//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass eliminates machine instruction PHI nodes by inserting copy // instructions, using an intelligent copy-folding technique based on // dominator information. This is technique is derived from: // // Budimlic, et al. Fast copy coalescing and live-range identification. // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language // Design and Implementation (Berlin, Germany, June 17 - 19, 2002). // PLDI '02. ACM, New York, NY, 25-32. // DOI= http://doi.acm.org/10.1145/512529.512534 // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "strongphielim" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" using namespace llvm; namespace { struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass { static char ID; // Pass identification, replacement for typeid StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {} DenseMap > Waiting; std::map > Stacks; std::set UsedByAnother; bool runOnMachineFunction(MachineFunction &Fn); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreservedID(PHIEliminationID); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } virtual void releaseMemory() { preorder.clear(); maxpreorder.clear(); Waiting.clear(); } private: struct DomForestNode { private: std::vector children; unsigned reg; void addChild(DomForestNode* DFN) { children.push_back(DFN); } public: typedef std::vector::iterator iterator; DomForestNode(unsigned r, DomForestNode* parent) : reg(r) { if (parent) parent->addChild(this); } ~DomForestNode() { for (iterator I = begin(), E = end(); I != E; ++I) delete *I; } inline unsigned getReg() { return reg; } inline DomForestNode::iterator begin() { return children.begin(); } inline DomForestNode::iterator end() { return children.end(); } }; DenseMap preorder; DenseMap maxpreorder; void computeDFS(MachineFunction& MF); void processBlock(MachineBasicBlock* MBB); std::vector computeDomForest(std::set& instrs); void processPHIUnion(MachineInstr* Inst, std::set& PHIUnion, std::vector& DF, std::vector >& locals); void ScheduleCopies(MachineBasicBlock* MBB, std::set& pushed); void InsertCopies(MachineBasicBlock* MBB); }; char StrongPHIElimination::ID = 0; RegisterPass X("strong-phi-node-elimination", "Eliminate PHI nodes for register allocation, intelligently"); } const PassInfo *llvm::StrongPHIEliminationID = X.getPassInfo(); /// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree /// of the given MachineFunction. These numbers are then used in other parts /// of the PHI elimination process. void StrongPHIElimination::computeDFS(MachineFunction& MF) { SmallPtrSet frontier; SmallPtrSet visited; unsigned time = 0; MachineDominatorTree& DT = getAnalysis(); MachineDomTreeNode* node = DT.getRootNode(); std::vector worklist; worklist.push_back(node); while (!worklist.empty()) { MachineDomTreeNode* currNode = worklist.back(); if (!frontier.count(currNode)) { frontier.insert(currNode); ++time; preorder.insert(std::make_pair(currNode->getBlock(), time)); } bool inserted = false; for (MachineDomTreeNode::iterator I = node->begin(), E = node->end(); I != E; ++I) if (!frontier.count(*I) && !visited.count(*I)) { worklist.push_back(*I); inserted = true; break; } if (!inserted) { frontier.erase(currNode); visited.insert(currNode); maxpreorder.insert(std::make_pair(currNode->getBlock(), time)); worklist.pop_back(); } } } /// PreorderSorter - a helper class that is used to sort registers /// according to the preorder number of their defining blocks class PreorderSorter { private: DenseMap& preorder; LiveVariables& LV; public: PreorderSorter(DenseMap& p, LiveVariables& L) : preorder(p), LV(L) { } bool operator()(unsigned A, unsigned B) { if (A == B) return false; MachineBasicBlock* ABlock = LV.getVarInfo(A).DefInst->getParent(); MachineBasicBlock* BBlock = LV.getVarInfo(A).DefInst->getParent(); if (preorder[ABlock] < preorder[BBlock]) return true; else if (preorder[ABlock] > preorder[BBlock]) return false; assert(0 && "Error sorting by dominance!"); return false; } }; /// computeDomForest - compute the subforest of the DomTree corresponding /// to the defining blocks of the registers in question std::vector StrongPHIElimination::computeDomForest(std::set& regs) { LiveVariables& LV = getAnalysis(); DomForestNode* VirtualRoot = new DomForestNode(0, 0); maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL)); std::vector worklist; worklist.reserve(regs.size()); for (std::set::iterator I = regs.begin(), E = regs.end(); I != E; ++I) worklist.push_back(*I); PreorderSorter PS(preorder, LV); std::sort(worklist.begin(), worklist.end(), PS); DomForestNode* CurrentParent = VirtualRoot; std::vector stack; stack.push_back(VirtualRoot); for (std::vector::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { unsigned pre = preorder[LV.getVarInfo(*I).DefInst->getParent()]; MachineBasicBlock* parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent(); while (pre > maxpreorder[parentBlock]) { stack.pop_back(); CurrentParent = stack.back(); parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent(); } DomForestNode* child = new DomForestNode(*I, CurrentParent); stack.push_back(child); CurrentParent = child; } std::vector ret; ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end()); return ret; } /// isLiveIn - helper method that determines, from a VarInfo, if a register /// is live into a block bool isLiveIn(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) { if (V.AliveBlocks.test(MBB->getNumber())) return true; if (V.DefInst->getParent() != MBB && V.UsedBlocks.test(MBB->getNumber())) return true; return false; } /// isLiveOut - help method that determines, from a VarInfo, if a register is /// live out of a block. bool isLiveOut(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) { if (MBB == V.DefInst->getParent() || V.UsedBlocks.test(MBB->getNumber())) { for (std::vector::iterator I = V.Kills.begin(), E = V.Kills.end(); I != E; ++I) if ((*I)->getParent() == MBB) return false; return true; } return false; } /// isKillInst - helper method that determines, from a VarInfo, if an /// instruction kills a given register bool isKillInst(LiveVariables::VarInfo& V, MachineInstr* MI) { return std::find(V.Kills.begin(), V.Kills.end(), MI) != V.Kills.end(); } /// interferes - checks for local interferences by scanning a block. The only /// trick parameter is 'mode' which tells it the relationship of the two /// registers. 0 - defined in the same block, 1 - first properly dominates /// second, 2 - second properly dominates first bool interferes(LiveVariables::VarInfo& First, LiveVariables::VarInfo& Second, MachineBasicBlock* scan, unsigned mode) { MachineInstr* def = 0; MachineInstr* kill = 0; bool interference = false; // Wallk the block, checking for interferences for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end(); MBI != MBE; ++MBI) { MachineInstr* curr = MBI; // Same defining block... if (mode == 0) { if (curr == First.DefInst) { // If we find our first DefInst, save it if (!def) { def = curr; // If there's already an unkilled DefInst, then // this is an interference } else if (!kill) { interference = true; break; // If there's a DefInst followed by a KillInst, then // they can't interfere } else { interference = false; break; } // Symmetric with the above } else if (curr == Second.DefInst ) { if (!def) { def = curr; } else if (!kill) { interference = true; break; } else { interference = false; break; } // Store KillInsts if they match up with the DefInst } else if (isKillInst(First, curr)) { if (def == First.DefInst) { kill = curr; } else if (isKillInst(Second, curr)) { if (def == Second.DefInst) { kill = curr; } } } // First properly dominates second... } else if (mode == 1) { if (curr == Second.DefInst) { // DefInst of second without kill of first is an interference if (!kill) { interference = true; break; // DefInst after a kill is a non-interference } else { interference = false; break; } // Save KillInsts of First } else if (isKillInst(First, curr)) { kill = curr; } // Symmetric with the above } else if (mode == 2) { if (curr == First.DefInst) { if (!kill) { interference = true; break; } else { interference = false; break; } } else if (isKillInst(Second, curr)) { kill = curr; } } } return interference; } /// processBlock - Eliminate PHIs in the given block void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) { LiveVariables& LV = getAnalysis(); // Holds names that have been added to a set in any PHI within this block // before the current one. std::set ProcessedNames; MachineBasicBlock::iterator P = MBB->begin(); while (P->getOpcode() == TargetInstrInfo::PHI) { LiveVariables::VarInfo& PHIInfo = LV.getVarInfo(P->getOperand(0).getReg()); unsigned DestReg = P->getOperand(0).getReg(); // Hold the names that are currently in the candidate set. std::set PHIUnion; std::set UnionedBlocks; for (int i = P->getNumOperands() - 1; i >= 2; i-=2) { unsigned SrcReg = P->getOperand(i-1).getReg(); LiveVariables::VarInfo& SrcInfo = LV.getVarInfo(SrcReg); // Check for trivial interferences if (isLiveIn(SrcInfo, P->getParent()) || isLiveOut(PHIInfo, SrcInfo.DefInst->getParent()) || ( PHIInfo.DefInst->getOpcode() == TargetInstrInfo::PHI && isLiveIn(PHIInfo, SrcInfo.DefInst->getParent()) ) || ProcessedNames.count(SrcReg) || UnionedBlocks.count(SrcInfo.DefInst->getParent())) { // add a copy from a_i to p in Waiting[From[a_i]] MachineBasicBlock* From = P->getOperand(i).getMBB(); Waiting[From].insert(std::make_pair(SrcReg, DestReg)); UsedByAnother.insert(SrcReg); } else { PHIUnion.insert(SrcReg); UnionedBlocks.insert(SrcInfo.DefInst->getParent()); } } std::vector DF = computeDomForest(PHIUnion); // Walk DomForest to resolve interferences std::vector > localInterferences; processPHIUnion(P, PHIUnion, DF, localInterferences); // Check for local interferences for (std::vector >::iterator I = localInterferences.begin(), E = localInterferences.end(); I != E; ++I) { std::pair p = *I; LiveVariables::VarInfo& FirstInfo = LV.getVarInfo(p.first); LiveVariables::VarInfo& SecondInfo = LV.getVarInfo(p.second); MachineDominatorTree& MDT = getAnalysis(); // Determine the block we need to scan and the relationship between // the two registers MachineBasicBlock* scan = 0; unsigned mode = 0; if (FirstInfo.DefInst->getParent() == SecondInfo.DefInst->getParent()) { scan = FirstInfo.DefInst->getParent(); mode = 0; // Same block } else if (MDT.dominates(FirstInfo.DefInst->getParent(), SecondInfo.DefInst->getParent())) { scan = SecondInfo.DefInst->getParent(); mode = 1; // First dominates second } else { scan = FirstInfo.DefInst->getParent(); mode = 2; // Second dominates first } // If there's an interference, we need to insert copies if (interferes(FirstInfo, SecondInfo, scan, mode)) { // Insert copies for First for (int i = P->getNumOperands() - 1; i >= 2; i-=2) { if (P->getOperand(i-1).getReg() == p.first) { unsigned SrcReg = p.first; MachineBasicBlock* From = P->getOperand(i).getMBB(); Waiting[From].insert(std::make_pair(SrcReg, P->getOperand(0).getReg())); UsedByAnother.insert(SrcReg); PHIUnion.erase(SrcReg); } } } } // FIXME: Cache renaming information ProcessedNames.insert(PHIUnion.begin(), PHIUnion.end()); ++P; } } /// processPHIUnion - Take a set of candidate registers to be coallesced when /// decomposing the PHI instruction. Use the DominanceForest to remove the ones /// that are known to interfere, and flag others that need to be checked for /// local interferences. void StrongPHIElimination::processPHIUnion(MachineInstr* Inst, std::set& PHIUnion, std::vector& DF, std::vector >& locals) { std::vector worklist(DF.begin(), DF.end()); SmallPtrSet visited; LiveVariables& LV = getAnalysis(); unsigned DestReg = Inst->getOperand(0).getReg(); // DF walk on the DomForest while (!worklist.empty()) { DomForestNode* DFNode = worklist.back(); LiveVariables::VarInfo& Info = LV.getVarInfo(DFNode->getReg()); visited.insert(DFNode); bool inserted = false; for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end(); CI != CE; ++CI) { DomForestNode* child = *CI; LiveVariables::VarInfo& CInfo = LV.getVarInfo(child->getReg()); if (isLiveOut(Info, CInfo.DefInst->getParent())) { // Insert copies for parent for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) { if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) { unsigned SrcReg = DFNode->getReg(); MachineBasicBlock* From = Inst->getOperand(i).getMBB(); Waiting[From].insert(std::make_pair(SrcReg, DestReg)); UsedByAnother.insert(SrcReg); PHIUnion.erase(SrcReg); } } } else if (isLiveIn(Info, CInfo.DefInst->getParent()) || Info.DefInst->getParent() == CInfo.DefInst->getParent()) { // Add (p, c) to possible local interferences locals.push_back(std::make_pair(DFNode->getReg(), child->getReg())); } if (!visited.count(child)) { worklist.push_back(child); inserted = true; } } if (!inserted) worklist.pop_back(); } } /// ScheduleCopies - Insert copies into predecessor blocks, scheduling /// them properly so as to avoid the 'lost copy' and the 'virtual swap' /// problems. /// /// Based on "Practical Improvements to the Construction and Destruction /// of Static Single Assignment Form" by Briggs, et al. void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB, std::set& pushed) { std::map& copy_set= Waiting[MBB]; std::map worklist; std::map map; // Setup worklist of initial copies for (std::map::iterator I = copy_set.begin(), E = copy_set.end(); I != E; ) { map.insert(std::make_pair(I->first, I->first)); map.insert(std::make_pair(I->second, I->second)); if (!UsedByAnother.count(I->first)) { worklist.insert(*I); // Avoid iterator invalidation unsigned first = I->first; ++I; copy_set.erase(first); } else { ++I; } } LiveVariables& LV = getAnalysis(); // Iterate over the worklist, inserting copies while (!worklist.empty() || !copy_set.empty()) { while (!worklist.empty()) { std::pair curr = *worklist.begin(); worklist.erase(curr.first); if (isLiveOut(LV.getVarInfo(curr.second), MBB)) { // Insert copy from curr.second to a temporary // Push temporary on Stacks // Insert temporary in pushed } // Insert copy from map[curr.first] to curr.second map[curr.first] = curr.second; // If curr.first is a destination in copy_set... for (std::map::iterator I = copy_set.begin(), E = copy_set.end(); I != E; ) if (curr.first == I->second) { std::pair temp = *I; // Avoid iterator invalidation ++I; copy_set.erase(temp.first); worklist.insert(temp); break; } else { ++I; } } if (!copy_set.empty()) { std::pair curr = *copy_set.begin(); copy_set.erase(curr.first); // Insert a copy from dest to a new temporary t at the end of b // map[curr.second] = t; worklist.insert(curr); } } } /// InsertCopies - insert copies into MBB and all of its successors void StrongPHIElimination::InsertCopies(MachineBasicBlock* MBB) { std::set pushed; // Rewrite register uses from Stacks for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) for (unsigned i = 0; i < I->getNumOperands(); ++i) if (I->getOperand(i).isRegister() && Stacks[I->getOperand(i).getReg()].size()) { I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back()); } // Schedule the copies for this block ScheduleCopies(MBB, pushed); // Recur to our successors for (GraphTraits::ChildIteratorType I = GraphTraits::child_begin(MBB), E = GraphTraits::child_end(MBB); I != E; ++I) InsertCopies(*I); // As we exit this block, pop the names we pushed while processing it for (std::set::iterator I = pushed.begin(), E = pushed.end(); I != E; ++I) Stacks[*I].pop_back(); } bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) { // Compute DFS numbers of each block computeDFS(Fn); // Determine which phi node operands need copies for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) if (!I->empty() && I->begin()->getOpcode() == TargetInstrInfo::PHI) processBlock(I); // Insert copies // FIXME: This process should probably preserve LiveVariables InsertCopies(Fn.begin()); // FIXME: Perform renaming return false; }