//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a peephole optimizer for the X86. // //===----------------------------------------------------------------------===// #include "X86.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/MRegisterInfo.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" using namespace llvm; namespace { Statistic<> NumPHOpts("x86-peephole", "Number of peephole optimization performed"); struct PH : public MachineFunctionPass { virtual bool runOnMachineFunction(MachineFunction &MF); bool PeepholeOptimize(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I); virtual const char *getPassName() const { return "X86 Peephole Optimizer"; } }; } FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); } bool PH::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI) for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ) if (PeepholeOptimize(*BI, I)) { Changed = true; ++NumPHOpts; } else ++I; return Changed; } bool PH::PeepholeOptimize(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I) { assert(I != MBB.end()); MachineBasicBlock::iterator NextI = next(I); MachineInstr *MI = I; MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0; unsigned Size = 0; switch (MI->getOpcode()) { case X86::MOVrr8: case X86::MOVrr16: case X86::MOVrr32: // Destroy X = X copies... if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { I = MBB.erase(I); return true; } return false; // A large number of X86 instructions have forms which take an 8-bit // immediate despite the fact that the operands are 16 or 32 bits. Because // this can save three bytes of code size (and icache space), we want to // shrink them if possible. case X86::IMULri16: case X86::IMULri32: assert(MI->getNumOperands() == 3 && "These should all have 3 operands!"); if (MI->getOperand(2).isImmediate()) { int Val = MI->getOperand(2).getImmedValue(); // If the value is the same when signed extended from 8 bits... if (Val == (signed int)(signed char)Val) { unsigned Opcode; switch (MI->getOpcode()) { default: assert(0 && "Unknown opcode value!"); case X86::IMULri16: Opcode = X86::IMULri16b; break; case X86::IMULri32: Opcode = X86::IMULri32b; break; } unsigned R0 = MI->getOperand(0).getReg(); unsigned R1 = MI->getOperand(1).getReg(); I = MBB.insert(MBB.erase(I), BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val)); return true; } } return false; case X86::ADDri16: case X86::ADDri32: case X86::SUBri16: case X86::SUBri32: case X86::ANDri16: case X86::ANDri32: case X86::ORri16: case X86::ORri32: case X86::XORri16: case X86::XORri32: assert(MI->getNumOperands() == 2 && "These should all have 2 operands!"); if (MI->getOperand(1).isImmediate()) { int Val = MI->getOperand(1).getImmedValue(); // If the value is the same when signed extended from 8 bits... if (Val == (signed int)(signed char)Val) { unsigned Opcode; switch (MI->getOpcode()) { default: assert(0 && "Unknown opcode value!"); case X86::ADDri16: Opcode = X86::ADDri16b; break; case X86::ADDri32: Opcode = X86::ADDri32b; break; case X86::SUBri16: Opcode = X86::SUBri16b; break; case X86::SUBri32: Opcode = X86::SUBri32b; break; case X86::ANDri16: Opcode = X86::ANDri16b; break; case X86::ANDri32: Opcode = X86::ANDri32b; break; case X86::ORri16: Opcode = X86::ORri16b; break; case X86::ORri32: Opcode = X86::ORri32b; break; case X86::XORri16: Opcode = X86::XORri16b; break; case X86::XORri32: Opcode = X86::XORri32b; break; } unsigned R0 = MI->getOperand(0).getReg(); I = MBB.insert(MBB.erase(I), BuildMI(Opcode, 1, R0, MOTy::UseAndDef).addZImm((char)Val)); return true; } } return false; #if 0 case X86::MOVir32: Size++; case X86::MOVir16: Size++; case X86::MOVir8: // FIXME: We can only do this transformation if we know that flags are not // used here, because XOR clobbers the flags! if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, int Val = MI->getOperand(1).getImmedValue(); if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX static const unsigned Opcode[] ={X86::XORrr8,X86::XORrr16,X86::XORrr32}; unsigned Reg = MI->getOperand(0).getReg(); I = MBB.insert(MBB.erase(I), BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg)); return true; } else if (Val == -1) { // mov EAX, -1 -> or EAX, -1 // TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1' } } return false; #endif case X86::BSWAPr32: // Change bswap EAX, bswap EAX into nothing if (Next->getOpcode() == X86::BSWAPr32 && MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) { I = MBB.erase(MBB.erase(I)); return true; } return false; default: return false; } } namespace { class UseDefChains : public MachineFunctionPass { std::vector DefiningInst; public: // getDefinition - Return the machine instruction that defines the specified // SSA virtual register. MachineInstr *getDefinition(unsigned Reg) { assert(MRegisterInfo::isVirtualRegister(Reg) && "use-def chains only exist for SSA registers!"); assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() && "Unknown register number!"); assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] && "Unknown register number!"); return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister]; } // setDefinition - Update the use-def chains to indicate that MI defines // register Reg. void setDefinition(unsigned Reg, MachineInstr *MI) { if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size()) DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1); DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI; } // removeDefinition - Update the use-def chains to forget about Reg // entirely. void removeDefinition(unsigned Reg) { assert(getDefinition(Reg)); // Check validity DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0; } virtual bool runOnMachineFunction(MachineFunction &MF) { for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI) for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) { for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { MachineOperand &MO = I->getOperand(i); if (MO.isRegister() && MO.isDef() && !MO.isUse() && MRegisterInfo::isVirtualRegister(MO.getReg())) setDefinition(MO.getReg(), I); } } return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } virtual void releaseMemory() { std::vector().swap(DefiningInst); } }; RegisterAnalysis X("use-def-chains", "use-def chain construction for machine code"); } namespace { Statistic<> NumSSAPHOpts("x86-ssa-peephole", "Number of SSA peephole optimization performed"); /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This /// pass is really a bad idea: a better instruction selector should completely /// supersume it. However, that will take some time to develop, and the /// simple things this can do are important now. class SSAPH : public MachineFunctionPass { UseDefChains *UDC; public: virtual bool runOnMachineFunction(MachineFunction &MF); bool PeepholeOptimize(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I); virtual const char *getPassName() const { return "X86 SSA-based Peephole Optimizer"; } /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the /// opcode of the instruction, then return true. bool Propagate(MachineInstr *MI, unsigned DestOpNo, MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){ MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo); if (NewOpcode) MI->setOpcode(NewOpcode); return true; } /// OptimizeAddress - If we can fold the addressing arithmetic for this /// memory instruction into the instruction itself, do so and return true. bool OptimizeAddress(MachineInstr *MI, unsigned OpNo); /// getDefininingInst - If the specified operand is a read of an SSA /// register, return the machine instruction defining it, otherwise, return /// null. MachineInstr *getDefiningInst(MachineOperand &MO) { if (MO.isDef() || !MO.isRegister() || !MRegisterInfo::isVirtualRegister(MO.getReg())) return 0; return UDC->getDefinition(MO.getReg()); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } }; } FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); } bool SSAPH::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; bool LocalChanged; UDC = &getAnalysis(); do { LocalChanged = false; for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI) for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ) if (PeepholeOptimize(*BI, I)) { LocalChanged = true; ++NumSSAPHOpts; } else ++I; Changed |= LocalChanged; } while (LocalChanged); return Changed; } static bool isValidScaleAmount(unsigned Scale) { return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8; } /// OptimizeAddress - If we can fold the addressing arithmetic for this /// memory instruction into the instruction itself, do so and return true. bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) { MachineOperand &BaseRegOp = MI->getOperand(OpNo+0); MachineOperand &ScaleOp = MI->getOperand(OpNo+1); MachineOperand &IndexRegOp = MI->getOperand(OpNo+2); MachineOperand &DisplacementOp = MI->getOperand(OpNo+3); unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0; unsigned Scale = ScaleOp.getImmedValue(); unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0; bool Changed = false; // If the base register is unset, and the index register is set with a scale // of 1, move it to be the base register. if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 && Scale == 1 && IndexReg != 0) { BaseRegOp.setReg(IndexReg); IndexRegOp.setReg(0); return true; } // Attempt to fold instructions used by the base register into the instruction if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) { switch (DefInst->getOpcode()) { case X86::MOVir32: // If there is no displacement set for this instruction set one now. // FIXME: If we can fold two immediates together, we should do so! if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) { if (DefInst->getOperand(1).isImmediate()) { BaseRegOp.setReg(0); return Propagate(MI, OpNo+3, DefInst, 1); } } break; case X86::ADDrr32: // If the source is a register-register add, and we do not yet have an // index register, fold the add into the memory address. if (IndexReg == 0) { BaseRegOp = DefInst->getOperand(1); IndexRegOp = DefInst->getOperand(2); ScaleOp.setImmedValue(1); return true; } break; case X86::SHLir32: // If this shift could be folded into the index portion of the address if // it were the index register, move it to the index register operand now, // so it will be folded in below. if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) && DefInst->getOperand(2).getImmedValue() < 4) { std::swap(BaseRegOp, IndexRegOp); ScaleOp.setImmedValue(1); Scale = 1; std::swap(IndexReg, BaseReg); Changed = true; break; } } } // Attempt to fold instructions used by the index into the instruction if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) { switch (DefInst->getOpcode()) { case X86::SHLir32: { // Figure out what the resulting scale would be if we folded this shift. unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue()); if (isValidScaleAmount(ResScale)) { IndexRegOp = DefInst->getOperand(1); ScaleOp.setImmedValue(ResScale); return true; } break; } } } return Changed; } bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I) { MachineBasicBlock::iterator NextI = next(I); MachineInstr *MI = I; MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0; bool Changed = false; // Scan the operands of this instruction. If any operands are // register-register copies, replace the operand with the source. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) // Is this an SSA register use? if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i))) // If the operand is a vreg-vreg copy, it is always safe to replace the // source value with the input operand. if (DefInst->getOpcode() == X86::MOVrr8 || DefInst->getOpcode() == X86::MOVrr16 || DefInst->getOpcode() == X86::MOVrr32) { // Don't propagate physical registers into PHI nodes... if (MI->getOpcode() != X86::PHI || (DefInst->getOperand(1).isRegister() && MRegisterInfo::isVirtualRegister(DefInst->getOperand(1).getReg()))) Changed = Propagate(MI, i, DefInst, 1); } // Perform instruction specific optimizations. switch (MI->getOpcode()) { // Register to memory stores. Format: , srcreg case X86::MOVrm32: case X86::MOVrm16: case X86::MOVrm8: case X86::MOVim32: case X86::MOVim16: case X86::MOVim8: // Check to see if we can fold the source instruction into this one... if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) { switch (SrcInst->getOpcode()) { // Fold the immediate value into the store, if possible. case X86::MOVir8: return Propagate(MI, 4, SrcInst, 1, X86::MOVim8); case X86::MOVir16: return Propagate(MI, 4, SrcInst, 1, X86::MOVim16); case X86::MOVir32: return Propagate(MI, 4, SrcInst, 1, X86::MOVim32); default: break; } } // If we can optimize the addressing expression, do so now. if (OptimizeAddress(MI, 0)) return true; break; case X86::MOVmr32: case X86::MOVmr16: case X86::MOVmr8: // If we can optimize the addressing expression, do so now. if (OptimizeAddress(MI, 1)) return true; break; default: break; } return Changed; }