//===- AArch64FrameLowering.cpp - AArch64 Frame Information ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the AArch64 implementation of TargetFrameLowering class. // //===----------------------------------------------------------------------===// #include "AArch64.h" #include "AArch64FrameLowering.h" #include "AArch64InstrInfo.h" #include "AArch64MachineFunctionInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/IR/Function.h" #include "llvm/MC/MachineLocation.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" using namespace llvm; void AArch64FrameLowering::splitSPAdjustments(uint64_t Total, uint64_t &Initial, uint64_t &Residual) const { // 0x1f0 here is a pessimistic (i.e. realistic) boundary: x-register LDP // instructions have a 7-bit signed immediate scaled by 8, giving a reach of // 0x1f8, but stack adjustment should always be a multiple of 16. if (Total <= 0x1f0) { Initial = Total; Residual = 0; } else { Initial = 0x1f0; Residual = Total - Initial; } } void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const { AArch64MachineFunctionInfo *FuncInfo = MF.getInfo(); MachineBasicBlock &MBB = MF.front(); MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo *MFI = MF.getFrameInfo(); const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); MachineModuleInfo &MMI = MF.getMMI(); const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); bool NeedsFrameMoves = MMI.hasDebugInfo() || MF.getFunction()->needsUnwindTableEntry(); uint64_t NumInitialBytes, NumResidualBytes; // Currently we expect the stack to be laid out by // sub sp, sp, #initial // stp x29, x30, [sp, #offset] // ... // str xxx, [sp, #offset] // sub sp, sp, #rest (possibly via extra instructions). if (MFI->getCalleeSavedInfo().size()) { // If there are callee-saved registers, we want to store them efficiently as // a block, and virtual base assignment happens too early to do it for us so // we adjust the stack in two phases: first just for callee-saved fiddling, // then to allocate the rest of the frame. splitSPAdjustments(MFI->getStackSize(), NumInitialBytes, NumResidualBytes); } else { // If there aren't any callee-saved registers, two-phase adjustment is // inefficient. It's more efficient to adjust with NumInitialBytes too // because when we're in a "callee pops argument space" situation, that pop // must be tacked onto Initial for correctness. NumInitialBytes = MFI->getStackSize(); NumResidualBytes = 0; } // Tell everyone else how much adjustment we're expecting them to use. In // particular if an adjustment is required for a tail call the epilogue could // have a different view of things. FuncInfo->setInitialStackAdjust(NumInitialBytes); emitSPUpdate(MBB, MBBI, DL, TII, AArch64::X16, -NumInitialBytes, MachineInstr::FrameSetup); if (NeedsFrameMoves && NumInitialBytes) { // We emit this update even if the CFA is set from a frame pointer later so // that the CFA is valid in the interim. MachineLocation Dst(MachineLocation::VirtualFP); unsigned Reg = MRI->getDwarfRegNum(AArch64::XSP, true); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfa(nullptr, Reg, -NumInitialBytes)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } // Otherwise we need to set the frame pointer and/or add a second stack // adjustment. bool FPNeedsSetting = hasFP(MF); for (; MBBI != MBB.end(); ++MBBI) { // Note that this search makes strong assumptions about the operation used // to store the frame-pointer: it must be "STP x29, x30, ...". This could // change in future, but until then there's no point in implementing // untestable more generic cases. if (FPNeedsSetting && MBBI->getOpcode() == AArch64::LSPair64_STR && MBBI->getOperand(0).getReg() == AArch64::X29) { int64_t X29FrameIdx = MBBI->getOperand(2).getIndex(); FuncInfo->setFramePointerOffset(MFI->getObjectOffset(X29FrameIdx)); ++MBBI; emitRegUpdate(MBB, MBBI, DL, TII, AArch64::X29, AArch64::XSP, AArch64::X29, NumInitialBytes + MFI->getObjectOffset(X29FrameIdx), MachineInstr::FrameSetup); // The offset adjustment used when emitting debugging locations relative // to whatever frame base is set. AArch64 uses the default frame base (FP // or SP) and this adjusts the calculations to be correct. MFI->setOffsetAdjustment(- MFI->getObjectOffset(X29FrameIdx) - MFI->getStackSize()); if (NeedsFrameMoves) { unsigned Reg = MRI->getDwarfRegNum(AArch64::X29, true); unsigned Offset = MFI->getObjectOffset(X29FrameIdx); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createDefCfa(nullptr, Reg, Offset)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } FPNeedsSetting = false; } if (!MBBI->getFlag(MachineInstr::FrameSetup)) break; } assert(!FPNeedsSetting && "Frame pointer couldn't be set"); emitSPUpdate(MBB, MBBI, DL, TII, AArch64::X16, -NumResidualBytes, MachineInstr::FrameSetup); // Now we emit the rest of the frame setup information, if necessary: we've // already noted the FP and initial SP moves so we're left with the prologue's // final SP update and callee-saved register locations. if (!NeedsFrameMoves) return; // The rest of the stack adjustment if (!hasFP(MF) && NumResidualBytes) { MachineLocation Dst(MachineLocation::VirtualFP); unsigned Reg = MRI->getDwarfRegNum(AArch64::XSP, true); unsigned Offset = NumResidualBytes + NumInitialBytes; unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } // And any callee-saved registers (it's fine to leave them to the end here, // because the old values are still valid at this point. const std::vector &CSI = MFI->getCalleeSavedInfo(); if (CSI.size()) { for (std::vector::const_iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) { unsigned Offset = MFI->getObjectOffset(I->getFrameIdx()); unsigned Reg = MRI->getDwarfRegNum(I->getReg(), true); unsigned CFIIndex = MMI.addFrameInst( MCCFIInstruction::createOffset(nullptr, Reg, Offset)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); } } } void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { AArch64MachineFunctionInfo *FuncInfo = MF.getInfo(); MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); DebugLoc DL = MBBI->getDebugLoc(); const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned RetOpcode = MBBI->getOpcode(); // Initial and residual are named for consitency with the prologue. Note that // in the epilogue, the residual adjustment is executed first. uint64_t NumInitialBytes = FuncInfo->getInitialStackAdjust(); uint64_t NumResidualBytes = MFI.getStackSize() - NumInitialBytes; uint64_t ArgumentPopSize = 0; if (RetOpcode == AArch64::TC_RETURNdi || RetOpcode == AArch64::TC_RETURNxi) { MachineOperand &JumpTarget = MBBI->getOperand(0); MachineOperand &StackAdjust = MBBI->getOperand(1); MachineInstrBuilder MIB; if (RetOpcode == AArch64::TC_RETURNdi) { MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::TAIL_Bimm)); if (JumpTarget.isGlobal()) { MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), JumpTarget.getTargetFlags()); } else { assert(JumpTarget.isSymbol() && "unexpected tail call destination"); MIB.addExternalSymbol(JumpTarget.getSymbolName(), JumpTarget.getTargetFlags()); } } else { assert(RetOpcode == AArch64::TC_RETURNxi && JumpTarget.isReg() && "Unexpected tail call"); MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::TAIL_BRx)); MIB.addReg(JumpTarget.getReg(), RegState::Kill); } // Add the extra operands onto the new tail call instruction even though // they're not used directly (so that liveness is tracked properly etc). for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i) MIB->addOperand(MBBI->getOperand(i)); // Delete the pseudo instruction TC_RETURN. MachineInstr *NewMI = std::prev(MBBI); MBB.erase(MBBI); MBBI = NewMI; // For a tail-call in a callee-pops-arguments environment, some or all of // the stack may actually be in use for the call's arguments, this is // calculated during LowerCall and consumed here... ArgumentPopSize = StackAdjust.getImm(); } else { // ... otherwise the amount to pop is *all* of the argument space, // conveniently stored in the MachineFunctionInfo by // LowerFormalArguments. This will, of course, be zero for the C calling // convention. ArgumentPopSize = FuncInfo->getArgumentStackToRestore(); } assert(NumInitialBytes % 16 == 0 && NumResidualBytes % 16 == 0 && "refusing to adjust stack by misaligned amt"); // We may need to address callee-saved registers differently, so find out the // bound on the frame indices. const std::vector &CSI = MFI.getCalleeSavedInfo(); int MinCSFI = 0; int MaxCSFI = -1; if (CSI.size()) { MinCSFI = CSI[0].getFrameIdx(); MaxCSFI = CSI[CSI.size() - 1].getFrameIdx(); } // The "residual" stack update comes first from this direction and guarantees // that SP is NumInitialBytes below its value on function entry, either by a // direct update or restoring it from the frame pointer. if (NumInitialBytes + ArgumentPopSize != 0) { emitSPUpdate(MBB, MBBI, DL, TII, AArch64::X16, NumInitialBytes + ArgumentPopSize); --MBBI; } // MBBI now points to the instruction just past the last callee-saved // restoration (either RET/B if NumInitialBytes == 0, or the "ADD sp, sp" // otherwise). // Now we need to find out where to put the bulk of the stack adjustment MachineBasicBlock::iterator FirstEpilogue = MBBI; while (MBBI != MBB.begin()) { --MBBI; unsigned FrameOp; for (FrameOp = 0; FrameOp < MBBI->getNumOperands(); ++FrameOp) { if (MBBI->getOperand(FrameOp).isFI()) break; } // If this instruction doesn't have a frame index we've reached the end of // the callee-save restoration. if (FrameOp == MBBI->getNumOperands()) break; // Likewise if it *is* a local reference, but not to a callee-saved object. int FrameIdx = MBBI->getOperand(FrameOp).getIndex(); if (FrameIdx < MinCSFI || FrameIdx > MaxCSFI) break; FirstEpilogue = MBBI; } if (MF.getFrameInfo()->hasVarSizedObjects()) { int64_t StaticFrameBase; StaticFrameBase = -(NumInitialBytes + FuncInfo->getFramePointerOffset()); emitRegUpdate(MBB, FirstEpilogue, DL, TII, AArch64::XSP, AArch64::X29, AArch64::NoRegister, StaticFrameBase); } else { emitSPUpdate(MBB, FirstEpilogue, DL,TII, AArch64::X16, NumResidualBytes); } } int64_t AArch64FrameLowering::resolveFrameIndexReference(MachineFunction &MF, int FrameIndex, unsigned &FrameReg, int SPAdj, bool IsCalleeSaveOp) const { AArch64MachineFunctionInfo *FuncInfo = MF.getInfo(); MachineFrameInfo *MFI = MF.getFrameInfo(); int64_t TopOfFrameOffset = MFI->getObjectOffset(FrameIndex); assert(!(IsCalleeSaveOp && FuncInfo->getInitialStackAdjust() == 0) && "callee-saved register in unexpected place"); // If the frame for this function is particularly large, we adjust the stack // in two phases which means the callee-save related operations see a // different (intermediate) stack size. int64_t FrameRegPos; if (IsCalleeSaveOp) { FrameReg = AArch64::XSP; FrameRegPos = -static_cast(FuncInfo->getInitialStackAdjust()); } else if (useFPForAddressing(MF)) { // Have to use the frame pointer since we have no idea where SP is. FrameReg = AArch64::X29; FrameRegPos = FuncInfo->getFramePointerOffset(); } else { FrameReg = AArch64::XSP; FrameRegPos = -static_cast(MFI->getStackSize()) + SPAdj; } return TopOfFrameOffset - FrameRegPos; } void AArch64FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS) const { const AArch64RegisterInfo *RegInfo = static_cast(MF.getTarget().getRegisterInfo()); MachineFrameInfo *MFI = MF.getFrameInfo(); const AArch64InstrInfo &TII = *static_cast(MF.getTarget().getInstrInfo()); if (hasFP(MF)) { MF.getRegInfo().setPhysRegUsed(AArch64::X29); MF.getRegInfo().setPhysRegUsed(AArch64::X30); } // If addressing of local variables is going to be more complicated than // shoving a base register and an offset into the instruction then we may well // need to scavenge registers. We should either specifically add an // callee-save register for this purpose or allocate an extra spill slot. bool BigStack = MFI->estimateStackSize(MF) >= TII.estimateRSStackLimit(MF) || MFI->hasVarSizedObjects() // Access will be from X29: messes things up || (MFI->adjustsStack() && !hasReservedCallFrame(MF)); if (!BigStack) return; // We certainly need some slack space for the scavenger, preferably an extra // register. const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(); MCPhysReg ExtraReg = AArch64::NoRegister; for (unsigned i = 0; CSRegs[i]; ++i) { if (AArch64::GPR64RegClass.contains(CSRegs[i]) && !MF.getRegInfo().isPhysRegUsed(CSRegs[i])) { ExtraReg = CSRegs[i]; break; } } if (ExtraReg != 0) { MF.getRegInfo().setPhysRegUsed(ExtraReg); } else { assert(RS && "Expect register scavenger to be available"); // Create a stack slot for scavenging purposes. PrologEpilogInserter // helpfully places it near either SP or FP for us to avoid // infinitely-regression during scavenging. const TargetRegisterClass *RC = &AArch64::GPR64RegClass; RS->addScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), false)); } } bool AArch64FrameLowering::determinePrologueDeath(MachineBasicBlock &MBB, unsigned Reg) const { // If @llvm.returnaddress is called then it will refer to X30 by some means; // the prologue store does not kill the register. if (Reg == AArch64::X30) { if (MBB.getParent()->getFrameInfo()->isReturnAddressTaken() && MBB.getParent()->getRegInfo().isLiveIn(Reg)) return false; } // In all other cases, physical registers are dead after they've been saved // but live at the beginning of the prologue block. MBB.addLiveIn(Reg); return true; } void AArch64FrameLowering::emitFrameMemOps(bool isPrologue, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const std::vector &CSI, const TargetRegisterInfo *TRI, const LoadStoreMethod PossClasses[], unsigned NumClasses) const { DebugLoc DL = MBB.findDebugLoc(MBBI); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); // A certain amount of implicit contract is present here. The actual stack // offsets haven't been allocated officially yet, so for strictly correct code // we rely on the fact that the elements of CSI are allocated in order // starting at SP, purely as dictated by size and alignment. In practice since // this function handles the only accesses to those slots it's not quite so // important. // // We have also ordered the Callee-saved register list in AArch64CallingConv // so that the above scheme puts registers in order: in particular we want // &X30 to be &X29+8 for an ABI-correct frame record (PCS 5.2.2) for (unsigned i = 0, e = CSI.size(); i < e; ++i) { unsigned Reg = CSI[i].getReg(); // First we need to find out which register class the register belongs to so // that we can use the correct load/store instrucitons. unsigned ClassIdx; for (ClassIdx = 0; ClassIdx < NumClasses; ++ClassIdx) { if (PossClasses[ClassIdx].RegClass->contains(Reg)) break; } assert(ClassIdx != NumClasses && "Asked to store register in unexpected class"); const TargetRegisterClass &TheClass = *PossClasses[ClassIdx].RegClass; // Now we need to decide whether it's possible to emit a paired instruction: // for this we want the next register to be in the same class. MachineInstrBuilder NewMI; bool Pair = false; if (i + 1 < CSI.size() && TheClass.contains(CSI[i+1].getReg())) { Pair = true; unsigned StLow = 0, StHigh = 0; if (isPrologue) { // Most of these registers will be live-in to the MBB and killed by our // store, though there are exceptions (see determinePrologueDeath). StLow = getKillRegState(determinePrologueDeath(MBB, CSI[i+1].getReg())); StHigh = getKillRegState(determinePrologueDeath(MBB, CSI[i].getReg())); } else { StLow = RegState::Define; StHigh = RegState::Define; } NewMI = BuildMI(MBB, MBBI, DL, TII.get(PossClasses[ClassIdx].PairOpcode)) .addReg(CSI[i+1].getReg(), StLow) .addReg(CSI[i].getReg(), StHigh); // If it's a paired op, we've consumed two registers ++i; } else { unsigned State; if (isPrologue) { State = getKillRegState(determinePrologueDeath(MBB, CSI[i].getReg())); } else { State = RegState::Define; } NewMI = BuildMI(MBB, MBBI, DL, TII.get(PossClasses[ClassIdx].SingleOpcode)) .addReg(CSI[i].getReg(), State); } // Note that the FrameIdx refers to the second register in a pair: it will // be allocated the smaller numeric address and so is the one an LDP/STP // address must use. int FrameIdx = CSI[i].getFrameIdx(); MachineMemOperand::MemOperandFlags Flags; Flags = isPrologue ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad; MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), Flags, Pair ? TheClass.getSize() * 2 : TheClass.getSize(), MFI.getObjectAlignment(FrameIdx)); NewMI.addFrameIndex(FrameIdx) .addImm(0) // address-register offset .addMemOperand(MMO); if (isPrologue) NewMI.setMIFlags(MachineInstr::FrameSetup); // For aesthetic reasons, during an epilogue we want to emit complementary // operations to the prologue, but in the opposite order. So we still // iterate through the CalleeSavedInfo list in order, but we put the // instructions successively earlier in the MBB. if (!isPrologue) --MBBI; } } bool AArch64FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; static const LoadStoreMethod PossibleClasses[] = { {&AArch64::GPR64RegClass, AArch64::LSPair64_STR, AArch64::LS64_STR}, {&AArch64::FPR64RegClass, AArch64::LSFPPair64_STR, AArch64::LSFP64_STR}, }; const unsigned NumClasses = llvm::array_lengthof(PossibleClasses); emitFrameMemOps(/* isPrologue = */ true, MBB, MBBI, CSI, TRI, PossibleClasses, NumClasses); return true; } bool AArch64FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const std::vector &CSI, const TargetRegisterInfo *TRI) const { if (CSI.empty()) return false; static const LoadStoreMethod PossibleClasses[] = { {&AArch64::GPR64RegClass, AArch64::LSPair64_LDR, AArch64::LS64_LDR}, {&AArch64::FPR64RegClass, AArch64::LSFPPair64_LDR, AArch64::LSFP64_LDR}, }; const unsigned NumClasses = llvm::array_lengthof(PossibleClasses); emitFrameMemOps(/* isPrologue = */ false, MBB, MBBI, CSI, TRI, PossibleClasses, NumClasses); return true; } bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const TargetRegisterInfo *RI = MF.getTarget().getRegisterInfo(); // This is a decision of ABI compliance. The AArch64 PCS gives various options // for conformance, and even at the most stringent level more or less permits // elimination for leaf functions because there's no loss of functionality // (for debugging etc).. if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI->hasCalls()) return true; // The following are hard-limits: incorrect code will be generated if we try // to omit the frame. return (RI->needsStackRealignment(MF) || MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken()); } bool AArch64FrameLowering::useFPForAddressing(const MachineFunction &MF) const { return MF.getFrameInfo()->hasVarSizedObjects(); } bool AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); // Of the various reasons for having a frame pointer, it's actually only // variable-sized objects that prevent reservation of a call frame. return !(hasFP(MF) && MFI->hasVarSizedObjects()); } void AArch64FrameLowering::eliminateCallFramePseudoInstr( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { const AArch64InstrInfo &TII = *static_cast(MF.getTarget().getInstrInfo()); DebugLoc dl = MI->getDebugLoc(); int Opcode = MI->getOpcode(); bool IsDestroy = Opcode == TII.getCallFrameDestroyOpcode(); uint64_t CalleePopAmount = IsDestroy ? MI->getOperand(1).getImm() : 0; if (!hasReservedCallFrame(MF)) { unsigned Align = getStackAlignment(); int64_t Amount = MI->getOperand(0).getImm(); Amount = RoundUpToAlignment(Amount, Align); if (!IsDestroy) Amount = -Amount; // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it // doesn't have to pop anything), then the first operand will be zero too so // this adjustment is a no-op. if (CalleePopAmount == 0) { // FIXME: in-function stack adjustment for calls is limited to 12-bits // because there's no guaranteed temporary register available. Mostly call // frames will be allocated at the start of a function so this is OK, but // it is a limitation that needs dealing with. assert(Amount > -0xfff && Amount < 0xfff && "call frame too large"); emitSPUpdate(MBB, MI, dl, TII, AArch64::NoRegister, Amount); } } else if (CalleePopAmount != 0) { // If the calling convention demands that the callee pops arguments from the // stack, we want to add it back if we have a reserved call frame. assert(CalleePopAmount < 0xfff && "call frame too large"); emitSPUpdate(MBB, MI, dl, TII, AArch64::NoRegister, -CalleePopAmount); } MBB.erase(MI); }