//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the XCoreTargetLowering class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "xcore-lower" #include "XCoreISelLowering.h" #include "XCore.h" #include "XCoreMachineFunctionInfo.h" #include "XCoreSubtarget.h" #include "XCoreTargetMachine.h" #include "XCoreTargetObjectFile.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; const char *XCoreTargetLowering:: getTargetNodeName(unsigned Opcode) const { switch (Opcode) { case XCoreISD::BL : return "XCoreISD::BL"; case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; case XCoreISD::LDWSP : return "XCoreISD::LDWSP"; case XCoreISD::STWSP : return "XCoreISD::STWSP"; case XCoreISD::RETSP : return "XCoreISD::RETSP"; case XCoreISD::LADD : return "XCoreISD::LADD"; case XCoreISD::LSUB : return "XCoreISD::LSUB"; case XCoreISD::LMUL : return "XCoreISD::LMUL"; case XCoreISD::MACCU : return "XCoreISD::MACCU"; case XCoreISD::MACCS : return "XCoreISD::MACCS"; case XCoreISD::CRC8 : return "XCoreISD::CRC8"; case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET"; case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN"; case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER"; default : return NULL; } } XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM) : TargetLowering(XTM, new XCoreTargetObjectFile()), TM(XTM), Subtarget(*XTM.getSubtargetImpl()) { // Set up the register classes. addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); // Compute derived properties from the register classes computeRegisterProperties(); // Division is expensive setIntDivIsCheap(false); setStackPointerRegisterToSaveRestore(XCore::SP); setSchedulingPreference(Sched::Source); // Use i32 for setcc operations results (slt, sgt, ...). setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? // XCore does not have the NodeTypes below. setOperationAction(ISD::BR_CC, MVT::i32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::ADDC, MVT::i32, Expand); setOperationAction(ISD::ADDE, MVT::i32, Expand); setOperationAction(ISD::SUBC, MVT::i32, Expand); setOperationAction(ISD::SUBE, MVT::i32, Expand); // Stop the combiner recombining select and set_cc setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); // 64bit setOperationAction(ISD::ADD, MVT::i64, Custom); setOperationAction(ISD::SUB, MVT::i64, Custom); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); setOperationAction(ISD::MULHS, MVT::i32, Expand); setOperationAction(ISD::MULHU, MVT::i32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); // Bit Manipulation setOperationAction(ISD::CTPOP, MVT::i32, Expand); setOperationAction(ISD::ROTL , MVT::i32, Expand); setOperationAction(ISD::ROTR , MVT::i32, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::TRAP, MVT::Other, Legal); // Jump tables. setOperationAction(ISD::BR_JT, MVT::Other, Custom); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); // Conversion of i64 -> double produces constantpool nodes setOperationAction(ISD::ConstantPool, MVT::i32, Custom); // Loads setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand); // Custom expand misaligned loads / stores. setOperationAction(ISD::LOAD, MVT::i32, Custom); setOperationAction(ISD::STORE, MVT::i32, Custom); // Varargs setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAARG, MVT::Other, Custom); setOperationAction(ISD::VASTART, MVT::Other, Custom); // Dynamic stack setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); // Exception handling setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); setExceptionPointerRegister(XCore::R0); setExceptionSelectorRegister(XCore::R1); setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); // Atomic operations // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic. // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP. setInsertFencesForAtomic(true); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); // TRAMPOLINE is custom lowered. setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::INTRINSIC_VOID); setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); setMinFunctionAlignment(1); setPrefFunctionAlignment(2); } bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { if (Val.getOpcode() != ISD::LOAD) return false; EVT VT1 = Val.getValueType(); if (!VT1.isSimple() || !VT1.isInteger() || !VT2.isSimple() || !VT2.isInteger()) return false; switch (VT1.getSimpleVT().SimpleTy) { default: break; case MVT::i8: return true; } return false; } SDValue XCoreTargetLowering:: LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::LOAD: return LowerLOAD(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); // FIXME: Remove these when LegalizeDAGTypes lands. case ISD::ADD: case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG); case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); default: llvm_unreachable("unimplemented operand"); } } /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { default: llvm_unreachable("Don't know how to custom expand this!"); case ISD::ADD: case ISD::SUB: Results.push_back(ExpandADDSUB(N, DAG)); return; } } //===----------------------------------------------------------------------===// // Misc Lower Operation implementation //===----------------------------------------------------------------------===// SDValue XCoreTargetLowering:: LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i32, Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); return DAG.getNode(ISD::SELECT, dl, MVT::i32, Cond, Op.getOperand(0), Op.getOperand(1)); } SDValue XCoreTargetLowering:: getGlobalAddressWrapper(SDValue GA, const GlobalValue *GV, SelectionDAG &DAG) const { // FIXME there is no actual debug info here SDLoc dl(GA); const GlobalValue *UnderlyingGV = GV; // If GV is an alias then use the aliasee to determine the wrapper type if (const GlobalAlias *GA = dyn_cast(GV)) UnderlyingGV = GA->getAliasedGlobal(); if (const GlobalVariable *GVar = dyn_cast(UnderlyingGV)) { if ( ( GVar->isConstant() && UnderlyingGV->isLocalLinkage(GV->getLinkage()) ) || ( GVar->hasSection() && StringRef(GVar->getSection()).startswith(".cp.") ) ) return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); } return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); } static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) { if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small) return true; Type *ObjType = GV->getType()->getPointerElementType(); if (!ObjType->isSized()) return false; unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType); return ObjSize < CodeModelLargeSize && ObjSize != 0; } SDValue XCoreTargetLowering:: LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { const GlobalAddressSDNode *GN = cast(Op); const GlobalValue *GV = GN->getGlobal(); SDLoc DL(GN); int64_t Offset = GN->getOffset(); if (IsSmallObject(GV, *this)) { // We can only fold positive offsets that are a multiple of the word size. int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); GA = getGlobalAddressWrapper(GA, GV, DAG); // Handle the rest of the offset. if (Offset != FoldedOffset) { SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32); GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); } return GA; } else { // Ideally we would not fold in offset with an index <= 11. Type *Ty = Type::getInt8PtrTy(*DAG.getContext()); Constant *GA = ConstantExpr::getBitCast(const_cast(GV), Ty); Ty = Type::getInt32Ty(*DAG.getContext()); Constant *Idx = ConstantInt::get(Ty, Offset); Constant *GAI = ConstantExpr::getGetElementPtr(GA, Idx); SDValue CP = DAG.getConstantPool(GAI, MVT::i32); return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP, MachinePointerInfo(), false, false, false, 0); } } SDValue XCoreTargetLowering:: LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const BlockAddress *BA = cast(Op)->getBlockAddress(); SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy()); return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result); } SDValue XCoreTargetLowering:: LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { ConstantPoolSDNode *CP = cast(Op); // FIXME there isn't really debug info here SDLoc dl(CP); EVT PtrVT = Op.getValueType(); SDValue Res; if (CP->isMachineConstantPoolEntry()) { Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlignment(), CP->getOffset()); } else { Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset()); } return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); } unsigned XCoreTargetLowering::getJumpTableEncoding() const { return MachineJumpTableInfo::EK_Inline; } SDValue XCoreTargetLowering:: LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Table = Op.getOperand(1); SDValue Index = Op.getOperand(2); SDLoc dl(Op); JumpTableSDNode *JT = cast(Table); unsigned JTI = JT->getIndex(); MachineFunction &MF = DAG.getMachineFunction(); const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); if (NumEntries <= 32) { return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); } assert((NumEntries >> 31) == 0); SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, DAG.getConstant(1, MVT::i32)); return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, ScaledIndex); } SDValue XCoreTargetLowering:: lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base, int64_t Offset, SelectionDAG &DAG) const { if ((Offset & 0x3) == 0) { return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(), false, false, false, 0); } // Lower to pair of consecutive word aligned loads plus some bit shifting. int32_t HighOffset = RoundUpToAlignment(Offset, 4); int32_t LowOffset = HighOffset - 4; SDValue LowAddr, HighAddr; if (GlobalAddressSDNode *GASD = dyn_cast(Base.getNode())) { LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), LowOffset); HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), HighOffset); } else { LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, DAG.getConstant(LowOffset, MVT::i32)); HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, DAG.getConstant(HighOffset, MVT::i32)); } SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32); SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32); SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain, LowAddr, MachinePointerInfo(), false, false, false, 0); SDValue High = DAG.getLoad(getPointerTy(), DL, Chain, HighAddr, MachinePointerInfo(), false, false, false, 0); SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), High.getValue(1)); SDValue Ops[] = { Result, Chain }; return DAG.getMergeValues(Ops, 2, DL); } static bool isWordAligned(SDValue Value, SelectionDAG &DAG) { APInt KnownZero, KnownOne; DAG.ComputeMaskedBits(Value, KnownZero, KnownOne); return KnownZero.countTrailingOnes() >= 2; } SDValue XCoreTargetLowering:: LowerLOAD(SDValue Op, SelectionDAG &DAG) const { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); LoadSDNode *LD = cast(Op); assert(LD->getExtensionType() == ISD::NON_EXTLOAD && "Unexpected extension type"); assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); if (allowsUnalignedMemoryAccesses(LD->getMemoryVT())) return SDValue(); unsigned ABIAlignment = getDataLayout()-> getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); // Leave aligned load alone. if (LD->getAlignment() >= ABIAlignment) return SDValue(); SDValue Chain = LD->getChain(); SDValue BasePtr = LD->getBasePtr(); SDLoc DL(Op); if (!LD->isVolatile()) { const GlobalValue *GV; int64_t Offset = 0; if (DAG.isBaseWithConstantOffset(BasePtr) && isWordAligned(BasePtr->getOperand(0), DAG)) { SDValue NewBasePtr = BasePtr->getOperand(0); Offset = cast(BasePtr->getOperand(1))->getSExtValue(); return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, Offset, DAG); } if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && MinAlign(GV->getAlignment(), 4) == 4) { SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, BasePtr->getValueType(0)); return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, Offset, DAG); } } if (LD->getAlignment() == 2) { SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr, LD->getPointerInfo(), MVT::i16, LD->isVolatile(), LD->isNonTemporal(), 2); SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, DAG.getConstant(2, MVT::i32)); SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr, LD->getPointerInfo().getWithOffset(2), MVT::i16, LD->isVolatile(), LD->isNonTemporal(), 2); SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, DAG.getConstant(16, MVT::i32)); SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), High.getValue(1)); SDValue Ops[] = { Result, Chain }; return DAG.getMergeValues(Ops, 2, DL); } // Lower to a call to __misaligned_load(BasePtr). Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = IntPtrTy; Entry.Node = BasePtr; Args.push_back(Entry); TargetLowering::CallLoweringInfo CLI(Chain, IntPtrTy, false, false, false, false, 0, CallingConv::C, /*isTailCall=*/false, /*doesNotRet=*/false, /*isReturnValueUsed=*/true, DAG.getExternalSymbol("__misaligned_load", getPointerTy()), Args, DAG, DL); std::pair CallResult = LowerCallTo(CLI); SDValue Ops[] = { CallResult.first, CallResult.second }; return DAG.getMergeValues(Ops, 2, DL); } SDValue XCoreTargetLowering:: LowerSTORE(SDValue Op, SelectionDAG &DAG) const { StoreSDNode *ST = cast(Op); assert(!ST->isTruncatingStore() && "Unexpected store type"); assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { return SDValue(); } unsigned ABIAlignment = getDataLayout()-> getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); // Leave aligned store alone. if (ST->getAlignment() >= ABIAlignment) { return SDValue(); } SDValue Chain = ST->getChain(); SDValue BasePtr = ST->getBasePtr(); SDValue Value = ST->getValue(); SDLoc dl(Op); if (ST->getAlignment() == 2) { SDValue Low = Value; SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, DAG.getConstant(16, MVT::i32)); SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr, ST->getPointerInfo(), MVT::i16, ST->isVolatile(), ST->isNonTemporal(), 2); SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, DAG.getConstant(2, MVT::i32)); SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2), MVT::i16, ST->isVolatile(), ST->isNonTemporal(), 2); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); } // Lower to a call to __misaligned_store(BasePtr, Value). Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = IntPtrTy; Entry.Node = BasePtr; Args.push_back(Entry); Entry.Node = Value; Args.push_back(Entry); TargetLowering::CallLoweringInfo CLI(Chain, Type::getVoidTy(*DAG.getContext()), false, false, false, false, 0, CallingConv::C, /*isTailCall=*/false, /*doesNotRet=*/false, /*isReturnValueUsed=*/true, DAG.getExternalSymbol("__misaligned_store", getPointerTy()), Args, DAG, dl); std::pair CallResult = LowerCallTo(CLI); return CallResult.second; } SDValue XCoreTargetLowering:: LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && "Unexpected operand to lower!"); SDLoc dl(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue Zero = DAG.getConstant(0, MVT::i32); SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, LHS, RHS); SDValue Lo(Hi.getNode(), 1); SDValue Ops[] = { Lo, Hi }; return DAG.getMergeValues(Ops, 2, dl); } SDValue XCoreTargetLowering:: LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && "Unexpected operand to lower!"); SDLoc dl(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue Zero = DAG.getConstant(0, MVT::i32); SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, Zero, Zero); SDValue Lo(Hi.getNode(), 1); SDValue Ops[] = { Lo, Hi }; return DAG.getMergeValues(Ops, 2, dl); } /// isADDADDMUL - Return whether Op is in a form that is equivalent to /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then /// each intermediate result in the calculation must also have a single use. /// If the Op is in the correct form the constituent parts are written to Mul0, /// Mul1, Addend0 and Addend1. static bool isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, SDValue &Addend1, bool requireIntermediatesHaveOneUse) { if (Op.getOpcode() != ISD::ADD) return false; SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue AddOp; SDValue OtherOp; if (N0.getOpcode() == ISD::ADD) { AddOp = N0; OtherOp = N1; } else if (N1.getOpcode() == ISD::ADD) { AddOp = N1; OtherOp = N0; } else { return false; } if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) return false; if (OtherOp.getOpcode() == ISD::MUL) { // add(add(a,b),mul(x,y)) if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) return false; Mul0 = OtherOp.getOperand(0); Mul1 = OtherOp.getOperand(1); Addend0 = AddOp.getOperand(0); Addend1 = AddOp.getOperand(1); return true; } if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { // add(add(mul(x,y),a),b) if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) return false; Mul0 = AddOp.getOperand(0).getOperand(0); Mul1 = AddOp.getOperand(0).getOperand(1); Addend0 = AddOp.getOperand(1); Addend1 = OtherOp; return true; } if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { // add(add(a,mul(x,y)),b) if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) return false; Mul0 = AddOp.getOperand(1).getOperand(0); Mul1 = AddOp.getOperand(1).getOperand(1); Addend0 = AddOp.getOperand(0); Addend1 = OtherOp; return true; } return false; } SDValue XCoreTargetLowering:: TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const { SDValue Mul; SDValue Other; if (N->getOperand(0).getOpcode() == ISD::MUL) { Mul = N->getOperand(0); Other = N->getOperand(1); } else if (N->getOperand(1).getOpcode() == ISD::MUL) { Mul = N->getOperand(1); Other = N->getOperand(0); } else { return SDValue(); } SDLoc dl(N); SDValue LL, RL, AddendL, AddendH; LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mul.getOperand(0), DAG.getConstant(0, MVT::i32)); RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mul.getOperand(1), DAG.getConstant(0, MVT::i32)); AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Other, DAG.getConstant(0, MVT::i32)); AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Other, DAG.getConstant(1, MVT::i32)); APInt HighMask = APInt::getHighBitsSet(64, 32); unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { // The inputs are both zero-extended. SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, DAG.getVTList(MVT::i32, MVT::i32), AddendH, AddendL, LL, RL); SDValue Lo(Hi.getNode(), 1); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } if (LHSSB > 32 && RHSSB > 32) { // The inputs are both sign-extended. SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, DAG.getVTList(MVT::i32, MVT::i32), AddendH, AddendL, LL, RL); SDValue Lo(Hi.getNode(), 1); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } SDValue LH, RH; LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mul.getOperand(0), DAG.getConstant(1, MVT::i32)); RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mul.getOperand(1), DAG.getConstant(1, MVT::i32)); SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, DAG.getVTList(MVT::i32, MVT::i32), AddendH, AddendL, LL, RL); SDValue Lo(Hi.getNode(), 1); RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } SDValue XCoreTargetLowering:: ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const { assert(N->getValueType(0) == MVT::i64 && (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && "Unknown operand to lower!"); if (N->getOpcode() == ISD::ADD) { SDValue Result = TryExpandADDWithMul(N, DAG); if (Result.getNode() != 0) return Result; } SDLoc dl(N); // Extract components SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(0, MVT::i32)); SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(1, MVT::i32)); SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(1), DAG.getConstant(0, MVT::i32)); SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(1), DAG.getConstant(1, MVT::i32)); // Expand unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : XCoreISD::LSUB; SDValue Zero = DAG.getConstant(0, MVT::i32); SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), LHSL, RHSL, Zero); SDValue Carry(Lo.getNode(), 1); SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), LHSH, RHSH, Carry); SDValue Ignored(Hi.getNode(), 1); // Merge the pieces return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } SDValue XCoreTargetLowering:: LowerVAARG(SDValue Op, SelectionDAG &DAG) const { // Whist llvm does not support aggregate varargs we can ignore // the possibility of the ValueType being an implicit byVal vararg. SDNode *Node = Op.getNode(); EVT VT = Node->getValueType(0); // not an aggregate SDValue InChain = Node->getOperand(0); SDValue VAListPtr = Node->getOperand(1); EVT PtrVT = VAListPtr.getValueType(); const Value *SV = cast(Node->getOperand(2))->getValue(); SDLoc dl(Node); SDValue VAList = DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV), false, false, false, 0); // Increment the pointer, VAList, to the next vararg SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, DAG.getIntPtrConstant(VT.getSizeInBits() / 8)); // Store the incremented VAList to the legalized pointer InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, MachinePointerInfo(SV), false, false, 0); // Load the actual argument out of the pointer VAList return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), false, false, false, 0); } SDValue XCoreTargetLowering:: LowerVASTART(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); // vastart stores the address of the VarArgsFrameIndex slot into the // memory location argument MachineFunction &MF = DAG.getMachineFunction(); XCoreFunctionInfo *XFI = MF.getInfo(); SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), MachinePointerInfo(), false, false, 0); } SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { // This nodes represent llvm.frameaddress on the DAG. // It takes one operand, the index of the frame address to return. // An index of zero corresponds to the current function's frame address. // An index of one to the parent's frame address, and so on. // Depths > 0 not supported yet! if (cast(Op.getOperand(0))->getZExtValue() > 0) return SDValue(); MachineFunction &MF = DAG.getMachineFunction(); const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo(); return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), RegInfo->getFrameRegister(MF), MVT::i32); } SDValue XCoreTargetLowering:: LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { // This nodes represent llvm.returnaddress on the DAG. // It takes one operand, the index of the return address to return. // An index of zero corresponds to the current function's return address. // An index of one to the parent's return address, and so on. // Depths > 0 not supported yet! if (cast(Op.getOperand(0))->getZExtValue() > 0) return SDValue(); MachineFunction &MF = DAG.getMachineFunction(); XCoreFunctionInfo *XFI = MF.getInfo(); int FI = XFI->createLRSpillSlot(MF); SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } SDValue XCoreTargetLowering:: LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { // This node represents offset from frame pointer to first on-stack argument. // This is needed for correct stack adjustment during unwind. // However, we don't know the offset until after the frame has be finalised. // This is done during the XCoreFTAOElim pass. return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32); } SDValue XCoreTargetLowering:: LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) // This node represents 'eh_return' gcc dwarf builtin, which is used to // return from exception. The general meaning is: adjust stack by OFFSET and // pass execution to HANDLER. MachineFunction &MF = DAG.getMachineFunction(); SDValue Chain = Op.getOperand(0); SDValue Offset = Op.getOperand(1); SDValue Handler = Op.getOperand(2); SDLoc dl(Op); // Absolute SP = (FP + FrameToArgs) + Offset const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo(); SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RegInfo->getFrameRegister(MF), MVT::i32); SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl, MVT::i32); Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs); Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset); // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister // which leaves 2 caller saved registers, R2 & R3 for us to use. unsigned StackReg = XCore::R2; unsigned HandlerReg = XCore::R3; SDValue OutChains[] = { DAG.getCopyToReg(Chain, dl, StackReg, Stack), DAG.getCopyToReg(Chain, dl, HandlerReg, Handler) }; Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 2); return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain, DAG.getRegister(StackReg, MVT::i32), DAG.getRegister(HandlerReg, MVT::i32)); } SDValue XCoreTargetLowering:: LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { return Op.getOperand(0); } SDValue XCoreTargetLowering:: LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Trmp = Op.getOperand(1); // trampoline SDValue FPtr = Op.getOperand(2); // nested function SDValue Nest = Op.getOperand(3); // 'nest' parameter value const Value *TrmpAddr = cast(Op.getOperand(4))->getValue(); // .align 4 // LDAPF_u10 r11, nest // LDW_2rus r11, r11[0] // STWSP_ru6 r11, sp[0] // LDAPF_u10 r11, fptr // LDW_2rus r11, r11[0] // BAU_1r r11 // nest: // .word nest // fptr: // .word fptr SDValue OutChains[5]; SDValue Addr = Trmp; SDLoc dl(Op); OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32), Addr, MachinePointerInfo(TrmpAddr), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(4, MVT::i32)); OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32), Addr, MachinePointerInfo(TrmpAddr, 4), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(8, MVT::i32)); OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32), Addr, MachinePointerInfo(TrmpAddr, 8), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(12, MVT::i32)); OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12), false, false, 0); Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, DAG.getConstant(16, MVT::i32)); OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16), false, false, 0); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 5); } SDValue XCoreTargetLowering:: LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); switch (IntNo) { case Intrinsic::xcore_crc8: EVT VT = Op.getValueType(); SDValue Data = DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); SDValue Crc(Data.getNode(), 1); SDValue Results[] = { Crc, Data }; return DAG.getMergeValues(Results, 2, DL); } return SDValue(); } SDValue XCoreTargetLowering:: LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); } SDValue XCoreTargetLowering:: LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { AtomicSDNode *N = cast(Op); assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP"); assert(N->getOrdering() <= Monotonic && "setInsertFencesForAtomic(true) and yet greater than Monotonic"); if (N->getMemoryVT() == MVT::i32) { if (N->getAlignment() < 4) report_fatal_error("atomic load must be aligned"); return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(), N->getBasePtr(), N->getPointerInfo(), N->isVolatile(), N->isNonTemporal(), N->isInvariant(), N->getAlignment(), N->getTBAAInfo(), N->getRanges()); } if (N->getMemoryVT() == MVT::i16) { if (N->getAlignment() < 2) report_fatal_error("atomic load must be aligned"); return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), N->getBasePtr(), N->getPointerInfo(), MVT::i16, N->isVolatile(), N->isNonTemporal(), N->getAlignment(), N->getTBAAInfo()); } if (N->getMemoryVT() == MVT::i8) return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), N->getBasePtr(), N->getPointerInfo(), MVT::i8, N->isVolatile(), N->isNonTemporal(), N->getAlignment(), N->getTBAAInfo()); return SDValue(); } SDValue XCoreTargetLowering:: LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { AtomicSDNode *N = cast(Op); assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP"); assert(N->getOrdering() <= Monotonic && "setInsertFencesForAtomic(true) and yet greater than Monotonic"); if (N->getMemoryVT() == MVT::i32) { if (N->getAlignment() < 4) report_fatal_error("atomic store must be aligned"); return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(), N->getPointerInfo(), N->isVolatile(), N->isNonTemporal(), N->getAlignment(), N->getTBAAInfo()); } if (N->getMemoryVT() == MVT::i16) { if (N->getAlignment() < 2) report_fatal_error("atomic store must be aligned"); return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(), N->getPointerInfo(), MVT::i16, N->isVolatile(), N->isNonTemporal(), N->getAlignment(), N->getTBAAInfo()); } if (N->getMemoryVT() == MVT::i8) return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(), N->getPointerInfo(), MVT::i8, N->isVolatile(), N->isNonTemporal(), N->getAlignment(), N->getTBAAInfo()); return SDValue(); } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// #include "XCoreGenCallingConv.inc" //===----------------------------------------------------------------------===// // Call Calling Convention Implementation //===----------------------------------------------------------------------===// /// XCore call implementation SDValue XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool isVarArg = CLI.IsVarArg; // XCore target does not yet support tail call optimization. isTailCall = false; // For now, only CallingConv::C implemented switch (CallConv) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::Fast: case CallingConv::C: return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, Outs, OutVals, Ins, dl, DAG, InVals); } } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers / memory locations. static SDValue LowerCallResult(SDValue Chain, SDValue InFlag, const SmallVectorImpl &RVLocs, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) { SmallVector, 4> ResultMemLocs; // Copy results out of physical registers. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { const CCValAssign &VA = RVLocs[i]; if (VA.isRegLoc()) { Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), InFlag).getValue(1); InFlag = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } else { assert(VA.isMemLoc()); ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(), InVals.size())); // Reserve space for this result. InVals.push_back(SDValue()); } } // Copy results out of memory. SmallVector MemOpChains; for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { int offset = ResultMemLocs[i].first; unsigned index = ResultMemLocs[i].second; SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) }; SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops, 2); InVals[index] = load; MemOpChains.push_back(load.getValue(1)); } // Transform all loads nodes into one single node because // all load nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); return Chain; } /// LowerCCCCallTo - functions arguments are copied from virtual /// regs to (physical regs)/(stack frame), CALLSEQ_START and /// CALLSEQ_END are emitted. /// TODO: isTailCall, sret. SDValue XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, bool isTailCall, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); // The ABI dictates there should be one stack slot available to the callee // on function entry (for saving lr). CCInfo.AllocateStack(4, 4); CCInfo.AnalyzeCallOperands(Outs, CC_XCore); SmallVector RVLocs; // Analyze return values to determine the number of bytes of stack required. CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4); RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = RetCCInfo.getNextStackOffset(); Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy(), true), dl); SmallVector, 4> RegsToPass; SmallVector MemOpChains; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { assert(VA.isMemLoc()); int Offset = VA.getLocMemOffset(); MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, Chain, Arg, DAG.getConstant(Offset/4, MVT::i32))); } } // Transform all store nodes into one single node because // all store nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emitted instructions must be // stuck together. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); // XCoreBranchLink = #chain, #target_address, #opt_in_flags... // = Chain, Callee, Reg#1, Reg#2, ... // // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); if (InFlag.getNode()) Ops.push_back(InFlag); Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, getPointerTy(), true), DAG.getConstant(0, getPointerTy(), true), InFlag, dl); InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals); } //===----------------------------------------------------------------------===// // Formal Arguments Calling Convention Implementation //===----------------------------------------------------------------------===// namespace { struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; } /// XCore formal arguments implementation SDValue XCoreTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { switch (CallConv) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::C: case CallingConv::Fast: return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); } } /// LowerCCCArguments - transform physical registers into /// virtual registers and generate load operations for /// arguments places on the stack. /// TODO: sret SDValue XCoreTargetLowering::LowerCCCArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); XCoreFunctionInfo *XFI = MF.getInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); unsigned LRSaveSize = StackSlotSize; if (!isVarArg) XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize); // All getCopyFromReg ops must precede any getMemcpys to prevent the // scheduler clobbering a register before it has been copied. // The stages are: // 1. CopyFromReg (and load) arg & vararg registers. // 2. Chain CopyFromReg nodes into a TokenFactor. // 3. Memcpy 'byVal' args & push final InVals. // 4. Chain mem ops nodes into a TokenFactor. SmallVector CFRegNode; SmallVector ArgData; SmallVector MemOps; // 1a. CopyFromReg (and load) arg registers. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue ArgIn; if (VA.isRegLoc()) { // Arguments passed in registers EVT RegVT = VA.getLocVT(); switch (RegVT.getSimpleVT().SimpleTy) { default: { #ifndef NDEBUG errs() << "LowerFormalArguments Unhandled argument type: " << RegVT.getSimpleVT().SimpleTy << "\n"; #endif llvm_unreachable(0); } case MVT::i32: unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); } } else { // sanity check assert(VA.isMemLoc()); // Load the argument to a virtual register unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; if (ObjSize > StackSlotSize) { errs() << "LowerFormalArguments Unhandled argument type: " << EVT(VA.getLocVT()).getEVTString() << "\n"; } // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(ObjSize, LRSaveSize + VA.getLocMemOffset(), true); // Create the SelectionDAG nodes corresponding to a load //from this parameter SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; ArgData.push_back(ADP); } // 1b. CopyFromReg vararg registers. if (isVarArg) { // Argument registers static const MCPhysReg ArgRegs[] = { XCore::R0, XCore::R1, XCore::R2, XCore::R3 }; XCoreFunctionInfo *XFI = MF.getInfo(); unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs, array_lengthof(ArgRegs)); if (FirstVAReg < array_lengthof(ArgRegs)) { int offset = 0; // Save remaining registers, storing higher register numbers at a higher // address for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { // Create a stack slot int FI = MFI->CreateFixedObject(4, offset, true); if (i == (int)FirstVAReg) { XFI->setVarArgsFrameIndex(FI); } offset -= StackSlotSize; SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); // Move argument from phys reg -> virt reg unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); RegInfo.addLiveIn(ArgRegs[i], VReg); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); // Move argument from virt reg -> stack SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(), false, false, 0); MemOps.push_back(Store); } } else { // This will point to the next argument passed via stack. XFI->setVarArgsFrameIndex( MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), true)); } } // 2. chain CopyFromReg nodes into a TokenFactor. if (!CFRegNode.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &CFRegNode[0], CFRegNode.size()); // 3. Memcpy 'byVal' args & push final InVals. // Aggregates passed "byVal" need to be copied by the callee. // The callee will use a pointer to this copy, rather than the original // pointer. for (SmallVectorImpl::const_iterator ArgDI = ArgData.begin(), ArgDE = ArgData.end(); ArgDI != ArgDE; ++ArgDI) { if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { unsigned Size = ArgDI->Flags.getByValSize(); unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign()); // Create a new object on the stack and copy the pointee into it. int FI = MFI->CreateStackObject(Size, Align, false); SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); InVals.push_back(FIN); MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, DAG.getConstant(Size, MVT::i32), Align, false, false, MachinePointerInfo(), MachinePointerInfo())); } else { InVals.push_back(ArgDI->SDV); } } // 4, chain mem ops nodes into a TokenFactor. if (!MemOps.empty()) { MemOps.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], MemOps.size()); } return Chain; } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// bool XCoreTargetLowering:: CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); if (!CCInfo.CheckReturn(Outs, RetCC_XCore)) return false; if (CCInfo.getNextStackOffset() != 0 && isVarArg) return false; return true; } SDValue XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc dl, SelectionDAG &DAG) const { XCoreFunctionInfo *XFI = DAG.getMachineFunction().getInfo(); MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); // CCValAssign - represent the assignment of // the return value to a location SmallVector RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); // Analyze return values. if (!isVarArg) CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4); CCInfo.AnalyzeReturn(Outs, RetCC_XCore); SDValue Flag; SmallVector RetOps(1, Chain); // Return on XCore is always a "retsp 0" RetOps.push_back(DAG.getConstant(0, MVT::i32)); SmallVector MemOpChains; // Handle return values that must be copied to memory. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; if (VA.isRegLoc()) continue; assert(VA.isMemLoc()); if (isVarArg) { report_fatal_error("Can't return value from vararg function in memory"); } int Offset = VA.getLocMemOffset(); unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; // Create the frame index object for the memory location. int FI = MFI->CreateFixedObject(ObjSize, Offset, false); // Create a SelectionDAG node corresponding to a store // to this memory location. SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN, MachinePointerInfo::getFixedStack(FI), false, false, 0)); } // Transform all store nodes into one single node because // all stores are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Now handle return values copied to registers. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; if (!VA.isRegLoc()) continue; // Copy the result values into the output registers. Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); // guarantee that all emitted copies are // stuck together, avoiding something bad Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, &RetOps[0], RetOps.size()); } //===----------------------------------------------------------------------===// // Other Lowering Code //===----------------------------------------------------------------------===// MachineBasicBlock * XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); assert((MI->getOpcode() == XCore::SELECT_CC) && "Unexpected instr type to insert"); // To "insert" a SELECT_CC instruction, we actually have to insert the diamond // control-flow pattern. The incoming instruction knows the destination vreg // to set, the condition code register to branch on, the true/false values to // select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } //===----------------------------------------------------------------------===// // Target Optimization Hooks //===----------------------------------------------------------------------===// SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); switch (N->getOpcode()) { default: break; case ISD::INTRINSIC_VOID: switch (cast(N->getOperand(1))->getZExtValue()) { case Intrinsic::xcore_outt: case Intrinsic::xcore_outct: case Intrinsic::xcore_chkct: { SDValue OutVal = N->getOperand(3); // These instructions ignore the high bits. if (OutVal.hasOneUse()) { unsigned BitWidth = OutVal.getValueSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) || TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne, TLO)) DCI.CommitTargetLoweringOpt(TLO); } break; } case Intrinsic::xcore_setpt: { SDValue Time = N->getOperand(3); // This instruction ignores the high bits. if (Time.hasOneUse()) { unsigned BitWidth = Time.getValueSizeInBits(); APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLO.ShrinkDemandedConstant(Time, DemandedMask) || TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne, TLO)) DCI.CommitTargetLoweringOpt(TLO); } break; } } break; case XCoreISD::LADD: { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); EVT VT = N0.getValueType(); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); // fold (ladd 0, 0, x) -> 0, x & 1 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { SDValue Carry = DAG.getConstant(0, VT); SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, DAG.getConstant(1, VT)); SDValue Ops[] = { Result, Carry }; return DAG.getMergeValues(Ops, 2, dl); } // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the // low bit set if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { APInt KnownZero, KnownOne; APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), VT.getSizeInBits() - 1); DAG.ComputeMaskedBits(N2, KnownZero, KnownOne); if ((KnownZero & Mask) == Mask) { SDValue Carry = DAG.getConstant(0, VT); SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); SDValue Ops[] = { Result, Carry }; return DAG.getMergeValues(Ops, 2, dl); } } } break; case XCoreISD::LSUB: { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); EVT VT = N0.getValueType(); // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { APInt KnownZero, KnownOne; APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), VT.getSizeInBits() - 1); DAG.ComputeMaskedBits(N2, KnownZero, KnownOne); if ((KnownZero & Mask) == Mask) { SDValue Borrow = N2; SDValue Result = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), N2); SDValue Ops[] = { Result, Borrow }; return DAG.getMergeValues(Ops, 2, dl); } } // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the // low bit set if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { APInt KnownZero, KnownOne; APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), VT.getSizeInBits() - 1); DAG.ComputeMaskedBits(N2, KnownZero, KnownOne); if ((KnownZero & Mask) == Mask) { SDValue Borrow = DAG.getConstant(0, VT); SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); SDValue Ops[] = { Result, Borrow }; return DAG.getMergeValues(Ops, 2, dl); } } } break; case XCoreISD::LMUL: { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); SDValue N3 = N->getOperand(3); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); EVT VT = N0.getValueType(); // Canonicalize multiplicative constant to RHS. If both multiplicative // operands are constant canonicalize smallest to RHS. if ((N0C && !N1C) || (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), N1, N0, N2, N3); // lmul(x, 0, a, b) if (N1C && N1C->isNullValue()) { // If the high result is unused fold to add(a, b) if (N->hasNUsesOfValue(0, 0)) { SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); SDValue Ops[] = { Lo, Lo }; return DAG.getMergeValues(Ops, 2, dl); } // Otherwise fold to ladd(a, b, 0) SDValue Result = DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); SDValue Carry(Result.getNode(), 1); SDValue Ops[] = { Carry, Result }; return DAG.getMergeValues(Ops, 2, dl); } } break; case ISD::ADD: { // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> // lmul(x, y, a, b). The high result of lmul will be ignored. // This is only profitable if the intermediate results are unused // elsewhere. SDValue Mul0, Mul1, Addend0, Addend1; if (N->getValueType(0) == MVT::i32 && isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(MVT::i32, MVT::i32), Mul0, Mul1, Addend0, Addend1); SDValue Result(Ignored.getNode(), 1); return Result; } APInt HighMask = APInt::getHighBitsSet(64, 32); // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> // lmul(x, y, a, b) if all operands are zero-extended. We do this // before type legalization as it is messy to match the operands after // that. if (N->getValueType(0) == MVT::i64 && isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && DAG.MaskedValueIsZero(Mul0, HighMask) && DAG.MaskedValueIsZero(Mul1, HighMask) && DAG.MaskedValueIsZero(Addend0, HighMask) && DAG.MaskedValueIsZero(Addend1, HighMask)) { SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mul0, DAG.getConstant(0, MVT::i32)); SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mul1, DAG.getConstant(0, MVT::i32)); SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Addend0, DAG.getConstant(0, MVT::i32)); SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Addend1, DAG.getConstant(0, MVT::i32)); SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, Addend0L, Addend1L); SDValue Lo(Hi.getNode(), 1); return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } } break; case ISD::STORE: { // Replace unaligned store of unaligned load with memmove. StoreSDNode *ST = cast(N); if (!DCI.isBeforeLegalize() || allowsUnalignedMemoryAccesses(ST->getMemoryVT()) || ST->isVolatile() || ST->isIndexed()) { break; } SDValue Chain = ST->getChain(); unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); if (StoreBits % 8) { break; } unsigned ABIAlignment = getDataLayout()->getABITypeAlignment( ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); unsigned Alignment = ST->getAlignment(); if (Alignment >= ABIAlignment) { break; } if (LoadSDNode *LD = dyn_cast(ST->getValue())) { if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && LD->getAlignment() == Alignment && !LD->isVolatile() && !LD->isIndexed() && Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(), DAG.getConstant(StoreBits/8, MVT::i32), Alignment, false, ST->getPointerInfo(), LD->getPointerInfo()); } } break; } } return SDValue(); } void XCoreTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); switch (Op.getOpcode()) { default: break; case XCoreISD::LADD: case XCoreISD::LSUB: if (Op.getResNo() == 1) { // Top bits of carry / borrow are clear. KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), KnownZero.getBitWidth() - 1); } break; case ISD::INTRINSIC_W_CHAIN: { unsigned IntNo = cast(Op.getOperand(1))->getZExtValue(); switch (IntNo) { case Intrinsic::xcore_getts: // High bits are known to be zero. KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), KnownZero.getBitWidth() - 16); break; case Intrinsic::xcore_int: case Intrinsic::xcore_inct: // High bits are known to be zero. KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), KnownZero.getBitWidth() - 8); break; case Intrinsic::xcore_testct: // Result is either 0 or 1. KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), KnownZero.getBitWidth() - 1); break; case Intrinsic::xcore_testwct: // Result is in the range 0 - 4. KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), KnownZero.getBitWidth() - 3); break; } } break; } } //===----------------------------------------------------------------------===// // Addressing mode description hooks //===----------------------------------------------------------------------===// static inline bool isImmUs(int64_t val) { return (val >= 0 && val <= 11); } static inline bool isImmUs2(int64_t val) { return (val%2 == 0 && isImmUs(val/2)); } static inline bool isImmUs4(int64_t val) { return (val%4 == 0 && isImmUs(val/4)); } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { if (Ty->getTypeID() == Type::VoidTyID) return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); const DataLayout *TD = TM.getDataLayout(); unsigned Size = TD->getTypeAllocSize(Ty); if (AM.BaseGV) { return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && AM.BaseOffs%4 == 0; } switch (Size) { case 1: // reg + imm if (AM.Scale == 0) { return isImmUs(AM.BaseOffs); } // reg + reg return AM.Scale == 1 && AM.BaseOffs == 0; case 2: case 3: // reg + imm if (AM.Scale == 0) { return isImmUs2(AM.BaseOffs); } // reg + reg<<1 return AM.Scale == 2 && AM.BaseOffs == 0; default: // reg + imm if (AM.Scale == 0) { return isImmUs4(AM.BaseOffs); } // reg + reg<<2 return AM.Scale == 4 && AM.BaseOffs == 0; } } //===----------------------------------------------------------------------===// // XCore Inline Assembly Support //===----------------------------------------------------------------------===// std::pair XCoreTargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default : break; case 'r': return std::make_pair(0U, &XCore::GRRegsRegClass); } } // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); }