUnwindRelocDest(const MachOObjectFile *Obj, std::map &Symbols, const RelocationRef &Reloc, uint64_t Addr) { StringRef Name; uint64_t Addend; if (!Reloc.getObjectFile()) return; findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend); outs() << Name; if (Addend) outs() << " + " << format("0x%" PRIx64, Addend); } static void printMachOCompactUnwindSection(const MachOObjectFile *Obj, std::map &Symbols, const SectionRef &CompactUnwind) { assert(Obj->isLittleEndian() && "There should not be a big-endian .o with __compact_unwind"); bool Is64 = Obj->is64Bit(); uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t); uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t); StringRef Contents; CompactUnwind.getContents(Contents); SmallVector CompactUnwinds; // First populate the initial raw offsets, encodings and so on from the entry. for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) { CompactUnwindEntry Entry(Contents.data(), Offset, Is64); CompactUnwinds.push_back(Entry); } // Next we need to look at the relocations to find out what objects are // actually being referred to. for (const RelocationRef &Reloc : CompactUnwind.relocations()) { uint64_t RelocAddress; Reloc.getOffset(RelocAddress); uint32_t EntryIdx = RelocAddress / EntrySize; uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize; CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx]; if (OffsetInEntry == 0) Entry.FunctionReloc = Reloc; else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t)) Entry.PersonalityReloc = Reloc; else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t)) Entry.LSDAReloc = Reloc; else llvm_unreachable("Unexpected relocation in __compact_unwind section"); } // Finally, we're ready to print the data we've gathered. outs() << "Contents of __compact_unwind section:\n"; for (auto &Entry : CompactUnwinds) { outs() << " Entry at offset " << format("0x%" PRIx32, Entry.OffsetInSection) << ":\n"; // 1. Start of the region this entry applies to. outs() << " start: " << format("0x%" PRIx64, Entry.FunctionAddr) << ' '; printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr); outs() << '\n'; // 2. Length of the region this entry applies to. outs() << " length: " << format("0x%" PRIx32, Entry.Length) << '\n'; // 3. The 32-bit compact encoding. outs() << " compact encoding: " << format("0x%08" PRIx32, Entry.CompactEncoding) << '\n'; // 4. The personality function, if present. if (Entry.PersonalityReloc.getObjectFile()) { outs() << " personality function: " << format("0x%" PRIx64, Entry.PersonalityAddr) << ' '; printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc, Entry.PersonalityAddr); outs() << '\n'; } // 5. This entry's language-specific data area. if (Entry.LSDAReloc.getObjectFile()) { outs() << " LSDA: " << format("0x%" PRIx64, Entry.LSDAAddr) << ' '; printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr); outs() << '\n'; } } } //===----------------------------------------------------------------------===// // __unwind_info section dumping //===----------------------------------------------------------------------===// static void printRegularSecondLevelUnwindPage(const char *PageStart) { const char *Pos = PageStart; uint32_t Kind = readNext(Pos); (void)Kind; assert(Kind == 2 && "kind for a regular 2nd level index should be 2"); uint16_t EntriesStart = readNext(Pos); uint16_t NumEntries = readNext(Pos); Pos = PageStart + EntriesStart; for (unsigned i = 0; i < NumEntries; ++i) { uint32_t FunctionOffset = readNext(Pos); uint32_t Encoding = readNext(Pos); outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, FunctionOffset) << ", " << "encoding=" << format("0x%08" PRIx32, Encoding) << '\n'; } } static void printCompressedSecondLevelUnwindPage( const char *PageStart, uint32_t FunctionBase, const SmallVectorImpl &CommonEncodings) { const char *Pos = PageStart; uint32_t Kind = readNext(Pos); (void)Kind; assert(Kind == 3 && "kind for a compressed 2nd level index should be 3"); uint16_t EntriesStart = readNext(Pos); uint16_t NumEntries = readNext(Pos); uint16_t EncodingsStart = readNext(Pos); readNext(Pos); const auto *PageEncodings = reinterpret_cast( PageStart + EncodingsStart); Pos = PageStart + EntriesStart; for (unsigned i = 0; i < NumEntries; ++i) { uint32_t Entry = readNext(Pos); uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff); uint32_t EncodingIdx = Entry >> 24; uint32_t Encoding; if (EncodingIdx < CommonEncodings.size()) Encoding = CommonEncodings[EncodingIdx]; else Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()]; outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, FunctionOffset) << ", " << "encoding[" << EncodingIdx << "]=" << format("0x%08" PRIx32, Encoding) << '\n'; } } static void printMachOUnwindInfoSection(const MachOObjectFile *Obj, std::map &Symbols, const SectionRef &UnwindInfo) { assert(Obj->isLittleEndian() && "There should not be a big-endian .o with __unwind_info"); outs() << "Contents of __unwind_info section:\n"; StringRef Contents; UnwindInfo.getContents(Contents); const char *Pos = Contents.data(); //===---------------------------------- // Section header //===---------------------------------- uint32_t Version = readNext(Pos); outs() << " Version: " << format("0x%" PRIx32, Version) << '\n'; assert(Version == 1 && "only understand version 1"); uint32_t CommonEncodingsStart = readNext(Pos); outs() << " Common encodings array section offset: " << format("0x%" PRIx32, CommonEncodingsStart) << '\n'; uint32_t NumCommonEncodings = readNext(Pos); outs() << " Number of common encodings in array: " << format("0x%" PRIx32, NumCommonEncodings) << '\n'; uint32_t PersonalitiesStart = readNext(Pos); outs() << " Personality function array section offset: " << format("0x%" PRIx32, PersonalitiesStart) << '\n'; uint32_t NumPersonalities = readNext(Pos); outs() << " Number of personality functions in array: " << format("0x%" PRIx32, NumPersonalities) << '\n'; uint32_t IndicesStart = readNext(Pos); outs() << " Index array section offset: " << format("0x%" PRIx32, IndicesStart) << '\n'; uint32_t NumIndices = readNext(Pos); outs() << " Number of indices in array: " << format("0x%" PRIx32, NumIndices) << '\n'; //===---------------------------------- // A shared list of common encodings //===---------------------------------- // These occupy indices in the range [0, N] whenever an encoding is referenced // from a compressed 2nd level index table. In practice the linker only // creates ~128 of these, so that indices are available to embed encodings in // the 2nd level index. SmallVector CommonEncodings; outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n"; Pos = Contents.data() + CommonEncodingsStart; for (unsigned i = 0; i < NumCommonEncodings; ++i) { uint32_t Encoding = readNext(Pos); CommonEncodings.push_back(Encoding); outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding) << '\n'; } //===---------------------------------- // Personality functions used in this executable //===---------------------------------- // There should be only a handful of these (one per source language, // roughly). Particularly since they only get 2 bits in the compact encoding. outs() << " Personality functions: (count = " << NumPersonalities << ")\n"; Pos = Contents.data() + PersonalitiesStart; for (unsigned i = 0; i < NumPersonalities; ++i) { uint32_t PersonalityFn = readNext(Pos); outs() << " personality[" << i + 1 << "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n'; } //===---------------------------------- // The level 1 index entries //===---------------------------------- // These specify an approximate place to start searching for the more detailed // information, sorted by PC. struct IndexEntry { uint32_t FunctionOffset; uint32_t SecondLevelPageStart; uint32_t LSDAStart; }; SmallVector IndexEntries; outs() << " Top level indices: (count = " << NumIndices << ")\n"; Pos = Contents.data() + IndicesStart; for (unsigned i = 0; i < NumIndices; ++i) { IndexEntry Entry; Entry.FunctionOffset = readNext(Pos); Entry.SecondLevelPageStart = readNext(Pos); Entry.LSDAStart = readNext(Pos); IndexEntries.push_back(Entry); outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset) << ", " << "2nd level page offset=" << format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", " << "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n'; } //===---------------------------------- // Next come the LSDA tables //===---------------------------------- // The LSDA layout is rather implicit: it's a contiguous array of entries from // the first top-level index's LSDAOffset to the last (sentinel). outs() << " LSDA descriptors:\n"; Pos = Contents.data() + IndexEntries[0].LSDAStart; int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) / (2 * sizeof(uint32_t)); for (int i = 0; i < NumLSDAs; ++i) { uint32_t FunctionOffset = readNext(Pos); uint32_t LSDAOffset = readNext(Pos); outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, FunctionOffset) << ", " << "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n'; } //===---------------------------------- // Finally, the 2nd level indices //===---------------------------------- // Generally these are 4K in size, and have 2 possible forms: // + Regular stores up to 511 entries with disparate encodings // + Compressed stores up to 1021 entries if few enough compact encoding // values are used. outs() << " Second level indices:\n"; for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) { // The final sentinel top-level index has no associated 2nd level page if (IndexEntries[i].SecondLevelPageStart == 0) break; outs() << " Second level index[" << i << "]: " << "offset in section=" << format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart) << ", " << "base function offset=" << format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n'; Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart; uint32_t Kind = *reinterpret_cast(Pos); if (Kind == 2) printRegularSecondLevelUnwindPage(Pos); else if (Kind == 3) printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset, CommonEncodings); else llvm_unreachable("Do not know how to print this kind of 2nd level page"); } } void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) { std::map Symbols; for (const SymbolRef &SymRef : Obj->symbols()) { // Discard any undefined or absolute symbols. They're not going to take part // in the convenience lookup for unwind info and just take up resources. section_iterator Section = Obj->section_end(); SymRef.getSection(Section); if (Section == Obj->section_end()) continue; uint64_t Addr; SymRef.getAddress(Addr); Symbols.insert(std::make_pair(Addr, SymRef)); } for (const SectionRef &Section : Obj->sections()) { StringRef SectName; Section.getName(SectName); if (SectName == "__compact_unwind") printMachOCompactUnwindSection(Obj, Symbols, Section); else if (SectName == "__unwind_info") printMachOUnwindInfoSection(Obj, Symbols, Section); else if (SectName == "__eh_frame") outs() << "llvm-objdump: warning: unhandled __eh_frame section\n"; } } static void PrintMachHeader(uint32_t magic, uint32_t cputype, uint32_t cpusubtype, uint32_t filetype, uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags, bool verbose) { outs() << "Mach header\n"; outs() << " magic cputype cpusubtype caps filetype ncmds " "sizeofcmds flags\n"; if (verbose) { if (magic == MachO::MH_MAGIC) outs() << " MH_MAGIC"; else if (magic == MachO::MH_MAGIC_64) outs() << "MH_MAGIC_64"; else outs() << format(" 0x%08" PRIx32, magic); switch (cputype) { case MachO::CPU_TYPE_I386: outs() << " I386"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_I386_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_X86_64: outs() << " X86_64"; case MachO::CPU_SUBTYPE_X86_64_ALL: outs() << " ALL"; break; case MachO::CPU_SUBTYPE_X86_64_H: outs() << " Haswell"; outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; case MachO::CPU_TYPE_ARM: outs() << " ARM"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_ARM_ALL: outs() << " ALL"; break; case MachO::CPU_SUBTYPE_ARM_V4T: outs() << " V4T"; break; case MachO::CPU_SUBTYPE_ARM_V5TEJ: outs() << " V5TEJ"; break; case MachO::CPU_SUBTYPE_ARM_XSCALE: outs() << " XSCALE"; break; case MachO::CPU_SUBTYPE_ARM_V6: outs() << " V6"; break; case MachO::CPU_SUBTYPE_ARM_V6M: outs() << " V6M"; break; case MachO::CPU_SUBTYPE_ARM_V7: outs() << " V7"; break; case MachO::CPU_SUBTYPE_ARM_V7EM: outs() << " V7EM"; break; case MachO::CPU_SUBTYPE_ARM_V7K: outs() << " V7K"; break; case MachO::CPU_SUBTYPE_ARM_V7M: outs() << " V7M"; break; case MachO::CPU_SUBTYPE_ARM_V7S: outs() << " V7S"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_ARM64: outs() << " ARM64"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_ARM64_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_POWERPC: outs() << " PPC"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_POWERPC_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_POWERPC64: outs() << " PPC64"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_POWERPC_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; } if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) { outs() << " LIB64"; } else { outs() << format(" 0x%02" PRIx32, (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24); } switch (filetype) { case MachO::MH_OBJECT: outs() << " OBJECT"; break; case MachO::MH_EXECUTE: outs() << " EXECUTE"; break; case MachO::MH_FVMLIB: outs() << " FVMLIB"; break; case MachO::MH_CORE: outs() << " CORE"; break; case MachO::MH_PRELOAD: outs() << " PRELOAD"; break; case MachO::MH_DYLIB: outs() << " DYLIB"; break; case MachO::MH_DYLIB_STUB: outs() << " DYLIB_STUB"; break; case MachO::MH_DYLINKER: outs() << " DYLINKER"; break; case MachO::MH_BUNDLE: outs() << " BUNDLE"; break; case MachO::MH_DSYM: outs() << " DSYM"; break; case MachO::MH_KEXT_BUNDLE: outs() << " KEXTBUNDLE"; break; default: outs() << format(" %10u", filetype); break; } outs() << format(" %5u", ncmds); outs() << format(" %10u", sizeofcmds); uint32_t f = flags; if (f & MachO::MH_NOUNDEFS) { outs() << " NOUNDEFS"; f &= ~MachO::MH_NOUNDEFS; } if (f & MachO::MH_INCRLINK) { outs() << " INCRLINK"; f &= ~MachO::MH_INCRLINK; } if (f & MachO::MH_DYLDLINK) { outs() << " DYLDLINK"; f &= ~MachO::MH_DYLDLINK; } if (f & MachO::MH_BINDATLOAD) { outs() << " BINDATLOAD"; f &= ~MachO::MH_BINDATLOAD; } if (f & MachO::MH_PREBOUND) { outs() << " PREBOUND"; f &= ~MachO::MH_PREBOUND; } if (f & MachO::MH_SPLIT_SEGS) { outs() << " SPLIT_SEGS"; f &= ~MachO::MH_SPLIT_SEGS; } if (f & MachO::MH_LAZY_INIT) { outs() << " LAZY_INIT"; f &= ~MachO::MH_LAZY_INIT; } if (f & MachO::MH_TWOLEVEL) { outs() << " TWOLEVEL"; f &= ~MachO::MH_TWOLEVEL; } if (f & MachO::MH_FORCE_FLAT) { outs() << " FORCE_FLAT"; f &= ~MachO::MH_FORCE_FLAT; } if (f & MachO::MH_NOMULTIDEFS) { outs() << " NOMULTIDEFS"; f &= ~MachO::MH_NOMULTIDEFS; } if (f & MachO::MH_NOFIXPREBINDING) { outs() << " NOFIXPREBINDING"; f &= ~MachO::MH_NOFIXPREBINDING; } if (f & MachO::MH_PREBINDABLE) { outs() << " PREBINDABLE"; f &= ~MachO::MH_PREBINDABLE; } if (f & MachO::MH_ALLMODSBOUND) { outs() << " ALLMODSBOUND"; f &= ~MachO::MH_ALLMODSBOUND; } if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) { outs() << " SUBSECTIONS_VIA_SYMBOLS"; f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS; } if (f & MachO::MH_CANONICAL) { outs() << " CANONICAL"; f &= ~MachO::MH_CANONICAL; } if (f & MachO::MH_WEAK_DEFINES) { outs() << " WEAK_DEFINES"; f &= ~MachO::MH_WEAK_DEFINES; } if (f & MachO::MH_BINDS_TO_WEAK) { outs() << " BINDS_TO_WEAK"; f &= ~MachO::MH_BINDS_TO_WEAK; } if (f & MachO::MH_ALLOW_STACK_EXECUTION) { outs() << " ALLOW_STACK_EXECUTION"; f &= ~MachO::MH_ALLOW_STACK_EXECUTION; } if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) { outs() << " DEAD_STRIPPABLE_DYLIB"; f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB; } if (f & MachO::MH_PIE) { outs() << " PIE"; f &= ~MachO::MH_PIE; } if (f & MachO::MH_NO_REEXPORTED_DYLIBS) { outs() << " NO_REEXPORTED_DYLIBS"; f &= ~MachO::MH_NO_REEXPORTED_DYLIBS; } if (f & MachO::MH_HAS_TLV_DESCRIPTORS) { outs() << " MH_HAS_TLV_DESCRIPTORS"; f &= ~MachO::MH_HAS_TLV_DESCRIPTORS; } if (f & MachO::MH_NO_HEAP_EXECUTION) { outs() << " MH_NO_HEAP_EXECUTION"; f &= ~MachO::MH_NO_HEAP_EXECUTION; } if (f & MachO::MH_APP_EXTENSION_SAFE) { outs() << " APP_EXTENSION_SAFE"; f &= ~MachO::MH_APP_EXTENSION_SAFE; } if (f != 0 || flags == 0) outs() << format(" 0x%08" PRIx32, f); } else { outs() << format(" 0x%08" PRIx32, magic); outs() << format(" %7d", cputype); outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); outs() << format(" 0x%02" PRIx32, (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24); outs() << format(" %10u", filetype); outs() << format(" %5u", ncmds); outs() << format(" %10u", sizeofcmds); outs() << format(" 0x%08" PRIx32, flags); } outs() << "\n"; } static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize, StringRef SegName, uint64_t vmaddr, uint64_t vmsize, uint64_t fileoff, uint64_t filesize, uint32_t maxprot, uint32_t initprot, uint32_t nsects, uint32_t flags, uint32_t object_size, bool verbose) { uint64_t expected_cmdsize; if (cmd == MachO::LC_SEGMENT) { outs() << " cmd LC_SEGMENT\n"; expected_cmdsize = nsects; expected_cmdsize *= sizeof(struct MachO::section); expected_cmdsize += sizeof(struct MachO::segment_command); } else { outs() << " cmd LC_SEGMENT_64\n"; expected_cmdsize = nsects; expected_cmdsize *= sizeof(struct MachO::section_64); expected_cmdsize += sizeof(struct MachO::segment_command_64); } outs() << " cmdsize " << cmdsize; if (cmdsize != expected_cmdsize) outs() << " Inconsistent size\n"; else outs() << "\n"; outs() << " segname " << SegName << "\n"; if (cmd == MachO::LC_SEGMENT_64) { outs() << " vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n"; outs() << " vmsize " << format("0x%016" PRIx64, vmsize) << "\n"; } else { outs() << " vmaddr " << format("0x%08" PRIx32, vmaddr) << "\n"; outs() << " vmsize " << format("0x%08" PRIx32, vmsize) << "\n"; } outs() << " fileoff " << fileoff; if (fileoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " filesize " << filesize; if (fileoff + filesize > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; if (verbose) { if ((maxprot & ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE | MachO::VM_PROT_EXECUTE)) != 0) outs() << " maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n"; else { if (maxprot & MachO::VM_PROT_READ) outs() << " maxprot r"; else outs() << " maxprot -"; if (maxprot & MachO::VM_PROT_WRITE) outs() << "w"; else outs() << "-"; if (maxprot & MachO::VM_PROT_EXECUTE) outs() << "x\n"; else outs() << "-\n"; } if ((initprot & ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE | MachO::VM_PROT_EXECUTE)) != 0) outs() << " initprot ?" << format("0x%08" PRIx32, initprot) << "\n"; else { if (initprot & MachO::VM_PROT_READ) outs() << " initprot r"; else outs() << " initprot -"; if (initprot & MachO::VM_PROT_WRITE) outs() << "w"; else outs() << "-"; if (initprot & MachO::VM_PROT_EXECUTE) outs() << "x\n"; else outs() << "-\n"; } } else { outs() << " maxprot " << format("0x%08" PRIx32, maxprot) << "\n"; outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n"; } outs() << " nsects " << nsects << "\n"; if (verbose) { outs() << " flags"; if (flags == 0) outs() << " (none)\n"; else { if (flags & MachO::SG_HIGHVM) { outs() << " HIGHVM"; flags &= ~MachO::SG_HIGHVM; } if (flags & MachO::SG_FVMLIB) { outs() << " FVMLIB"; flags &= ~MachO::SG_FVMLIB; } if (flags & MachO::SG_NORELOC) { outs() << " NORELOC"; flags &= ~MachO::SG_NORELOC; } if (flags & MachO::SG_PROTECTED_VERSION_1) { outs() << " PROTECTED_VERSION_1"; flags &= ~MachO::SG_PROTECTED_VERSION_1; } if (flags) outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n"; else outs() << "\n"; } } else { outs() << " flags " << format("0x%" PRIx32, flags) << "\n"; } } static void PrintSection(const char *sectname, const char *segname, uint64_t addr, uint64_t size, uint32_t offset, uint32_t align, uint32_t reloff, uint32_t nreloc, uint32_t flags, uint32_t reserved1, uint32_t reserved2, uint32_t cmd, const char *sg_segname, uint32_t filetype, uint32_t object_size, bool verbose) { outs() << "Section\n"; outs() << " sectname " << format("%.16s\n", sectname); outs() << " segname " << format("%.16s", segname); if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0) outs() << " (does not match segment)\n"; else outs() << "\n"; if (cmd == MachO::LC_SEGMENT_64) { outs() << " addr " << format("0x%016" PRIx64, addr) << "\n"; outs() << " size " << format("0x%016" PRIx64, size); } else { outs() << " addr " << format("0x%08" PRIx32, addr) << "\n"; outs() << " size " << format("0x%08" PRIx32, size); } if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " offset " << offset; if (offset > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; uint32_t align_shifted = 1 << align; outs() << " align 2^" << align << " (" << align_shifted << ")\n"; outs() << " reloff " << reloff; if (reloff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nreloc " << nreloc; if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; uint32_t section_type = flags & MachO::SECTION_TYPE; if (verbose) { outs() << " type"; if (section_type == MachO::S_REGULAR) outs() << " S_REGULAR\n"; else if (section_type == MachO::S_ZEROFILL) outs() << " S_ZEROFILL\n"; else if (section_type == MachO::S_CSTRING_LITERALS) outs() << " S_CSTRING_LITERALS\n"; else if (section_type == MachO::S_4BYTE_LITERALS) outs() << " S_4BYTE_LITERALS\n"; else if (section_type == MachO::S_8BYTE_LITERALS) outs() << " S_8BYTE_LITERALS\n"; else if (section_type == MachO::S_16BYTE_LITERALS) outs() << " S_16BYTE_LITERALS\n"; else if (section_type == MachO::S_LITERAL_POINTERS) outs() << " S_LITERAL_POINTERS\n"; else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS) outs() << " S_NON_LAZY_SYMBOL_POINTERS\n"; else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS) outs() << " S_LAZY_SYMBOL_POINTERS\n"; else if (section_type == MachO::S_SYMBOL_STUBS) outs() << " S_SYMBOL_STUBS\n"; else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS) outs() << " S_MOD_INIT_FUNC_POINTERS\n"; else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS) outs() << " S_MOD_TERM_FUNC_POINTERS\n"; else if (section_type == MachO::S_COALESCED) outs() << " S_COALESCED\n"; else if (section_type == MachO::S_INTERPOSING) outs() << " S_INTERPOSING\n"; else if (section_type == MachO::S_DTRACE_DOF) outs() << " S_DTRACE_DOF\n"; else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS) outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n"; else if (section_type == MachO::S_THREAD_LOCAL_REGULAR) outs() << " S_THREAD_LOCAL_REGULAR\n"; else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL) outs() << " S_THREAD_LOCAL_ZEROFILL\n"; else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES) outs() << " S_THREAD_LOCAL_VARIABLES\n"; else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS) outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n"; else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS) outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n"; else outs() << format("0x%08" PRIx32, section_type) << "\n"; outs() << "attributes"; uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES; if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS) outs() << " PURE_INSTRUCTIONS"; if (section_attributes & MachO::S_ATTR_NO_TOC) outs() << " NO_TOC"; if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS) outs() << " STRIP_STATIC_SYMS"; if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP) outs() << " NO_DEAD_STRIP"; if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT) outs() << " LIVE_SUPPORT"; if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE) outs() << " SELF_MODIFYING_CODE"; if (section_attributes & MachO::S_ATTR_DEBUG) outs() << " DEBUG"; if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS) outs() << " SOME_INSTRUCTIONS"; if (section_attributes & MachO::S_ATTR_EXT_RELOC) outs() << " EXT_RELOC"; if (section_attributes & MachO::S_ATTR_LOC_RELOC) outs() << " LOC_RELOC"; if (section_attributes == 0) outs() << " (none)"; outs() << "\n"; } else outs() << " flags " << format("0x%08" PRIx32, flags) << "\n"; outs() << " reserved1 " << reserved1; if (section_type == MachO::S_SYMBOL_STUBS || section_type == MachO::S_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS) outs() << " (index into indirect symbol table)\n"; else outs() << "\n"; outs() << " reserved2 " << reserved2; if (section_type == MachO::S_SYMBOL_STUBS) outs() << " (size of stubs)\n"; else outs() << "\n"; } static void PrintSymtabLoadCommand(MachO::symtab_command st, uint32_t cputype, uint32_t object_size) { outs() << " cmd LC_SYMTAB\n"; outs() << " cmdsize " << st.cmdsize; if (st.cmdsize != sizeof(struct MachO::symtab_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " symoff " << st.symoff; if (st.symoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nsyms " << st.nsyms; uint64_t big_size; if (cputype & MachO::CPU_ARCH_ABI64) { big_size = st.nsyms; big_size *= sizeof(struct MachO::nlist_64); big_size += st.symoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } else { big_size = st.nsyms; big_size *= sizeof(struct MachO::nlist); big_size += st.symoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } outs() << " stroff " << st.stroff; if (st.stroff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " strsize " << st.strsize; big_size = st.stroff; big_size += st.strsize; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst, uint32_t nsyms, uint32_t object_size, uint32_t cputype) { outs() << " cmd LC_DYSYMTAB\n"; outs() << " cmdsize " << dyst.cmdsize; if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " ilocalsym " << dyst.ilocalsym; if (dyst.ilocalsym > nsyms) outs() << " (greater than the number of symbols)\n"; else outs() << "\n"; outs() << " nlocalsym " << dyst.nlocalsym; uint64_t big_size; big_size = dyst.ilocalsym; big_size += dyst.nlocalsym; if (big_size > nsyms) outs() << " (past the end of the symbol table)\n"; else outs() << "\n"; outs() << " iextdefsym " << dyst.iextdefsym; if (dyst.iextdefsym > nsyms) outs() << " (greater than the number of symbols)\n"; else outs() << "\n"; outs() << " nextdefsym " << dyst.nextdefsym; big_size = dyst.iextdefsym; big_size += dyst.nextdefsym; if (big_size > nsyms) outs() << " (past the end of the symbol table)\n"; else outs() << "\n"; outs() << " iundefsym " << dyst.iundefsym; if (dyst.iundefsym > nsyms) outs() << " (greater than the number of symbols)\n"; else outs() << "\n"; outs() << " nundefsym " << dyst.nundefsym; big_size = dyst.iundefsym; big_size += dyst.nundefsym; if (big_size > nsyms) outs() << " (past the end of the symbol table)\n"; else outs() << "\n"; outs() << " tocoff " << dyst.tocoff; if (dyst.tocoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " ntoc " << dyst.ntoc; big_size = dyst.ntoc; big_size *= sizeof(struct MachO::dylib_table_of_contents); big_size += dyst.tocoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " modtaboff " << dyst.modtaboff; if (dyst.modtaboff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nmodtab " << dyst.nmodtab; uint64_t modtabend; if (cputype & MachO::CPU_ARCH_ABI64) { modtabend = dyst.nmodtab; modtabend *= sizeof(struct MachO::dylib_module_64); modtabend += dyst.modtaboff; } else { modtabend = dyst.nmodtab; modtabend *= sizeof(struct MachO::dylib_module); modtabend += dyst.modtaboff; } if (modtabend > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " extrefsymoff " << dyst.extrefsymoff; if (dyst.extrefsymoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nextrefsyms " << dyst.nextrefsyms; big_size = dyst.nextrefsyms; big_size *= sizeof(struct MachO::dylib_reference); big_size += dyst.extrefsymoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " indirectsymoff " << dyst.indirectsymoff; if (dyst.indirectsymoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nindirectsyms " << dyst.nindirectsyms; big_size = dyst.nindirectsyms; big_size *= sizeof(uint32_t); big_size += dyst.indirectsymoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " extreloff " << dyst.extreloff; if (dyst.extreloff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nextrel " << dyst.nextrel; big_size = dyst.nextrel; big_size *= sizeof(struct MachO::relocation_info); big_size += dyst.extreloff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " locreloff " << dyst.locreloff; if (dyst.locreloff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nlocrel " << dyst.nlocrel; big_size = dyst.nlocrel; big_size *= sizeof(struct MachO::relocation_info); big_size += dyst.locreloff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc, uint32_t object_size) { if (dc.cmd == MachO::LC_DYLD_INFO) outs() << " cmd LC_DYLD_INFO\n"; else outs() << " cmd LC_DYLD_INFO_ONLY\n"; outs() << " cmdsize " << dc.cmdsize; if (dc.cmdsize != sizeof(struct MachO::dyld_info_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " rebase_off " << dc.rebase_off; if (dc.rebase_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " rebase_size " << dc.rebase_size; uint64_t big_size; big_size = dc.rebase_off; big_size += dc.rebase_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " bind_off " << dc.bind_off; if (dc.bind_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " bind_size " << dc.bind_size; big_size = dc.bind_off; big_size += dc.bind_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " weak_bind_off " << dc.weak_bind_off; if (dc.weak_bind_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " weak_bind_size " << dc.weak_bind_size; big_size = dc.weak_bind_off; big_size += dc.weak_bind_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " lazy_bind_off " << dc.lazy_bind_off; if (dc.lazy_bind_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " lazy_bind_size " << dc.lazy_bind_size; big_size = dc.lazy_bind_off; big_size += dc.lazy_bind_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " export_off " << dc.export_off; if (dc.export_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " export_size " << dc.export_size; big_size = dc.export_off; big_size += dc.export_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintDyldLoadCommand(MachO::dylinker_command dyld, const char *Ptr) { if (dyld.cmd == MachO::LC_ID_DYLINKER) outs() << " cmd LC_ID_DYLINKER\n"; else if (dyld.cmd == MachO::LC_LOAD_DYLINKER) outs() << " cmd LC_LOAD_DYLINKER\n"; else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT) outs() << " cmd LC_DYLD_ENVIRONMENT\n"; else outs() << " cmd ?(" << dyld.cmd << ")\n"; outs() << " cmdsize " << dyld.cmdsize; if (dyld.cmdsize < sizeof(struct MachO::dylinker_command)) outs() << " Incorrect size\n"; else outs() << "\n"; if (dyld.name >= dyld.cmdsize) outs() << " name ?(bad offset " << dyld.name << ")\n"; else { const char *P = (const char *)(Ptr)+dyld.name; outs() << " name " << P << " (offset " << dyld.name << ")\n"; } } static void PrintUuidLoadCommand(MachO::uuid_command uuid) { outs() << " cmd LC_UUID\n"; outs() << " cmdsize " << uuid.cmdsize; if (uuid.cmdsize != sizeof(struct MachO::uuid_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " uuid "; outs() << format("%02" PRIX32, uuid.uuid[0]); outs() << format("%02" PRIX32, uuid.uuid[1]); outs() << format("%02" PRIX32, uuid.uuid[2]); outs() << format("%02" PRIX32, uuid.uuid[3]); outs() << "-"; outs() << format("%02" PRIX32, uuid.uuid[4]); outs() << format("%02" PRIX32, uuid.uuid[5]); outs() << "-"; outs() << format("%02" PRIX32, uuid.uuid[6]); outs() << format("%02" PRIX32, uuid.uuid[7]); outs() << "-"; outs() << format("%02" PRIX32, uuid.uuid[8]); outs() << format("%02" PRIX32, uuid.uuid[9]); outs() << "-"; outs() << format("%02" PRIX32, uuid.uuid[10]); outs() << format("%02" PRIX32, uuid.uuid[11]); outs() << format("%02" PRIX32, uuid.uuid[12]); outs() << format("%02" PRIX32, uuid.uuid[13]); outs() << format("%02" PRIX32, uuid.uuid[14]); outs() << format("%02" PRIX32, uuid.uuid[15]); outs() << "\n"; } static void PrintVersionMinLoadCommand(MachO::version_min_command vd) { if (vd.cmd == MachO::LC_VERSION_MIN_MACOSX) outs() << " cmd LC_VERSION_MIN_MACOSX\n"; else if (vd.cmd == MachO::LC_VERSION_MIN_IPHONEOS) outs() << " cmd LC_VERSION_MIN_IPHONEOS\n"; else outs() << " cmd " << vd.cmd << " (?)\n"; outs() << " cmdsize " << vd.cmdsize; if (vd.cmdsize != sizeof(struct MachO::version_min_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " version " << ((vd.version >> 16) & 0xffff) << "." << ((vd.version >> 8) & 0xff); if ((vd.version & 0xff) != 0) outs() << "." << (vd.version & 0xff); outs() << "\n"; if (vd.sdk == 0) outs() << " sdk n/a\n"; else { outs() << " sdk " << ((vd.sdk >> 16) & 0xffff) << "." << ((vd.sdk >> 8) & 0xff); } if ((vd.sdk & 0xff) != 0) outs() << "." << (vd.sdk & 0xff); outs() << "\n"; } static void PrintSourceVersionCommand(MachO::source_version_command sd) { outs() << " cmd LC_SOURCE_VERSION\n"; outs() << " cmdsize " << sd.cmdsize; if (sd.cmdsize != sizeof(struct MachO::source_version_command)) outs() << " Incorrect size\n"; else outs() << "\n"; uint64_t a = (sd.version >> 40) & 0xffffff; uint64_t b = (sd.version >> 30) & 0x3ff; uint64_t c = (sd.version >> 20) & 0x3ff; uint64_t d = (sd.version >> 10) & 0x3ff; uint64_t e = sd.version & 0x3ff; outs() << " version " << a << "." << b; if (e != 0) outs() << "." << c << "." << d << "." << e; else if (d != 0) outs() << "." << c << "." << d; else if (c != 0) outs() << "." << c; outs() << "\n"; } static void PrintEntryPointCommand(MachO::entry_point_command ep) { outs() << " cmd LC_MAIN\n"; outs() << " cmdsize " << ep.cmdsize; if (ep.cmdsize != sizeof(struct MachO::entry_point_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " entryoff " << ep.entryoff << "\n"; outs() << " stacksize " << ep.stacksize << "\n"; } static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) { if (dl.cmd == MachO::LC_ID_DYLIB) outs() << " cmd LC_ID_DYLIB\n"; else if (dl.cmd == MachO::LC_LOAD_DYLIB) outs() << " cmd LC_LOAD_DYLIB\n"; else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB) outs() << " cmd LC_LOAD_WEAK_DYLIB\n"; else if (dl.cmd == MachO::LC_REEXPORT_DYLIB) outs() << " cmd LC_REEXPORT_DYLIB\n"; else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB) outs() << " cmd LC_LAZY_LOAD_DYLIB\n"; else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB) outs() << " cmd LC_LOAD_UPWARD_DYLIB\n"; else outs() << " cmd " << dl.cmd << " (unknown)\n"; outs() << " cmdsize " << dl.cmdsize; if (dl.cmdsize < sizeof(struct MachO::dylib_command)) outs() << " Incorrect size\n"; else outs() << "\n"; if (dl.dylib.name < dl.cmdsize) { const char *P = (const char *)(Ptr)+dl.dylib.name; outs() << " name " << P << " (offset " << dl.dylib.name << ")\n"; } else { outs() << " name ?(bad offset " << dl.dylib.name << ")\n"; } outs() << " time stamp " << dl.dylib.timestamp << " "; time_t t = dl.dylib.timestamp; outs() << ctime(&t); outs() << " current version "; if (dl.dylib.current_version == 0xffffffff) outs() << "n/a\n"; else outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "." << ((dl.dylib.current_version >> 8) & 0xff) << "." << (dl.dylib.current_version & 0xff) << "\n"; outs() << "compatibility version "; if (dl.dylib.compatibility_version == 0xffffffff) outs() << "n/a\n"; else outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "." << ((dl.dylib.compatibility_version >> 8) & 0xff) << "." << (dl.dylib.compatibility_version & 0xff) << "\n"; } static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld, uint32_t object_size) { if (ld.cmd == MachO::LC_CODE_SIGNATURE) outs() << " cmd LC_FUNCTION_STARTS\n"; else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO) outs() << " cmd LC_SEGMENT_SPLIT_INFO\n"; else if (ld.cmd == MachO::LC_FUNCTION_STARTS) outs() << " cmd LC_FUNCTION_STARTS\n"; else if (ld.cmd == MachO::LC_DATA_IN_CODE) outs() << " cmd LC_DATA_IN_CODE\n"; else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS) outs() << " cmd LC_DYLIB_CODE_SIGN_DRS\n"; else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) outs() << " cmd LC_LINKER_OPTIMIZATION_HINT\n"; else outs() << " cmd " << ld.cmd << " (?)\n"; outs() << " cmdsize " << ld.cmdsize; if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " dataoff " << ld.dataoff; if (ld.dataoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " datasize " << ld.datasize; uint64_t big_size = ld.dataoff; big_size += ld.datasize; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t ncmds, uint32_t filetype, uint32_t cputype, bool verbose) { StringRef Buf = Obj->getData(); MachOObjectFile::LoadCommandInfo Command = Obj->getFirstLoadCommandInfo(); for (unsigned i = 0;; ++i) { outs() << "Load command " << i << "\n"; if (Command.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command); const char *sg_segname = SLC.segname; PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr, SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot, SLC.initprot, SLC.nsects, SLC.flags, Buf.size(), verbose); for (unsigned j = 0; j < SLC.nsects; j++) { MachO::section_64 S = Obj->getSection64(Command, j); PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align, S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2, SLC.cmd, sg_segname, filetype, Buf.size(), verbose); } } else if (Command.C.cmd == MachO::LC_SEGMENT_64) { MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command); const char *sg_segname = SLC_64.segname; PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname, SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff, SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot, SLC_64.nsects, SLC_64.flags, Buf.size(), verbose); for (unsigned j = 0; j < SLC_64.nsects; j++) { MachO::section_64 S_64 = Obj->getSection64(Command, j); PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size, S_64.offset, S_64.align, S_64.reloff, S_64.nreloc, S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd, sg_segname, filetype, Buf.size(), verbose); } } else if (Command.C.cmd == MachO::LC_SYMTAB) { MachO::symtab_command Symtab = Obj->getSymtabLoadCommand(); PrintSymtabLoadCommand(Symtab, cputype, Buf.size()); } else if (Command.C.cmd == MachO::LC_DYSYMTAB) { MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand(); MachO::symtab_command Symtab = Obj->getSymtabLoadCommand(); PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(), cputype); } else if (Command.C.cmd == MachO::LC_DYLD_INFO || Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) { MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command); PrintDyldInfoLoadCommand(DyldInfo, Buf.size()); } else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER || Command.C.cmd == MachO::LC_ID_DYLINKER || Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) { MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command); PrintDyldLoadCommand(Dyld, Command.Ptr); } else if (Command.C.cmd == MachO::LC_UUID) { MachO::uuid_command Uuid = Obj->getUuidCommand(Command); PrintUuidLoadCommand(Uuid); } else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX) { MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command); PrintVersionMinLoadCommand(Vd); } else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) { MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command); PrintSourceVersionCommand(Sd); } else if (Command.C.cmd == MachO::LC_MAIN) { MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command); PrintEntryPointCommand(Ep); } else if (Command.C.cmd == MachO::LC_LOAD_DYLIB) { MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command); PrintDylibCommand(Dl, Command.Ptr); } else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE || Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO || Command.C.cmd == MachO::LC_FUNCTION_STARTS || Command.C.cmd == MachO::LC_DATA_IN_CODE || Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS || Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) { MachO::linkedit_data_command Ld = Obj->getLinkeditDataLoadCommand(Command); PrintLinkEditDataCommand(Ld, Buf.size()); } else { outs() << " cmd ?(" << format("0x%08" PRIx32, Command.C.cmd) << ")\n"; outs() << " cmdsize " << Command.C.cmdsize << "\n"; // TODO: get and print the raw bytes of the load command. } // TODO: print all the other kinds of load commands. if (i == ncmds - 1) break; else Command = Obj->getNextLoadCommandInfo(Command); } } static void getAndPrintMachHeader(const MachOObjectFile *Obj, uint32_t &ncmds, uint32_t &filetype, uint32_t &cputype, bool verbose) { if (Obj->is64Bit()) { MachO::mach_header_64 H_64; H_64 = Obj->getHeader64(); PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype, H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose); ncmds = H_64.ncmds; filetype = H_64.filetype; cputype = H_64.cputype; } else { MachO::mach_header H; H = Obj->getHeader(); PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds, H.sizeofcmds, H.flags, verbose); ncmds = H.ncmds; filetype = H.filetype; cputype = H.cputype; } } void llvm::printMachOFileHeader(const object::ObjectFile *Obj) { const MachOObjectFile *file = dyn_cast(Obj); uint32_t ncmds = 0; uint32_t filetype = 0; uint32_t cputype = 0; getAndPrintMachHeader(file, ncmds, filetype, cputype, true); PrintLoadCommands(file, ncmds, filetype, cputype, true); } //===----------------------------------------------------------------------===// // export trie dumping //===----------------------------------------------------------------------===// void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) { for (const llvm::object::ExportEntry &Entry : Obj->exports()) { uint64_t Flags = Entry.flags(); bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT); bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION); bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) == MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL); bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) == MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE); bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER); if (ReExport) outs() << "[re-export] "; else outs() << format("0x%08llX ", Entry.address()); // FIXME:add in base address outs() << Entry.name(); if (WeakDef || ThreadLocal || Resolver || Abs) { bool NeedsComma = false; outs() << " ["; if (WeakDef) { outs() << "weak_def"; NeedsComma = true; } if (ThreadLocal) { if (NeedsComma) outs() << ", "; outs() << "per-thread"; NeedsComma = true; } if (Abs) { if (NeedsComma) outs() << ", "; outs() << "absolute"; NeedsComma = true; } if (Resolver) { if (NeedsComma) outs() << ", "; outs() << format("resolver=0x%08llX", Entry.other()); NeedsComma = true; } outs() << "]"; } if (ReExport) { StringRef DylibName = "unknown"; int Ordinal = Entry.other() - 1; Obj->getLibraryShortNameByIndex(Ordinal, DylibName); if (Entry.otherName().empty()) outs() << " (from " << DylibName << ")"; else outs() << " (" << Entry.otherName() << " from " << DylibName << ")"; } outs() << "\n"; } } //===----------------------------------------------------------------------===// // rebase table dumping //===----------------------------------------------------------------------===// namespace { class SegInfo { public: SegInfo(const object::MachOObjectFile *Obj); StringRef segmentName(uint32_t SegIndex); StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset); uint64_t address(uint32_t SegIndex, uint64_t SegOffset); private: struct SectionInfo { uint64_t Address; uint64_t Size; StringRef SectionName; StringRef SegmentName; uint64_t OffsetInSegment; uint64_t SegmentStartAddress; uint32_t SegmentIndex; }; const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset); SmallVector Sections; }; } SegInfo::SegInfo(const object::MachOObjectFile *Obj) { // Build table of sections so segIndex/offset pairs can be translated. uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0; StringRef CurSegName; uint64_t CurSegAddress; for (const SectionRef &Section : Obj->sections()) { SectionInfo Info; if (error(Section.getName(Info.SectionName))) return; if (error(Section.getAddress(Info.Address))) return; if (error(Section.getSize(Info.Size))) return; Info.SegmentName = Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl()); if (!Info.SegmentName.equals(CurSegName)) { ++CurSegIndex; CurSegName = Info.SegmentName; CurSegAddress = Info.Address; } Info.SegmentIndex = CurSegIndex - 1; Info.OffsetInSegment = Info.Address - CurSegAddress; Info.SegmentStartAddress = CurSegAddress; Sections.push_back(Info); } } StringRef SegInfo::segmentName(uint32_t SegIndex) { for (const SectionInfo &SI : Sections) { if (SI.SegmentIndex == SegIndex) return SI.SegmentName; } llvm_unreachable("invalid segIndex"); } const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex, uint64_t OffsetInSeg) { for (const SectionInfo &SI : Sections) { if (SI.SegmentIndex != SegIndex) continue; if (SI.OffsetInSegment > OffsetInSeg) continue; if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size)) continue; return SI; } llvm_unreachable("segIndex and offset not in any section"); } StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) { return findSection(SegIndex, OffsetInSeg).SectionName; } uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) { const SectionInfo &SI = findSection(SegIndex, OffsetInSeg); return SI.SegmentStartAddress + OffsetInSeg; } void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) { // Build table of sections so names can used in final output. SegInfo sectionTable(Obj); outs() << "segment section address type\n"; for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) { uint32_t SegIndex = Entry.segmentIndex(); uint64_t OffsetInSeg = Entry.segmentOffset(); StringRef SegmentName = sectionTable.segmentName(SegIndex); StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); // Table lines look like: __DATA __nl_symbol_ptr 0x0000F00C pointer outs() << format("%-8s %-18s 0x%08" PRIX64 " %s\n", SegmentName.str().c_str(), SectionName.str().c_str(), Address, Entry.typeName().str().c_str()); } } static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) { StringRef DylibName; switch (Ordinal) { case MachO::BIND_SPECIAL_DYLIB_SELF: return "this-image"; case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE: return "main-executable"; case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP: return "flat-namespace"; default: if (Ordinal > 0) { std::error_code EC = Obj->getLibraryShortNameByIndex(Ordinal-1, DylibName); if (EC) return "<>"; return DylibName; } } return "<>"; } //===----------------------------------------------------------------------===// // bind table dumping //===----------------------------------------------------------------------===// void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) { // Build table of sections so names can used in final output. SegInfo sectionTable(Obj); outs() << "segment section address type " "addend dylib symbol\n"; for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) { uint32_t SegIndex = Entry.segmentIndex(); uint64_t OffsetInSeg = Entry.segmentOffset(); StringRef SegmentName = sectionTable.segmentName(SegIndex); StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); // Table lines look like: // __DATA __got 0x00012010 pointer 0 libSystem ___stack_chk_guard StringRef Attr; if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT) Attr = " (weak_import)"; outs() << left_justify(SegmentName, 8) << " " << left_justify(SectionName, 18) << " " << format_hex(Address, 10, true) << " " << left_justify(Entry.typeName(), 8) << " " << format_decimal(Entry.addend(), 8) << " " << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " " << Entry.symbolName() << Attr << "\n"; } } //===----------------------------------------------------------------------===// // lazy bind table dumping //===----------------------------------------------------------------------===// void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) { // Build table of sections so names can used in final output. SegInfo sectionTable(Obj); outs() << "segment section address " "dylib symbol\n"; for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) { uint32_t SegIndex = Entry.segmentIndex(); uint64_t OffsetInSeg = Entry.segmentOffset(); StringRef SegmentName = sectionTable.segmentName(SegIndex); StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); // Table lines look like: // __DATA __got 0x00012010 libSystem ___stack_chk_guard outs() << left_justify(SegmentName, 8) << " " << left_justify(SectionName, 18) << " " << format_hex(Address, 10, true) << " " << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " " << Entry.symbolName() << "\n"; } } //===----------------------------------------------------------------------===// // weak bind table dumping //===----------------------------------------------------------------------===// void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) { // Build table of sections so names can used in final output. SegInfo sectionTable(Obj); outs() << "segment section address " "type addend symbol\n"; for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) { // Strong symbols don't have a location to update. if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) { outs() << " strong " << Entry.symbolName() << "\n"; continue; } uint32_t SegIndex = Entry.segmentIndex(); uint64_t OffsetInSeg = Entry.segmentOffset(); StringRef SegmentName = sectionTable.segmentName(SegIndex); StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); // Table lines look like: // __DATA __data 0x00001000 pointer 0 _foo outs() << left_justify(SegmentName, 8) << " " << left_justify(SectionName, 18) << " " << format_hex(Address, 10, true) << " " << left_justify(Entry.typeName(), 8) << " " << format_decimal(Entry.addend(), 8) << " " << Entry.symbolName() << "\n"; } }