//==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines classes to implement an intrusive doubly linked list class // (i.e. each node of the list must contain a next and previous field for the // list. // // The ilist_traits trait class is used to gain access to the next and previous // fields of the node type that the list is instantiated with. If it is not // specialized, the list defaults to using the getPrev(), getNext() method calls // to get the next and previous pointers. // // The ilist class itself, should be a plug in replacement for list, assuming // that the nodes contain next/prev pointers. This list replacement does not // provide a constant time size() method, so be careful to use empty() when you // really want to know if it's empty. // // The ilist class is implemented by allocating a 'tail' node when the list is // created (using ilist_traits<>::createSentinel()). This tail node is // absolutely required because the user must be able to compute end()-1. Because // of this, users of the direct next/prev links will see an extra link on the // end of the list, which should be ignored. // // Requirements for a user of this list: // // 1. The user must provide {g|s}et{Next|Prev} methods, or specialize // ilist_traits to provide an alternate way of getting and setting next and // prev links. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_ILIST_H #define LLVM_ADT_ILIST_H #include "llvm/ADT/iterator.h" #include namespace llvm { template class iplist; template class ilist_iterator; /// ilist_nextprev_traits - A fragment for template traits for intrusive list /// that provides default next/prev implementations for common operations. /// template struct ilist_nextprev_traits { static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); } static NodeTy *getNext(NodeTy *N) { return N->getNext(); } static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); } static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); } static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); } static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); } }; /// ilist_sentinel_traits - A fragment for template traits for intrusive list /// that provides default sentinel implementations for common operations. /// template struct ilist_sentinel_traits { static NodeTy *createSentinel() { return new NodeTy(); } static void destroySentinel(NodeTy *N) { delete N; } }; /// ilist_default_traits - Default template traits for intrusive list. /// By inheriting from this, you can easily use default implementations /// for all common operations. /// template struct ilist_default_traits : ilist_nextprev_traits, ilist_sentinel_traits { static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); } static void deleteNode(NodeTy *V) { delete V; } void addNodeToList(NodeTy *) {} void removeNodeFromList(NodeTy *) {} void transferNodesFromList(ilist_default_traits & /*SrcTraits*/, ilist_iterator /*first*/, ilist_iterator /*last*/) {} }; // Template traits for intrusive list. By specializing this template class, you // can change what next/prev fields are used to store the links... template struct ilist_traits : ilist_default_traits {}; // Const traits are the same as nonconst traits... template struct ilist_traits : public ilist_traits {}; //===----------------------------------------------------------------------===// // ilist_iterator - Iterator for intrusive list. // template class ilist_iterator : public bidirectional_iterator { public: typedef ilist_traits Traits; typedef bidirectional_iterator super; typedef typename super::value_type value_type; typedef typename super::difference_type difference_type; typedef typename super::pointer pointer; typedef typename super::reference reference; private: pointer NodePtr; // ilist_iterator is not a random-access iterator, but it has an // implicit conversion to pointer-type, which is. Declare (but // don't define) these functions as private to help catch // accidental misuse. void operator[](difference_type) const; void operator+(difference_type) const; void operator-(difference_type) const; void operator+=(difference_type) const; void operator-=(difference_type) const; template void operator<(T) const; template void operator<=(T) const; template void operator>(T) const; template void operator>=(T) const; template void operator-(T) const; public: ilist_iterator(pointer NP) : NodePtr(NP) {} ilist_iterator(reference NR) : NodePtr(&NR) {} ilist_iterator() : NodePtr(0) {} // This is templated so that we can allow constructing a const iterator from // a nonconst iterator... template ilist_iterator(const ilist_iterator &RHS) : NodePtr(RHS.getNodePtrUnchecked()) {} // This is templated so that we can allow assigning to a const iterator from // a nonconst iterator... template const ilist_iterator &operator=(const ilist_iterator &RHS) { NodePtr = RHS.getNodePtrUnchecked(); return *this; } // Accessors... operator pointer() const { assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!"); return NodePtr; } reference operator*() const { assert(Traits::getNext(NodePtr) != 0 && "Dereferencing end()!"); return *NodePtr; } pointer operator->() const { return &operator*(); } // Comparison operators bool operator==(const ilist_iterator &RHS) const { return NodePtr == RHS.NodePtr; } bool operator!=(const ilist_iterator &RHS) const { return NodePtr != RHS.NodePtr; } // Increment and decrement operators... ilist_iterator &operator--() { // predecrement - Back up NodePtr = Traits::getPrev(NodePtr); assert(Traits::getNext(NodePtr) && "--'d off the beginning of an ilist!"); return *this; } ilist_iterator &operator++() { // preincrement - Advance NodePtr = Traits::getNext(NodePtr); assert(NodePtr && "++'d off the end of an ilist!"); return *this; } ilist_iterator operator--(int) { // postdecrement operators... ilist_iterator tmp = *this; --*this; return tmp; } ilist_iterator operator++(int) { // postincrement operators... ilist_iterator tmp = *this; ++*this; return tmp; } // Internal interface, do not use... pointer getNodePtrUnchecked() const { return NodePtr; } }; // do not implement. this is to catch errors when people try to use // them as random access iterators template void operator-(int, ilist_iterator); template void operator-(ilist_iterator,int); template void operator+(int, ilist_iterator); template void operator+(ilist_iterator,int); // operator!=/operator== - Allow mixed comparisons without dereferencing // the iterator, which could very likely be pointing to end(). template bool operator!=(const T* LHS, const ilist_iterator &RHS) { return LHS != RHS.getNodePtrUnchecked(); } template bool operator==(const T* LHS, const ilist_iterator &RHS) { return LHS == RHS.getNodePtrUnchecked(); } template bool operator!=(T* LHS, const ilist_iterator &RHS) { return LHS != RHS.getNodePtrUnchecked(); } template bool operator==(T* LHS, const ilist_iterator &RHS) { return LHS == RHS.getNodePtrUnchecked(); } // Allow ilist_iterators to convert into pointers to a node automatically when // used by the dyn_cast, cast, isa mechanisms... template struct simplify_type; template struct simplify_type > { typedef NodeTy* SimpleType; static SimpleType getSimplifiedValue(const ilist_iterator &Node) { return &*Node; } }; template struct simplify_type > { typedef NodeTy* SimpleType; static SimpleType getSimplifiedValue(const ilist_iterator &Node) { return &*Node; } }; //===----------------------------------------------------------------------===// // /// iplist - The subset of list functionality that can safely be used on nodes /// of polymorphic types, i.e. a heterogenous list with a common base class that /// holds the next/prev pointers. The only state of the list itself is a single /// pointer to the head of the list. /// /// This list can be in one of three interesting states: /// 1. The list may be completely unconstructed. In this case, the head /// pointer is null. When in this form, any query for an iterator (e.g. /// begin() or end()) causes the list to transparently change to state #2. /// 2. The list may be empty, but contain a sentinal for the end iterator. This /// sentinal is created by the Traits::createSentinel method and is a link /// in the list. When the list is empty, the pointer in the iplist points /// to the sentinal. Once the sentinal is constructed, it /// is not destroyed until the list is. /// 3. The list may contain actual objects in it, which are stored as a doubly /// linked list of nodes. One invariant of the list is that the predecessor /// of the first node in the list always points to the last node in the list, /// and the successor pointer for the sentinal (which always stays at the /// end of the list) is always null. /// template > class iplist : public Traits { mutable NodeTy *Head; // Use the prev node pointer of 'head' as the tail pointer. This is really a // circularly linked list where we snip the 'next' link from the sentinel node // back to the first node in the list (to preserve assertions about going off // the end of the list). NodeTy *getTail() { return this->getPrev(Head); } const NodeTy *getTail() const { return this->getPrev(Head); } void setTail(NodeTy *N) const { this->setPrev(Head, N); } /// CreateLazySentinal - This method verifies whether the sentinal for the /// list has been created and lazily makes it if not. void CreateLazySentinal() const { if (Head != 0) return; Head = Traits::createSentinel(); this->setNext(Head, 0); setTail(Head); } static bool op_less(NodeTy &L, NodeTy &R) { return L < R; } static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; } // No fundamental reason why iplist can't by copyable, but the default // copy/copy-assign won't do. iplist(const iplist &); // do not implement void operator=(const iplist &); // do not implement public: typedef NodeTy *pointer; typedef const NodeTy *const_pointer; typedef NodeTy &reference; typedef const NodeTy &const_reference; typedef NodeTy value_type; typedef ilist_iterator iterator; typedef ilist_iterator const_iterator; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; iplist() : Head(0) {} ~iplist() { if (!Head) return; clear(); Traits::destroySentinel(getTail()); } // Iterator creation methods. iterator begin() { CreateLazySentinal(); return iterator(Head); } const_iterator begin() const { CreateLazySentinal(); return const_iterator(Head); } iterator end() { CreateLazySentinal(); return iterator(getTail()); } const_iterator end() const { CreateLazySentinal(); return const_iterator(getTail()); } // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());} // Miscellaneous inspection routines. size_type max_size() const { return size_type(-1); } bool empty() const { return Head == 0 || Head == getTail(); } // Front and back accessor functions... reference front() { assert(!empty() && "Called front() on empty list!"); return *Head; } const_reference front() const { assert(!empty() && "Called front() on empty list!"); return *Head; } reference back() { assert(!empty() && "Called back() on empty list!"); return *this->getPrev(getTail()); } const_reference back() const { assert(!empty() && "Called back() on empty list!"); return *this->getPrev(getTail()); } void swap(iplist &RHS) { assert(0 && "Swap does not use list traits callback correctly yet!"); std::swap(Head, RHS.Head); } iterator insert(iterator where, NodeTy *New) { NodeTy *CurNode = where.getNodePtrUnchecked(), *PrevNode = this->getPrev(CurNode); this->setNext(New, CurNode); this->setPrev(New, PrevNode); if (CurNode != Head) // Is PrevNode off the beginning of the list? this->setNext(PrevNode, New); else Head = New; this->setPrev(CurNode, New); this->addNodeToList(New); // Notify traits that we added a node... return New; } NodeTy *remove(iterator &IT) { assert(IT != end() && "Cannot remove end of list!"); NodeTy *Node = &*IT; NodeTy *NextNode = this->getNext(Node); NodeTy *PrevNode = this->getPrev(Node); if (Node != Head) // Is PrevNode off the beginning of the list? this->setNext(PrevNode, NextNode); else Head = NextNode; this->setPrev(NextNode, PrevNode); IT = NextNode; removeNodeFromList(Node); // Notify traits that we removed a node... // Set the next/prev pointers of the current node to null. This isn't // strictly required, but this catches errors where a node is removed from // an ilist (and potentially deleted) with iterators still pointing at it. // When those iterators are incremented or decremented, they will assert on // the null next/prev pointer instead of "usually working". this->setNext(Node, 0); this->setPrev(Node, 0); return Node; } NodeTy *remove(const iterator &IT) { iterator MutIt = IT; return remove(MutIt); } // erase - remove a node from the controlled sequence... and delete it. iterator erase(iterator where) { deleteNode(remove(where)); return where; } private: // transfer - The heart of the splice function. Move linked list nodes from // [first, last) into position. // void transfer(iterator position, iplist &L2, iterator first, iterator last) { assert(first != last && "Should be checked by callers"); if (position != last) { // Note: we have to be careful about the case when we move the first node // in the list. This node is the list sentinel node and we can't move it. NodeTy *ThisSentinel = getTail(); setTail(0); NodeTy *L2Sentinel = L2.getTail(); L2.setTail(0); // Remove [first, last) from its old position. NodeTy *First = &*first, *Prev = getPrev(First); NodeTy *Next = last.getNodePtrUnchecked(), *Last = getPrev(Next); if (Prev) this->setNext(Prev, Next); else L2.Head = Next; this->setPrev(Next, Prev); // Splice [first, last) into its new position. NodeTy *PosNext = position.getNodePtrUnchecked(); NodeTy *PosPrev = getPrev(PosNext); // Fix head of list... if (PosPrev) this->setNext(PosPrev, First); else Head = First; this->setPrev(First, PosPrev); // Fix end of list... this->setNext(Last, PosNext); this->setPrev(PosNext, Last); transferNodesFromList(L2, First, PosNext); // Now that everything is set, restore the pointers to the list sentinals. L2.setTail(L2Sentinel); setTail(ThisSentinel); } } public: //===----------------------------------------------------------------------=== // Functionality derived from other functions defined above... // size_type size() const { if (Head == 0) return 0; // Don't require construction of sentinal if empty. #if __GNUC__ == 2 // GCC 2.95 has a broken std::distance size_type Result = 0; std::distance(begin(), end(), Result); return Result; #else return std::distance(begin(), end()); #endif } iterator erase(iterator first, iterator last) { while (first != last) first = erase(first); return last; } void clear() { if (Head) erase(begin(), end()); } // Front and back inserters... void push_front(NodeTy *val) { insert(begin(), val); } void push_back(NodeTy *val) { insert(end(), val); } void pop_front() { assert(!empty() && "pop_front() on empty list!"); erase(begin()); } void pop_back() { assert(!empty() && "pop_back() on empty list!"); iterator t = end(); erase(--t); } // Special forms of insert... template void insert(iterator where, InIt first, InIt last) { for (; first != last; ++first) insert(where, *first); } // Splice members - defined in terms of transfer... void splice(iterator where, iplist &L2) { if (!L2.empty()) transfer(where, L2, L2.begin(), L2.end()); } void splice(iterator where, iplist &L2, iterator first) { iterator last = first; ++last; if (where == first || where == last) return; // No change transfer(where, L2, first, last); } void splice(iterator where, iplist &L2, iterator first, iterator last) { if (first != last) transfer(where, L2, first, last); } //===----------------------------------------------------------------------=== // High-Level Functionality that shouldn't really be here, but is part of list // // These two functions are actually called remove/remove_if in list<>, but // they actually do the job of erase, rename them accordingly. // void erase(const NodeTy &val) { for (iterator I = begin(), E = end(); I != E; ) { iterator next = I; ++next; if (*I == val) erase(I); I = next; } } template void erase_if(Pr1 pred) { for (iterator I = begin(), E = end(); I != E; ) { iterator next = I; ++next; if (pred(*I)) erase(I); I = next; } } template void unique(Pr2 pred) { if (empty()) return; for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) { if (pred(*I)) erase(Next); else I = Next; Next = I; } } void unique() { unique(op_equal); } template void merge(iplist &right, Pr3 pred) { iterator first1 = begin(), last1 = end(); iterator first2 = right.begin(), last2 = right.end(); while (first1 != last1 && first2 != last2) if (pred(*first2, *first1)) { iterator next = first2; transfer(first1, right, first2, ++next); first2 = next; } else { ++first1; } if (first2 != last2) transfer(last1, right, first2, last2); } void merge(iplist &right) { return merge(right, op_less); } template void sort(Pr3 pred); void sort() { sort(op_less); } void reverse(); }; template struct ilist : public iplist { typedef typename iplist::size_type size_type; typedef typename iplist::iterator iterator; ilist() {} ilist(const ilist &right) { insert(this->begin(), right.begin(), right.end()); } explicit ilist(size_type count) { insert(this->begin(), count, NodeTy()); } ilist(size_type count, const NodeTy &val) { insert(this->begin(), count, val); } template ilist(InIt first, InIt last) { insert(this->begin(), first, last); } // Forwarding functions: A workaround for GCC 2.95 which does not correctly // support 'using' declarations to bring a hidden member into scope. // iterator insert(iterator a, NodeTy *b){ return iplist::insert(a, b); } void push_front(NodeTy *a) { iplist::push_front(a); } void push_back(NodeTy *a) { iplist::push_back(a); } // Main implementation here - Insert for a node passed by value... iterator insert(iterator where, const NodeTy &val) { return insert(where, createNode(val)); } // Front and back inserters... void push_front(const NodeTy &val) { insert(this->begin(), val); } void push_back(const NodeTy &val) { insert(this->end(), val); } // Special forms of insert... template void insert(iterator where, InIt first, InIt last) { for (; first != last; ++first) insert(where, *first); } void insert(iterator where, size_type count, const NodeTy &val) { for (; count != 0; --count) insert(where, val); } // Assign special forms... void assign(size_type count, const NodeTy &val) { iterator I = this->begin(); for (; I != this->end() && count != 0; ++I, --count) *I = val; if (count != 0) insert(this->end(), val, val); else erase(I, this->end()); } template void assign(InIt first1, InIt last1) { iterator first2 = this->begin(), last2 = this->end(); for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) *first1 = *first2; if (first2 == last2) erase(first1, last1); else insert(last1, first2, last2); } // Resize members... void resize(size_type newsize, NodeTy val) { iterator i = this->begin(); size_type len = 0; for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ; if (len == newsize) erase(i, this->end()); else // i == end() insert(this->end(), newsize - len, val); } void resize(size_type newsize) { resize(newsize, NodeTy()); } }; } // End llvm namespace namespace std { // Ensure that swap uses the fast list swap... template void swap(llvm::iplist &Left, llvm::iplist &Right) { Left.swap(Right); } } // End 'std' extensions... #endif // LLVM_ADT_ILIST_H