//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a DAG pattern matching instruction selector for X86, // converting from a legalized dag to a X86 dag. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-isel" #include "X86.h" #include "X86InstrBuilder.h" #include "X86ISelLowering.h" #include "X86MachineFunctionInfo.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/Support/CFG.h" #include "llvm/Type.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" using namespace llvm; #include "llvm/Support/CommandLine.h" static cl::opt AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden); STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); //===----------------------------------------------------------------------===// // Pattern Matcher Implementation //===----------------------------------------------------------------------===// namespace { /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses /// SDValue's instead of register numbers for the leaves of the matched /// tree. struct X86ISelAddressMode { enum { RegBase, FrameIndexBase } BaseType; struct { // This is really a union, discriminated by BaseType! SDValue Reg; int FrameIndex; } Base; unsigned Scale; SDValue IndexReg; int32_t Disp; SDValue Segment; GlobalValue *GV; Constant *CP; const char *ES; int JT; unsigned Align; // CP alignment. unsigned char SymbolFlags; // X86II::MO_* X86ISelAddressMode() : BaseType(RegBase), Scale(1), IndexReg(), Disp(0), Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) { } bool hasSymbolicDisplacement() const { return GV != 0 || CP != 0 || ES != 0 || JT != -1; } bool hasBaseOrIndexReg() const { return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0; } /// isRIPRelative - Return true if this addressing mode is already RIP /// relative. bool isRIPRelative() const { if (BaseType != RegBase) return false; if (RegisterSDNode *RegNode = dyn_cast_or_null(Base.Reg.getNode())) return RegNode->getReg() == X86::RIP; return false; } void setBaseReg(SDValue Reg) { BaseType = RegBase; Base.Reg = Reg; } void dump() { errs() << "X86ISelAddressMode " << this << '\n'; errs() << "Base.Reg "; if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump(); else errs() << "nul"; errs() << " Base.FrameIndex " << Base.FrameIndex << '\n' << " Scale" << Scale << '\n' << "IndexReg "; if (IndexReg.getNode() != 0) IndexReg.getNode()->dump(); else errs() << "nul"; errs() << " Disp " << Disp << '\n' << "GV "; if (GV) GV->dump(); else errs() << "nul"; errs() << " CP "; if (CP) CP->dump(); else errs() << "nul"; errs() << '\n' << "ES "; if (ES) errs() << ES; else errs() << "nul"; errs() << " JT" << JT << " Align" << Align << '\n'; } }; } namespace { //===--------------------------------------------------------------------===// /// ISel - X86 specific code to select X86 machine instructions for /// SelectionDAG operations. /// class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel { /// X86Lowering - This object fully describes how to lower LLVM code to an /// X86-specific SelectionDAG. X86TargetLowering &X86Lowering; /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; /// OptForSize - If true, selector should try to optimize for code size /// instead of performance. bool OptForSize; public: explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) : SelectionDAGISel(tm, OptLevel), X86Lowering(*tm.getTargetLowering()), Subtarget(&tm.getSubtarget()), OptForSize(false) {} virtual const char *getPassName() const { return "X86 DAG->DAG Instruction Selection"; } /// InstructionSelect - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelect(); virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); virtual bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const; // Include the pieces autogenerated from the target description. #include "X86GenDAGISel.inc" private: SDNode *Select(SDValue N); SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT); bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM); bool MatchLoad(SDValue N, X86ISelAddressMode &AM); bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); bool MatchAddress(SDValue N, X86ISelAddressMode &AM); bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, unsigned Depth); bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); bool SelectAddr(SDValue Op, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp); bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp); bool SelectScalarSSELoad(SDValue Op, SDValue Pred, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment, SDValue &InChain, SDValue &OutChain); bool TryFoldLoad(SDValue P, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); void PreprocessForRMW(); void PreprocessForFPConvert(); /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps); void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) : AM.Base.Reg; Scale = getI8Imm(AM.Scale); Index = AM.IndexReg; // These are 32-bit even in 64-bit mode since RIP relative offset // is 32-bit. if (AM.GV) Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp, AM.SymbolFlags); else if (AM.CP) Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp, AM.SymbolFlags); else if (AM.ES) Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); else if (AM.JT != -1) Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); else Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); if (AM.Segment.getNode()) Segment = AM.Segment; else Segment = CurDAG->getRegister(0, MVT::i32); } /// getI8Imm - Return a target constant with the specified value, of type /// i8. inline SDValue getI8Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i8); } /// getI16Imm - Return a target constant with the specified value, of type /// i16. inline SDValue getI16Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i16); } /// getI32Imm - Return a target constant with the specified value, of type /// i32. inline SDValue getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } /// getGlobalBaseReg - Return an SDNode that returns the value of /// the global base register. Output instructions required to /// initialize the global base register, if necessary. /// SDNode *getGlobalBaseReg(); /// getTargetMachine - Return a reference to the TargetMachine, casted /// to the target-specific type. const X86TargetMachine &getTargetMachine() { return static_cast(TM); } /// getInstrInfo - Return a reference to the TargetInstrInfo, casted /// to the target-specific type. const X86InstrInfo *getInstrInfo() { return getTargetMachine().getInstrInfo(); } #ifndef NDEBUG unsigned Indent; #endif }; } bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const { if (OptLevel == CodeGenOpt::None) return false; if (U == Root) switch (U->getOpcode()) { default: break; case ISD::ADD: case ISD::ADDC: case ISD::ADDE: case ISD::AND: case ISD::OR: case ISD::XOR: { SDValue Op1 = U->getOperand(1); // If the other operand is a 8-bit immediate we should fold the immediate // instead. This reduces code size. // e.g. // movl 4(%esp), %eax // addl $4, %eax // vs. // movl $4, %eax // addl 4(%esp), %eax // The former is 2 bytes shorter. In case where the increment is 1, then // the saving can be 4 bytes (by using incl %eax). if (ConstantSDNode *Imm = dyn_cast(Op1)) if (Imm->getAPIntValue().isSignedIntN(8)) return false; // If the other operand is a TLS address, we should fold it instead. // This produces // movl %gs:0, %eax // leal i@NTPOFF(%eax), %eax // instead of // movl $i@NTPOFF, %eax // addl %gs:0, %eax // if the block also has an access to a second TLS address this will save // a load. // FIXME: This is probably also true for non TLS addresses. if (Op1.getOpcode() == X86ISD::Wrapper) { SDValue Val = Op1.getOperand(0); if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) return false; } } } // Proceed to 'generic' cycle finder code return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root); } /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand /// and move load below the TokenFactor. Replace store's chain operand with /// load's chain result. static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load, SDValue Store, SDValue TF) { SmallVector Ops; for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i) if (Load.getNode() == TF.getOperand(i).getNode()) Ops.push_back(Load.getOperand(0)); else Ops.push_back(TF.getOperand(i)); SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size()); SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF, Load.getOperand(1), Load.getOperand(2)); CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1), Store.getOperand(2), Store.getOperand(3)); } /// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG. The /// chain produced by the load must only be used by the store's chain operand, /// otherwise this may produce a cycle in the DAG. /// static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address, SDValue &Load) { if (N.getOpcode() == ISD::BIT_CONVERT) N = N.getOperand(0); LoadSDNode *LD = dyn_cast(N); if (!LD || LD->isVolatile()) return false; if (LD->getAddressingMode() != ISD::UNINDEXED) return false; ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD) return false; if (N.hasOneUse() && LD->hasNUsesOfValue(1, 1) && N.getOperand(1) == Address && LD->isOperandOf(Chain.getNode())) { Load = N; return true; } return false; } /// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain /// operand and move load below the call's chain operand. static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load, SDValue Call, SDValue CallSeqStart) { SmallVector Ops; SDValue Chain = CallSeqStart.getOperand(0); if (Chain.getNode() == Load.getNode()) Ops.push_back(Load.getOperand(0)); else { assert(Chain.getOpcode() == ISD::TokenFactor && "Unexpected CallSeqStart chain operand"); for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) if (Chain.getOperand(i).getNode() == Load.getNode()) Ops.push_back(Load.getOperand(0)); else Ops.push_back(Chain.getOperand(i)); SDValue NewChain = CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(), MVT::Other, &Ops[0], Ops.size()); Ops.clear(); Ops.push_back(NewChain); } for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i) Ops.push_back(CallSeqStart.getOperand(i)); CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size()); CurDAG->UpdateNodeOperands(Load, Call.getOperand(0), Load.getOperand(1), Load.getOperand(2)); Ops.clear(); Ops.push_back(SDValue(Load.getNode(), 1)); for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i) Ops.push_back(Call.getOperand(i)); CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size()); } /// isCalleeLoad - Return true if call address is a load and it can be /// moved below CALLSEQ_START and the chains leading up to the call. /// Return the CALLSEQ_START by reference as a second output. static bool isCalleeLoad(SDValue Callee, SDValue &Chain) { if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) return false; LoadSDNode *LD = dyn_cast(Callee.getNode()); if (!LD || LD->isVolatile() || LD->getAddressingMode() != ISD::UNINDEXED || LD->getExtensionType() != ISD::NON_EXTLOAD) return false; // Now let's find the callseq_start. while (Chain.getOpcode() != ISD::CALLSEQ_START) { if (!Chain.hasOneUse()) return false; Chain = Chain.getOperand(0); } if (Chain.getOperand(0).getNode() == Callee.getNode()) return true; if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && Callee.getValue(1).hasOneUse()) return true; return false; } /// PreprocessForRMW - Preprocess the DAG to make instruction selection better. /// This is only run if not in -O0 mode. /// This allows the instruction selector to pick more read-modify-write /// instructions. This is a common case: /// /// [Load chain] /// ^ /// | /// [Load] /// ^ ^ /// | | /// / \- /// / | /// [TokenFactor] [Op] /// ^ ^ /// | | /// \ / /// \ / /// [Store] /// /// The fact the store's chain operand != load's chain will prevent the /// (store (op (load))) instruction from being selected. We can transform it to: /// /// [Load chain] /// ^ /// | /// [TokenFactor] /// ^ /// | /// [Load] /// ^ ^ /// | | /// | \- /// | | /// | [Op] /// | ^ /// | | /// \ / /// \ / /// [Store] void X86DAGToDAGISel::PreprocessForRMW() { for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ++I) { if (I->getOpcode() == X86ISD::CALL) { /// Also try moving call address load from outside callseq_start to just /// before the call to allow it to be folded. /// /// [Load chain] /// ^ /// | /// [Load] /// ^ ^ /// | | /// / \-- /// / | ///[CALLSEQ_START] | /// ^ | /// | | /// [LOAD/C2Reg] | /// | | /// \ / /// \ / /// [CALL] SDValue Chain = I->getOperand(0); SDValue Load = I->getOperand(1); if (!isCalleeLoad(Load, Chain)) continue; MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain); ++NumLoadMoved; continue; } if (!ISD::isNON_TRUNCStore(I)) continue; SDValue Chain = I->getOperand(0); if (Chain.getNode()->getOpcode() != ISD::TokenFactor) continue; SDValue N1 = I->getOperand(1); SDValue N2 = I->getOperand(2); if ((N1.getValueType().isFloatingPoint() && !N1.getValueType().isVector()) || !N1.hasOneUse()) continue; bool RModW = false; SDValue Load; unsigned Opcode = N1.getNode()->getOpcode(); switch (Opcode) { case ISD::ADD: case ISD::MUL: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::ADDC: case ISD::ADDE: case ISD::VECTOR_SHUFFLE: { SDValue N10 = N1.getOperand(0); SDValue N11 = N1.getOperand(1); RModW = isRMWLoad(N10, Chain, N2, Load); if (!RModW) RModW = isRMWLoad(N11, Chain, N2, Load); break; } case ISD::SUB: case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: case ISD::SUBC: case ISD::SUBE: case X86ISD::SHLD: case X86ISD::SHRD: { SDValue N10 = N1.getOperand(0); RModW = isRMWLoad(N10, Chain, N2, Load); break; } } if (RModW) { MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain); ++NumLoadMoved; } } } /// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend /// nodes that target the FP stack to be store and load to the stack. This is a /// gross hack. We would like to simply mark these as being illegal, but when /// we do that, legalize produces these when it expands calls, then expands /// these in the same legalize pass. We would like dag combine to be able to /// hack on these between the call expansion and the node legalization. As such /// this pass basically does "really late" legalization of these inline with the /// X86 isel pass. void X86DAGToDAGISel::PreprocessForFPConvert() { for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ) { SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) continue; // If the source and destination are SSE registers, then this is a legal // conversion that should not be lowered. EVT SrcVT = N->getOperand(0).getValueType(); EVT DstVT = N->getValueType(0); bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT); bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT); if (SrcIsSSE && DstIsSSE) continue; if (!SrcIsSSE && !DstIsSSE) { // If this is an FPStack extension, it is a noop. if (N->getOpcode() == ISD::FP_EXTEND) continue; // If this is a value-preserving FPStack truncation, it is a noop. if (N->getConstantOperandVal(1)) continue; } // Here we could have an FP stack truncation or an FPStack <-> SSE convert. // FPStack has extload and truncstore. SSE can fold direct loads into other // operations. Based on this, decide what we want to do. EVT MemVT; if (N->getOpcode() == ISD::FP_ROUND) MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. else MemVT = SrcIsSSE ? SrcVT : DstVT; SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); DebugLoc dl = N->getDebugLoc(); // FIXME: optimize the case where the src/dest is a load or store? SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, NULL, 0, MemVT); SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, NULL, 0, MemVT); // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the // extload we created. This will cause general havok on the dag because // anything below the conversion could be folded into other existing nodes. // To avoid invalidating 'I', back it up to the convert node. --I; CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); // Now that we did that, the node is dead. Increment the iterator to the // next node to process, then delete N. ++I; CurDAG->DeleteNode(N); } } /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel /// when it has created a SelectionDAG for us to codegen. void X86DAGToDAGISel::InstructionSelect() { const Function *F = MF->getFunction(); OptForSize = F->hasFnAttr(Attribute::OptimizeForSize); DEBUG(BB->dump()); if (OptLevel != CodeGenOpt::None) PreprocessForRMW(); // FIXME: This should only happen when not compiled with -O0. PreprocessForFPConvert(); // Codegen the basic block. #ifndef NDEBUG DEBUG(errs() << "===== Instruction selection begins:\n"); Indent = 0; #endif SelectRoot(*CurDAG); #ifndef NDEBUG DEBUG(errs() << "===== Instruction selection ends:\n"); #endif CurDAG->RemoveDeadNodes(); } /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in /// the main function. void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI) { const TargetInstrInfo *TII = TM.getInstrInfo(); if (Subtarget->isTargetCygMing()) BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(X86::CALLpcrel32)).addExternalSymbol("__main"); } void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { // If this is main, emit special code for main. MachineBasicBlock *BB = MF.begin(); if (Fn.hasExternalLinkage() && Fn.getName() == "main") EmitSpecialCodeForMain(BB, MF.getFrameInfo()); } bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM) { assert(N.getOpcode() == X86ISD::SegmentBaseAddress); SDValue Segment = N.getOperand(0); if (AM.Segment.getNode() == 0) { AM.Segment = Segment; return false; } return true; } bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) { // This optimization is valid because the GNU TLS model defines that // gs:0 (or fs:0 on X86-64) contains its own address. // For more information see http://people.redhat.com/drepper/tls.pdf SDValue Address = N.getOperand(1); if (Address.getOpcode() == X86ISD::SegmentBaseAddress && !MatchSegmentBaseAddress (Address, AM)) return false; return true; } /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes /// into an addressing mode. These wrap things that will resolve down into a /// symbol reference. If no match is possible, this returns true, otherwise it /// returns false. bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { // If the addressing mode already has a symbol as the displacement, we can // never match another symbol. if (AM.hasSymbolicDisplacement()) return true; SDValue N0 = N.getOperand(0); CodeModel::Model M = TM.getCodeModel(); // Handle X86-64 rip-relative addresses. We check this before checking direct // folding because RIP is preferable to non-RIP accesses. if (Subtarget->is64Bit() && // Under X86-64 non-small code model, GV (and friends) are 64-bits, so // they cannot be folded into immediate fields. // FIXME: This can be improved for kernel and other models? (M == CodeModel::Small || M == CodeModel::Kernel) && // Base and index reg must be 0 in order to use %rip as base and lowering // must allow RIP. !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) { if (GlobalAddressSDNode *G = dyn_cast(N0)) { int64_t Offset = AM.Disp + G->getOffset(); if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true; AM.GV = G->getGlobal(); AM.Disp = Offset; AM.SymbolFlags = G->getTargetFlags(); } else if (ConstantPoolSDNode *CP = dyn_cast(N0)) { int64_t Offset = AM.Disp + CP->getOffset(); if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true; AM.CP = CP->getConstVal(); AM.Align = CP->getAlignment(); AM.Disp = Offset; AM.SymbolFlags = CP->getTargetFlags(); } else if (ExternalSymbolSDNode *S = dyn_cast(N0)) { AM.ES = S->getSymbol(); AM.SymbolFlags = S->getTargetFlags(); } else { JumpTableSDNode *J = cast(N0); AM.JT = J->getIndex(); AM.SymbolFlags = J->getTargetFlags(); } if (N.getOpcode() == X86ISD::WrapperRIP) AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); return false; } // Handle the case when globals fit in our immediate field: This is true for // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit // mode, this results in a non-RIP-relative computation. if (!Subtarget->is64Bit() || ((M == CodeModel::Small || M == CodeModel::Kernel) && TM.getRelocationModel() == Reloc::Static)) { if (GlobalAddressSDNode *G = dyn_cast(N0)) { AM.GV = G->getGlobal(); AM.Disp += G->getOffset(); AM.SymbolFlags = G->getTargetFlags(); } else if (ConstantPoolSDNode *CP = dyn_cast(N0)) { AM.CP = CP->getConstVal(); AM.Align = CP->getAlignment(); AM.Disp += CP->getOffset(); AM.SymbolFlags = CP->getTargetFlags(); } else if (ExternalSymbolSDNode *S = dyn_cast(N0)) { AM.ES = S->getSymbol(); AM.SymbolFlags = S->getTargetFlags(); } else { JumpTableSDNode *J = cast(N0); AM.JT = J->getIndex(); AM.SymbolFlags = J->getTargetFlags(); } return false; } return true; } /// MatchAddress - Add the specified node to the specified addressing mode, /// returning true if it cannot be done. This just pattern matches for the /// addressing mode. bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { if (MatchAddressRecursively(N, AM, 0)) return true; // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has // a smaller encoding and avoids a scaled-index. if (AM.Scale == 2 && AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.getNode() == 0) { AM.Base.Reg = AM.IndexReg; AM.Scale = 1; } // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, // because it has a smaller encoding. // TODO: Which other code models can use this? if (TM.getCodeModel() == CodeModel::Small && Subtarget->is64Bit() && AM.Scale == 1 && AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.getNode() == 0 && AM.IndexReg.getNode() == 0 && AM.SymbolFlags == X86II::MO_NO_FLAG && AM.hasSymbolicDisplacement()) AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64); return false; } bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, unsigned Depth) { bool is64Bit = Subtarget->is64Bit(); DebugLoc dl = N.getDebugLoc(); DEBUG({ errs() << "MatchAddress: "; AM.dump(); }); // Limit recursion. if (Depth > 5) return MatchAddressBase(N, AM); CodeModel::Model M = TM.getCodeModel(); // If this is already a %rip relative address, we can only merge immediates // into it. Instead of handling this in every case, we handle it here. // RIP relative addressing: %rip + 32-bit displacement! if (AM.isRIPRelative()) { // FIXME: JumpTable and ExternalSymbol address currently don't like // displacements. It isn't very important, but this should be fixed for // consistency. if (!AM.ES && AM.JT != -1) return true; if (ConstantSDNode *Cst = dyn_cast(N)) { int64_t Val = AM.Disp + Cst->getSExtValue(); if (X86::isOffsetSuitableForCodeModel(Val, M, AM.hasSymbolicDisplacement())) { AM.Disp = Val; return false; } } return true; } switch (N.getOpcode()) { default: break; case ISD::Constant: { uint64_t Val = cast(N)->getSExtValue(); if (!is64Bit || X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M, AM.hasSymbolicDisplacement())) { AM.Disp += Val; return false; } break; } case X86ISD::SegmentBaseAddress: if (!MatchSegmentBaseAddress(N, AM)) return false; break; case X86ISD::Wrapper: case X86ISD::WrapperRIP: if (!MatchWrapper(N, AM)) return false; break; case ISD::LOAD: if (!MatchLoad(N, AM)) return false; break; case ISD::FrameIndex: if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.getNode() == 0) { AM.BaseType = X86ISelAddressMode::FrameIndexBase; AM.Base.FrameIndex = cast(N)->getIndex(); return false; } break; case ISD::SHL: if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; if (ConstantSDNode *CN = dyn_cast(N.getNode()->getOperand(1))) { unsigned Val = CN->getZExtValue(); // Note that we handle x<<1 as (,x,2) rather than (x,x) here so // that the base operand remains free for further matching. If // the base doesn't end up getting used, a post-processing step // in MatchAddress turns (,x,2) into (x,x), which is cheaper. if (Val == 1 || Val == 2 || Val == 3) { AM.Scale = 1 << Val; SDValue ShVal = N.getNode()->getOperand(0); // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() && isa(ShVal.getNode()->getOperand(1))) { AM.IndexReg = ShVal.getNode()->getOperand(0); ConstantSDNode *AddVal = cast(ShVal.getNode()->getOperand(1)); uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val); if (!is64Bit || X86::isOffsetSuitableForCodeModel(Disp, M, AM.hasSymbolicDisplacement())) AM.Disp = Disp; else AM.IndexReg = ShVal; } else { AM.IndexReg = ShVal; } return false; } break; } case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: // A mul_lohi where we need the low part can be folded as a plain multiply. if (N.getResNo() != 0) break; // FALL THROUGH case ISD::MUL: case X86ISD::MUL_IMM: // X*[3,5,9] -> X+X*[2,4,8] if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.getNode() == 0 && AM.IndexReg.getNode() == 0) { if (ConstantSDNode *CN = dyn_cast(N.getNode()->getOperand(1))) if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || CN->getZExtValue() == 9) { AM.Scale = unsigned(CN->getZExtValue())-1; SDValue MulVal = N.getNode()->getOperand(0); SDValue Reg; // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && isa(MulVal.getNode()->getOperand(1))) { Reg = MulVal.getNode()->getOperand(0); ConstantSDNode *AddVal = cast(MulVal.getNode()->getOperand(1)); uint64_t Disp = AM.Disp + AddVal->getSExtValue() * CN->getZExtValue(); if (!is64Bit || X86::isOffsetSuitableForCodeModel(Disp, M, AM.hasSymbolicDisplacement())) AM.Disp = Disp; else Reg = N.getNode()->getOperand(0); } else { Reg = N.getNode()->getOperand(0); } AM.IndexReg = AM.Base.Reg = Reg; return false; } } break; case ISD::SUB: { // Given A-B, if A can be completely folded into the address and // the index field with the index field unused, use -B as the index. // This is a win if a has multiple parts that can be folded into // the address. Also, this saves a mov if the base register has // other uses, since it avoids a two-address sub instruction, however // it costs an additional mov if the index register has other uses. // Test if the LHS of the sub can be folded. X86ISelAddressMode Backup = AM; if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { AM = Backup; break; } // Test if the index field is free for use. if (AM.IndexReg.getNode() || AM.isRIPRelative()) { AM = Backup; break; } int Cost = 0; SDValue RHS = N.getNode()->getOperand(1); // If the RHS involves a register with multiple uses, this // transformation incurs an extra mov, due to the neg instruction // clobbering its operand. if (!RHS.getNode()->hasOneUse() || RHS.getNode()->getOpcode() == ISD::CopyFromReg || RHS.getNode()->getOpcode() == ISD::TRUNCATE || RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) ++Cost; // If the base is a register with multiple uses, this // transformation may save a mov. if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.getNode() && !AM.Base.Reg.getNode()->hasOneUse()) || AM.BaseType == X86ISelAddressMode::FrameIndexBase) --Cost; // If the folded LHS was interesting, this transformation saves // address arithmetic. if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + ((AM.Disp != 0) && (Backup.Disp == 0)) + (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) --Cost; // If it doesn't look like it may be an overall win, don't do it. if (Cost >= 0) { AM = Backup; break; } // Ok, the transformation is legal and appears profitable. Go for it. SDValue Zero = CurDAG->getConstant(0, N.getValueType()); SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); AM.IndexReg = Neg; AM.Scale = 1; // Insert the new nodes into the topological ordering. if (Zero.getNode()->getNodeId() == -1 || Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) { CurDAG->RepositionNode(N.getNode(), Zero.getNode()); Zero.getNode()->setNodeId(N.getNode()->getNodeId()); } if (Neg.getNode()->getNodeId() == -1 || Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) { CurDAG->RepositionNode(N.getNode(), Neg.getNode()); Neg.getNode()->setNodeId(N.getNode()->getNodeId()); } return false; } case ISD::ADD: { X86ISelAddressMode Backup = AM; if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) && !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1)) return false; AM = Backup; if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) && !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) return false; AM = Backup; // If we couldn't fold both operands into the address at the same time, // see if we can just put each operand into a register and fold at least // the add. if (AM.BaseType == X86ISelAddressMode::RegBase && !AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) { AM.Base.Reg = N.getNode()->getOperand(0); AM.IndexReg = N.getNode()->getOperand(1); AM.Scale = 1; return false; } break; } case ISD::OR: // Handle "X | C" as "X + C" iff X is known to have C bits clear. if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { X86ISelAddressMode Backup = AM; uint64_t Offset = CN->getSExtValue(); // Start with the LHS as an addr mode. if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && // Address could not have picked a GV address for the displacement. AM.GV == NULL && // On x86-64, the resultant disp must fit in 32-bits. (!is64Bit || X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M, AM.hasSymbolicDisplacement())) && // Check to see if the LHS & C is zero. CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) { AM.Disp += Offset; return false; } AM = Backup; } break; case ISD::AND: { // Perform some heroic transforms on an and of a constant-count shift // with a constant to enable use of the scaled offset field. SDValue Shift = N.getOperand(0); if (Shift.getNumOperands() != 2) break; // Scale must not be used already. if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; SDValue X = Shift.getOperand(0); ConstantSDNode *C2 = dyn_cast(N.getOperand(1)); ConstantSDNode *C1 = dyn_cast(Shift.getOperand(1)); if (!C1 || !C2) break; // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This // allows us to convert the shift and and into an h-register extract and // a scaled index. if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) { unsigned ScaleLog = 8 - C1->getZExtValue(); if (ScaleLog > 0 && ScaleLog < 4 && C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) { SDValue Eight = CurDAG->getConstant(8, MVT::i8); SDValue Mask = CurDAG->getConstant(0xff, N.getValueType()); SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), X, Eight); SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(), Srl, Mask); SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8); SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), And, ShlCount); // Insert the new nodes into the topological ordering. if (Eight.getNode()->getNodeId() == -1 || Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) { CurDAG->RepositionNode(X.getNode(), Eight.getNode()); Eight.getNode()->setNodeId(X.getNode()->getNodeId()); } if (Mask.getNode()->getNodeId() == -1 || Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) { CurDAG->RepositionNode(X.getNode(), Mask.getNode()); Mask.getNode()->setNodeId(X.getNode()->getNodeId()); } if (Srl.getNode()->getNodeId() == -1 || Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { CurDAG->RepositionNode(Shift.getNode(), Srl.getNode()); Srl.getNode()->setNodeId(Shift.getNode()->getNodeId()); } if (And.getNode()->getNodeId() == -1 || And.getNode()->getNodeId() > N.getNode()->getNodeId()) { CurDAG->RepositionNode(N.getNode(), And.getNode()); And.getNode()->setNodeId(N.getNode()->getNodeId()); } if (ShlCount.getNode()->getNodeId() == -1 || ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) { CurDAG->RepositionNode(X.getNode(), ShlCount.getNode()); ShlCount.getNode()->setNodeId(N.getNode()->getNodeId()); } if (Shl.getNode()->getNodeId() == -1 || Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) { CurDAG->RepositionNode(N.getNode(), Shl.getNode()); Shl.getNode()->setNodeId(N.getNode()->getNodeId()); } CurDAG->ReplaceAllUsesWith(N, Shl); AM.IndexReg = And; AM.Scale = (1 << ScaleLog); return false; } } // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this // allows us to fold the shift into this addressing mode. if (Shift.getOpcode() != ISD::SHL) break; // Not likely to be profitable if either the AND or SHIFT node has more // than one use (unless all uses are for address computation). Besides, // isel mechanism requires their node ids to be reused. if (!N.hasOneUse() || !Shift.hasOneUse()) break; // Verify that the shift amount is something we can fold. unsigned ShiftCst = C1->getZExtValue(); if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3) break; // Get the new AND mask, this folds to a constant. SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), SDValue(C2, 0), SDValue(C1, 0)); SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X, NewANDMask); SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), NewAND, SDValue(C1, 0)); // Insert the new nodes into the topological ordering. if (C1->getNodeId() > X.getNode()->getNodeId()) { CurDAG->RepositionNode(X.getNode(), C1); C1->setNodeId(X.getNode()->getNodeId()); } if (NewANDMask.getNode()->getNodeId() == -1 || NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) { CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode()); NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId()); } if (NewAND.getNode()->getNodeId() == -1 || NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode()); NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId()); } if (NewSHIFT.getNode()->getNodeId() == -1 || NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) { CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode()); NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId()); } CurDAG->ReplaceAllUsesWith(N, NewSHIFT); AM.Scale = 1 << ShiftCst; AM.IndexReg = NewAND; return false; } } return MatchAddressBase(N, AM); } /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the /// specified addressing mode without any further recursion. bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { // Is the base register already occupied? if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) { // If so, check to see if the scale index register is set. if (AM.IndexReg.getNode() == 0) { AM.IndexReg = N; AM.Scale = 1; return false; } // Otherwise, we cannot select it. return true; } // Default, generate it as a register. AM.BaseType = X86ISelAddressMode::RegBase; AM.Base.Reg = N; return false; } /// SelectAddr - returns true if it is able pattern match an addressing mode. /// It returns the operands which make up the maximal addressing mode it can /// match by reference. bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { X86ISelAddressMode AM; bool Done = false; if (AvoidDupAddrCompute && !N.hasOneUse()) { unsigned Opcode = N.getOpcode(); if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex && Opcode != X86ISD::Wrapper && Opcode != X86ISD::WrapperRIP) { // If we are able to fold N into addressing mode, then we'll allow it even // if N has multiple uses. In general, addressing computation is used as // addresses by all of its uses. But watch out for CopyToReg uses, that // means the address computation is liveout. It will be computed by a LEA // so we want to avoid computing the address twice. for (SDNode::use_iterator UI = N.getNode()->use_begin(), UE = N.getNode()->use_end(); UI != UE; ++UI) { if (UI->getOpcode() == ISD::CopyToReg) { MatchAddressBase(N, AM); Done = true; break; } } } } if (!Done && MatchAddress(N, AM)) return false; EVT VT = N.getValueType(); if (AM.BaseType == X86ISelAddressMode::RegBase) { if (!AM.Base.Reg.getNode()) AM.Base.Reg = CurDAG->getRegister(0, VT); } if (!AM.IndexReg.getNode()) AM.IndexReg = CurDAG->getRegister(0, VT); getAddressOperands(AM, Base, Scale, Index, Disp, Segment); return true; } /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to /// match a load whose top elements are either undef or zeros. The load flavor /// is derived from the type of N, which is either v4f32 or v2f64. bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment, SDValue &InChain, SDValue &OutChain) { if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { InChain = N.getOperand(0).getValue(1); if (ISD::isNON_EXTLoad(InChain.getNode()) && InChain.getValue(0).hasOneUse() && N.hasOneUse() && IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) { LoadSDNode *LD = cast(InChain); if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) return false; OutChain = LD->getChain(); return true; } } // Also handle the case where we explicitly require zeros in the top // elements. This is a vector shuffle from the zero vector. if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && // Check to see if the top elements are all zeros (or bitcast of zeros). N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && N.getOperand(0).getNode()->hasOneUse() && ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && N.getOperand(0).getOperand(0).hasOneUse()) { // Okay, this is a zero extending load. Fold it. LoadSDNode *LD = cast(N.getOperand(0).getOperand(0)); if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) return false; OutChain = LD->getChain(); InChain = SDValue(LD, 1); return true; } return false; } /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing /// mode it matches can be cost effectively emitted as an LEA instruction. bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp) { X86ISelAddressMode AM; // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support // segments. SDValue Copy = AM.Segment; SDValue T = CurDAG->getRegister(0, MVT::i32); AM.Segment = T; if (MatchAddress(N, AM)) return false; assert (T == AM.Segment); AM.Segment = Copy; EVT VT = N.getValueType(); unsigned Complexity = 0; if (AM.BaseType == X86ISelAddressMode::RegBase) if (AM.Base.Reg.getNode()) Complexity = 1; else AM.Base.Reg = CurDAG->getRegister(0, VT); else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) Complexity = 4; if (AM.IndexReg.getNode()) Complexity++; else AM.IndexReg = CurDAG->getRegister(0, VT); // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with // a simple shift. if (AM.Scale > 1) Complexity++; // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA // to a LEA. This is determined with some expermentation but is by no means // optimal (especially for code size consideration). LEA is nice because of // its three-address nature. Tweak the cost function again when we can run // convertToThreeAddress() at register allocation time. if (AM.hasSymbolicDisplacement()) { // For X86-64, we should always use lea to materialize RIP relative // addresses. if (Subtarget->is64Bit()) Complexity = 4; else Complexity += 2; } if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode())) Complexity++; // If it isn't worth using an LEA, reject it. if (Complexity <= 2) return false; SDValue Segment; getAddressOperands(AM, Base, Scale, Index, Disp, Segment); return true; } /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp) { assert(Op.getOpcode() == X86ISD::TLSADDR); assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); const GlobalAddressSDNode *GA = cast(N); X86ISelAddressMode AM; AM.GV = GA->getGlobal(); AM.Disp += GA->getOffset(); AM.Base.Reg = CurDAG->getRegister(0, N.getValueType()); AM.SymbolFlags = GA->getTargetFlags(); if (N.getValueType() == MVT::i32) { AM.Scale = 1; AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); } else { AM.IndexReg = CurDAG->getRegister(0, MVT::i64); } SDValue Segment; getAddressOperands(AM, Base, Scale, Index, Disp, Segment); return true; } bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { if (ISD::isNON_EXTLoad(N.getNode()) && N.hasOneUse() && IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode())) return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment); return false; } /// getGlobalBaseReg - Return an SDNode that returns the value of /// the global base register. Output instructions required to /// initialize the global base register, if necessary. /// SDNode *X86DAGToDAGISel::getGlobalBaseReg() { unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); } static SDNode *FindCallStartFromCall(SDNode *Node) { if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; assert(Node->getOperand(0).getValueType() == MVT::Other && "Node doesn't have a token chain argument!"); return FindCallStartFromCall(Node->getOperand(0).getNode()); } SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { SDValue Chain = Node->getOperand(0); SDValue In1 = Node->getOperand(1); SDValue In2L = Node->getOperand(2); SDValue In2H = Node->getOperand(3); SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) return NULL; SDValue LSI = Node->getOperand(4); // MemOperand const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain}; return CurDAG->getTargetNode(Opc, Node->getDebugLoc(), MVT::i32, MVT::i32, MVT::Other, Ops, array_lengthof(Ops)); } SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) { if (Node->hasAnyUseOfValue(0)) return 0; // Optimize common patterns for __sync_add_and_fetch and // __sync_sub_and_fetch where the result is not used. This allows us // to use "lock" version of add, sub, inc, dec instructions. // FIXME: Do not use special instructions but instead add the "lock" // prefix to the target node somehow. The extra information will then be // transferred to machine instruction and it denotes the prefix. SDValue Chain = Node->getOperand(0); SDValue Ptr = Node->getOperand(1); SDValue Val = Node->getOperand(2); SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) return 0; bool isInc = false, isDec = false, isSub = false, isCN = false; ConstantSDNode *CN = dyn_cast(Val); if (CN) { isCN = true; int64_t CNVal = CN->getSExtValue(); if (CNVal == 1) isInc = true; else if (CNVal == -1) isDec = true; else if (CNVal >= 0) Val = CurDAG->getTargetConstant(CNVal, NVT); else { isSub = true; Val = CurDAG->getTargetConstant(-CNVal, NVT); } } else if (Val.hasOneUse() && Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) { isSub = true; Val = Val.getOperand(1); } unsigned Opc = 0; switch (NVT.getSimpleVT().SimpleTy) { default: return 0; case MVT::i8: if (isInc) Opc = X86::LOCK_INC8m; else if (isDec) Opc = X86::LOCK_DEC8m; else if (isSub) { if (isCN) Opc = X86::LOCK_SUB8mi; else Opc = X86::LOCK_SUB8mr; } else { if (isCN) Opc = X86::LOCK_ADD8mi; else Opc = X86::LOCK_ADD8mr; } break; case MVT::i16: if (isInc) Opc = X86::LOCK_INC16m; else if (isDec) Opc = X86::LOCK_DEC16m; else if (isSub) { if (isCN) { if (Predicate_i16immSExt8(Val.getNode())) Opc = X86::LOCK_SUB16mi8; else Opc = X86::LOCK_SUB16mi; } else Opc = X86::LOCK_SUB16mr; } else { if (isCN) { if (Predicate_i16immSExt8(Val.getNode())) Opc = X86::LOCK_ADD16mi8; else Opc = X86::LOCK_ADD16mi; } else Opc = X86::LOCK_ADD16mr; } break; case MVT::i32: if (isInc) Opc = X86::LOCK_INC32m; else if (isDec) Opc = X86::LOCK_DEC32m; else if (isSub) { if (isCN) { if (Predicate_i32immSExt8(Val.getNode())) Opc = X86::LOCK_SUB32mi8; else Opc = X86::LOCK_SUB32mi; } else Opc = X86::LOCK_SUB32mr; } else { if (isCN) { if (Predicate_i32immSExt8(Val.getNode())) Opc = X86::LOCK_ADD32mi8; else Opc = X86::LOCK_ADD32mi; } else Opc = X86::LOCK_ADD32mr; } break; case MVT::i64: if (isInc) Opc = X86::LOCK_INC64m; else if (isDec) Opc = X86::LOCK_DEC64m; else if (isSub) { Opc = X86::LOCK_SUB64mr; if (isCN) { if (Predicate_i64immSExt8(Val.getNode())) Opc = X86::LOCK_SUB64mi8; else if (Predicate_i64immSExt32(Val.getNode())) Opc = X86::LOCK_SUB64mi32; } } else { Opc = X86::LOCK_ADD64mr; if (isCN) { if (Predicate_i64immSExt8(Val.getNode())) Opc = X86::LOCK_ADD64mi8; else if (Predicate_i64immSExt32(Val.getNode())) Opc = X86::LOCK_ADD64mi32; } } break; } DebugLoc dl = Node->getDebugLoc(); SDValue Undef = SDValue(CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF, dl, NVT), 0); SDValue MemOp = CurDAG->getMemOperand(cast(Node)->getMemOperand()); if (isInc || isDec) { SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, MemOp, Chain }; SDValue Ret = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Ops, 7), 0); SDValue RetVals[] = { Undef, Ret }; return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); } else { SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, MemOp, Chain }; SDValue Ret = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Ops, 8), 0); SDValue RetVals[] = { Undef, Ret }; return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); } } SDNode *X86DAGToDAGISel::Select(SDValue N) { SDNode *Node = N.getNode(); EVT NVT = Node->getValueType(0); unsigned Opc, MOpc; unsigned Opcode = Node->getOpcode(); DebugLoc dl = Node->getDebugLoc(); #ifndef NDEBUG DEBUG({ errs() << std::string(Indent, ' ') << "Selecting: "; Node->dump(CurDAG); errs() << '\n'; }); Indent += 2; #endif if (Node->isMachineOpcode()) { #ifndef NDEBUG DEBUG({ errs() << std::string(Indent-2, ' ') << "== "; Node->dump(CurDAG); errs() << '\n'; }); Indent -= 2; #endif return NULL; // Already selected. } switch (Opcode) { default: break; case X86ISD::GlobalBaseReg: return getGlobalBaseReg(); case X86ISD::ATOMOR64_DAG: return SelectAtomic64(Node, X86::ATOMOR6432); case X86ISD::ATOMXOR64_DAG: return SelectAtomic64(Node, X86::ATOMXOR6432); case X86ISD::ATOMADD64_DAG: return SelectAtomic64(Node, X86::ATOMADD6432); case X86ISD::ATOMSUB64_DAG: return SelectAtomic64(Node, X86::ATOMSUB6432); case X86ISD::ATOMNAND64_DAG: return SelectAtomic64(Node, X86::ATOMNAND6432); case X86ISD::ATOMAND64_DAG: return SelectAtomic64(Node, X86::ATOMAND6432); case X86ISD::ATOMSWAP64_DAG: return SelectAtomic64(Node, X86::ATOMSWAP6432); case ISD::ATOMIC_LOAD_ADD: { SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT); if (RetVal) return RetVal; break; } case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); bool isSigned = Opcode == ISD::SMUL_LOHI; if (!isSigned) { switch (NVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break; } } else { switch (NVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; } } unsigned LoReg, HiReg; switch (NVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break; case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break; case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break; case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break; } SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); // Multiply is commmutative. if (!foldedLoad) { foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); if (foldedLoad) std::swap(N0, N1); } SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, N0, SDValue()).getValue(1); if (foldedLoad) { SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), InFlag }; SDNode *CNode = CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, array_lengthof(Ops)); InFlag = SDValue(CNode, 1); // Update the chain. ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); } else { InFlag = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0); } // Copy the low half of the result, if it is needed. if (!N.getValue(0).use_empty()) { SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, InFlag); InFlag = Result.getValue(2); ReplaceUses(N.getValue(0), Result); #ifndef NDEBUG DEBUG({ errs() << std::string(Indent-2, ' ') << "=> "; Result.getNode()->dump(CurDAG); errs() << '\n'; }); #endif } // Copy the high half of the result, if it is needed. if (!N.getValue(1).use_empty()) { SDValue Result; if (HiReg == X86::AH && Subtarget->is64Bit()) { // Prevent use of AH in a REX instruction by referencing AX instead. // Shift it down 8 bits. Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, X86::AX, MVT::i16, InFlag); InFlag = Result.getValue(2); Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16, Result, CurDAG->getTargetConstant(8, MVT::i8)), 0); // Then truncate it down to i8. Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl, MVT::i8, Result); } else { Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, InFlag); InFlag = Result.getValue(2); } ReplaceUses(N.getValue(1), Result); #ifndef NDEBUG DEBUG({ errs() << std::string(Indent-2, ' ') << "=> "; Result.getNode()->dump(CurDAG); errs() << '\n'; }); #endif } #ifndef NDEBUG Indent -= 2; #endif return NULL; } case ISD::SDIVREM: case ISD::UDIVREM: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); bool isSigned = Opcode == ISD::SDIVREM; if (!isSigned) { switch (NVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; } } else { switch (NVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; } } unsigned LoReg, HiReg; unsigned ClrOpcode, SExtOpcode; switch (NVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; ClrOpcode = 0; SExtOpcode = X86::CBW; break; case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; ClrOpcode = X86::MOV16r0; SExtOpcode = X86::CWD; break; case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; ClrOpcode = X86::MOV32r0; SExtOpcode = X86::CDQ; break; case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; ClrOpcode = ~0U; // NOT USED. SExtOpcode = X86::CQO; break; } SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); bool signBitIsZero = CurDAG->SignBitIsZero(N0); SDValue InFlag; if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { // Special case for div8, just use a move with zero extension to AX to // clear the upper 8 bits (AH). SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; Move = SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16, MVT::Other, Ops, array_lengthof(Ops)), 0); Chain = Move.getValue(1); ReplaceUses(N0.getValue(1), Chain); } else { Move = SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0); Chain = CurDAG->getEntryNode(); } Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue()); InFlag = Chain.getValue(1); } else { InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, N0, SDValue()).getValue(1); if (isSigned && !signBitIsZero) { // Sign extend the low part into the high part. InFlag = SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0); } else { // Zero out the high part, effectively zero extending the input. SDValue ClrNode; if (NVT.getSimpleVT() == MVT::i64) { ClrNode = SDValue(CurDAG->getTargetNode(X86::MOV32r0, dl, MVT::i32), 0); // We just did a 32-bit clear, insert it into a 64-bit register to // clear the whole 64-bit reg. SDValue Undef = SDValue(CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF, dl, MVT::i64), 0); SDValue SubRegNo = CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32); ClrNode = SDValue(CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG, dl, MVT::i64, Undef, ClrNode, SubRegNo), 0); } else { ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT), 0); } InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg, ClrNode, InFlag).getValue(1); } } if (foldedLoad) { SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), InFlag }; SDNode *CNode = CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, array_lengthof(Ops)); InFlag = SDValue(CNode, 1); // Update the chain. ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); } else { InFlag = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0); } // Copy the division (low) result, if it is needed. if (!N.getValue(0).use_empty()) { SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, InFlag); InFlag = Result.getValue(2); ReplaceUses(N.getValue(0), Result); #ifndef NDEBUG DEBUG({ errs() << std::string(Indent-2, ' ') << "=> "; Result.getNode()->dump(CurDAG); errs() << '\n'; }); #endif } // Copy the remainder (high) result, if it is needed. if (!N.getValue(1).use_empty()) { SDValue Result; if (HiReg == X86::AH && Subtarget->is64Bit()) { // Prevent use of AH in a REX instruction by referencing AX instead. // Shift it down 8 bits. Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, X86::AX, MVT::i16, InFlag); InFlag = Result.getValue(2); Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16, Result, CurDAG->getTargetConstant(8, MVT::i8)), 0); // Then truncate it down to i8. Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl, MVT::i8, Result); } else { Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, InFlag); InFlag = Result.getValue(2); } ReplaceUses(N.getValue(1), Result); #ifndef NDEBUG DEBUG({ errs() << std::string(Indent-2, ' ') << "=> "; Result.getNode()->dump(CurDAG); errs() << '\n'; }); #endif } #ifndef NDEBUG Indent -= 2; #endif return NULL; } case X86ISD::CMP: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to // use a smaller encoding. if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && N0.getValueType() != MVT::i8 && X86::isZeroNode(N1)) { ConstantSDNode *C = dyn_cast(N0.getNode()->getOperand(1)); if (!C) break; // For example, convert "testl %eax, $8" to "testb %al, $8" if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0) { SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); SDValue Reg = N0.getNode()->getOperand(0); // On x86-32, only the ABCD registers have 8-bit subregisters. if (!Subtarget->is64Bit()) { TargetRegisterClass *TRC = 0; switch (N0.getValueType().getSimpleVT().SimpleTy) { case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; default: llvm_unreachable("Unsupported TEST operand type!"); } SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); Reg = SDValue(CurDAG->getTargetNode(X86::COPY_TO_REGCLASS, dl, Reg.getValueType(), Reg, RC), 0); } // Extract the l-register. SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl, MVT::i8, Reg); // Emit a testb. return CurDAG->getTargetNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm); } // For example, "testl %eax, $2048" to "testb %ah, $8". if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0) { // Shift the immediate right by 8 bits. SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, MVT::i8); SDValue Reg = N0.getNode()->getOperand(0); // Put the value in an ABCD register. TargetRegisterClass *TRC = 0; switch (N0.getValueType().getSimpleVT().SimpleTy) { case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; default: llvm_unreachable("Unsupported TEST operand type!"); } SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); Reg = SDValue(CurDAG->getTargetNode(X86::COPY_TO_REGCLASS, dl, Reg.getValueType(), Reg, RC), 0); // Extract the h-register. SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl, MVT::i8, Reg); // Emit a testb. No special NOREX tricks are needed since there's // only one GPR operand! return CurDAG->getTargetNode(X86::TEST8ri, dl, MVT::i32, Subreg, ShiftedImm); } // For example, "testl %eax, $32776" to "testw %ax, $32776". if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && N0.getValueType() != MVT::i16) { SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); SDValue Reg = N0.getNode()->getOperand(0); // Extract the 16-bit subregister. SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl, MVT::i16, Reg); // Emit a testw. return CurDAG->getTargetNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm); } // For example, "testq %rax, $268468232" to "testl %eax, $268468232". if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && N0.getValueType() == MVT::i64) { SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); SDValue Reg = N0.getNode()->getOperand(0); // Extract the 32-bit subregister. SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl, MVT::i32, Reg); // Emit a testl. return CurDAG->getTargetNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm); } } break; } } SDNode *ResNode = SelectCode(N); #ifndef NDEBUG DEBUG({ errs() << std::string(Indent-2, ' ') << "=> "; if (ResNode == NULL || ResNode == N.getNode()) N.getNode()->dump(CurDAG); else ResNode->dump(CurDAG); errs() << '\n'; }); Indent -= 2; #endif return ResNode; } bool X86DAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { SDValue Op0, Op1, Op2, Op3, Op4; switch (ConstraintCode) { case 'o': // offsetable ?? case 'v': // not offsetable ?? default: return true; case 'm': // memory if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4)) return true; break; } OutOps.push_back(Op0); OutOps.push_back(Op1); OutOps.push_back(Op2); OutOps.push_back(Op3); OutOps.push_back(Op4); return false; } /// createX86ISelDag - This pass converts a legalized DAG into a /// X86-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, llvm::CodeGenOpt::Level OptLevel) { return new X86DAGToDAGISel(TM, OptLevel); }